
A Unified Framework for Flexible Playback
Latency Control in Live Video Streaming

Guanghui Zhang, Jack Y. B. Lee , Senior Member, IEEE, Ke Liu ,

Haibo Hu , Senior Member, IEEE, and Vaneet Aggarwal , Senior Member, IEEE

Abstract—Live video streaming has seen tremendous growth in the past decade. An important fact in live streaming is that the

demand for low playback-latency inherently conflicts with the desire for high QoE. This requires different types of live services to seek

different latency-QoE tradeoffs according to their service-requirements. However, our investigations revealed that it is fundamentally

difficult for existing streaming algorithms to keep consistent latency in changing network conditions, let alone achieve the service-

desired latency-QoE tradeoff. To tackle the challenge, this article develops a novel framework called Flexible Latency Aware Streaming

(FLAS) that not only can achieve consistent low latency, but also control the latency-QoE tradeoff flexibly. Specifically, FLAS generates

a set of adaptation logics offline, each optimized for a candidate tradeoff point, then selects the most appropriate one to run online. We

first show how FLAS can be applied to optimizing the existing algorithms, then developed a novel Genetic Programming approach to

fully exploit FLAS’s potential. Extensive evaluations show that FLAS can precisely control latency all the way down to 1s and achieve

substantially higher QoE than state-of-the-arts. FLAS can be readily implemented into real streaming platforms, offering a practical and

reliable solution for live-streaming services.

Index Terms—Video streaming, genetic programming, quality-of-experience, video reliability

Ç

1 INTRODUCTION

VIDEO streaming has become a mainstream application in
the Internet. Beginning with streaming pre-encoded con-

tents, i.e., on-demand streaming, a new trend in recent years
is the streaming of live events, from professionally-authored
live contents (e.g., news, concerts, and sports), to user-gener-
ated live streams (e.g., personal live shows). This trend is fur-
ther fueled by the widespread adoption of live-streaming
platforms such as YouTube Live [1] and Facebook Live [2].

In addition to the usual quality-of-experience (QoE)metrics
such as video quality and playback rebuffering, a unique and
important performance metric in live streaming is playback
latency, which is defined as the time difference between video

rendering and actual capturing. In this paper, latency is not
included in the calculation of QoE in order to differentiate it
from the usual QoEmetrics.

In general, live streaming requires low playback latency
(a few seconds at most), otherwise the service quality would
degrade significantly. In fact, however, latency and QoE
(e.g., video quality) are inherently conflicting objectives. For
instance, viewers generally prefer to stream high-quality
videos which would inevitably incur longer transmission
delay at the mobile radio link. As the transmission delay
translates directly into the playback latency, the need for
high-quality videos inherently conflicts with the low latency
demand. Therefore, this requires live streaming services to
seek performance tradeoffs between the latency and QoE.

In practice, different types of live streaming services can
have very different latency-QoE requirements [3], [4], [5]. For
example, highly interactive live streams (e.g., live sales, inter-
active live shows) demand much shorter latency than one-
way broadcasts (e.g., news, concerts), but the interactive ones
can tolerate lower video quality. Therefore, how to achieve
desired and optimal latency-QoE tradeoffs for different live
services is a significant challenge for designing streaming
algorithms.

While many sophisticated live streaming algorithms
(e.g., [22], [23], [24], [25], [26], [27], [28]) were proposed in
recent years, none of them have addressed the above chal-
lenge. Worst still, our investigations revealed that the play-
back latency achieved by these existing algorithms are far
from consistent, but vary over a wide range (e.g., 2s�31s) in
changing network conditions. In other words, streaming the
same video from the same mobile operator, even in the
same location, could result in significantly different latency,
depending on the specific network condition experienced.
This is clearly undesirable as it is even not possible to keep

� Guanghui Zhang is with the Department of Electronic and Information
Engineering, The Hong Kong Polytechnic University, Kowloon, Hong
Kong, and also with the Centre for Advances in Reliability and Safety
(CAiRS), Pak Shek Kok,NT, HongKong. E-mail: ghzhang@link.cuhk.edu.hk.

� Jack Y. B. Lee is with the Department of Information Engineering, The Chi-
nese University of Hong Kong, Shatin, NT, Hong Kong. E-mail: yblee@ie.
cuhk.edu.hk.

� Ke Liu is with the State Key Laboratory of Computer Architecture, Insti-
tute of Computing Technology, Chinese Academy of Sciences, Beijing
100732, China, and also with the University of Chinese Academy of Scien-
ces (UCAS), Beijing 100049, China. E-mail: liuke@ict.ac.cn.

� Haibo Hu is with the Department of Electronic and Information Engineer-
ing, The Hong Kong Polytechnic University, Kowloon, Hong Kong, and
also with the PolyU Shenzhen Research Institute, Kowloon, Hong Kong.
E-mail: haibo.hu@polyu.edu.hk.

� Vaneet Aggarwal is with the School of Industrial Engineering, Purdue
University, West Lafayette, IN 47907 USA, and also with the Com-
puter Engineering, Purdue University, West Lafayette, IN 47907 USA.
E-mail: vaneet@purdue.edu.

Manuscript received 17 Nov. 2020; revised 8 Apr. 2021; accepted 16 May 2021.
Date of publication 24 May 2021; date of current version 11 June 2021.
(Corresponding author: Ke Liu.)
Recommended for acceptance by T. Kosar.
Digital Object Identifier no. 10.1109/TPDS.2021.3083202

3024 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/300000-0002-3583-6428
https://orcid.org/300000-0002-3583-6428
https://orcid.org/300000-0002-3583-6428
https://orcid.org/300000-0002-3583-6428
https://orcid.org/300000-0002-3583-6428
https://orcid.org/0000-0003-4151-1416
https://orcid.org/0000-0003-4151-1416
https://orcid.org/0000-0003-4151-1416
https://orcid.org/0000-0003-4151-1416
https://orcid.org/0000-0003-4151-1416
https://orcid.org/0000-0002-9008-2112
https://orcid.org/0000-0002-9008-2112
https://orcid.org/0000-0002-9008-2112
https://orcid.org/0000-0002-9008-2112
https://orcid.org/0000-0002-9008-2112
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0001-9131-4723
https://orcid.org/0000-0001-9131-4723
mailto:ghzhang@link.cuhk.edu.hk
mailto:yblee@ie.cuhk.edu.hk
mailto:yblee@ie.cuhk.edu.hk
mailto:liuke@ict.ac.cn
mailto:haibo.hu@polyu.edu.hk
mailto:vaneet@purdue.edu

consistent latency, let alone achieve the desired latency-QoE
performance.

To tackle the challenge, we propose a novel framework
called Flexible Latency Aware Streaming (FLAS) that not
only can achieve consistent low latency, but also control the
latency-QoE tradeoff flexibly. Specifically, FLAS introduces
the notion of state quantizer (SQ) to quantify the latency-QoE
tradeoff, and then generates a set of adaptation logics offline
where each one is optimized for a candidate tradeoff point.
At runtime, service providers (or viewers) are allowed to
specify target playback latency (e.g., 2s) according to the
service requirement. With the target latency prescribed,
FLAS then periodically selects/adjusts the operational
adaptation logic based on the network condition, to ensure
the actual latency not deviate from the target while QoE can
be maximized.

This work makes three key contributions. First, we con-
ducted extensive evaluations to reveal the problems of the
existing live streaming algorithms. Second, we proposed
FLAS, which is a unified framework that can optimize the
existing learning-based algorithms. To demonstrate this
applicability, we applied FLAS to L2AC [27], which is a
state-of-the-art algorithm developed upon A3C [29]. How-
ever, we discovered that although FLAS-L2AC can achieve
substantially better performance, its efficacy is restricted
under challenging network conditions, presumably due to
the inherent neural network structure or the training param-
eters. Third, to get rid of the limitation, we turned to using a
radically different machine-learning approach – Genetic
Programming (GP) [30]. Different from deep reinforcement
learning, GP represents candidate solutions in the form of
expression trees and does not impose any rigid structures
on the tree, so the solution space can be explored freely.
Based on this property, we improved GP evolutionary pro-
cess to make it compatible with FLAS.

Extensive evaluations show that FLAS-GP can fully exploit
FLAS’s potential. Specifically, 1) FLAS-GP can achieve sub-
stantially higher QoEwith the same or lower playback latency
than the state-of-the-arts; 2) it can precisely control the latency
all the way down to 1s; 3) it exhibits remarkable spatial and
temporal robustness; and 4) it can be easily deployed on real
streaming platforms.

The rest of the paper is organized as follows: Section 2
reviews the background and related work; Section 3 evalu-
ates the existing live streaming algorithms; Section 4 pro-
poses FLAS and evaluates its efficacy by FLAS-L2AC;
Section 5 presents a novel Genetic Programming approach;
Section 6 compares FLAS with the state-of-the-arts, and Sec-
tion 7 summarizes the study and outlines future work.

2 BACKGROUND AND RELATED WORK

Dynamic adaptive video streaming (DASH [32]) is a primary
tool service providers use to compensate for the inevitable
bandwidth fluctuation in the network. In recent years,
researchers have developed many novel adaptive streaming
algorithms for on-demand streaming. The basic principle is to
dynamically select the future video bitrate in the light of past
measurements such as throughput and buffer occupancy.
Existing adaptive algorithms can be classified based on their
measuredmetrics, e.g., bandwidth-based [7], [8], buffer-based

[9], [10], and hybrid-bandwidth-buffer-based [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21] approaches, or classi-
fied according to the technique used to optimize the adapta-
tion logic, e.g., heuristics [7], [8], [9], [10], [11], [12], feedback
control [13], data-analytic [14], [15], [16], and machine learn-
ing [17], [18], [19], [20], [21].

While DASH works well for on-demand streaming, due
to its segment-based video transmission, it exhibits latency
too long to be suited for live streaming. To tackle this issue,
the recently proposed CMAF [40], [43] supports to divide
the DASH segments into independently transferable
chunks, which fuels the researchers to develop new adapta-
tion algorithms for live streaming.

First, since data buffering can directly increase the play-
back latency, this motivates designs to control the amount
of buffered video data in the streaming pipeline to reduce
the latency. For example, Cicco et al. [22] proposed a client-
side algorithm employing PID feedback control to track a
target buffer occupancy by adapting the video bitrate,
thereby maintaining low latency while preventing playback
rebuffering. Similarly, Wang et al. [23] proposed a PID-
based adaptation algorithm to control the buffer at the
streaming server side. Xie et al. [24] proposed DTBB to select
video bitrate depending on a buffer threshold that can be
dynamically tuned based on the measured throughput.

The second problem in live streaming is called latency
accumulation. Specifically, during rebuffering where the
player runs out of the video data, video playback will be
suspended until sufficient data are downloaded to
resume the playback. The live event, on the other hand,
continues on and thus the gap between the video play-
back and the actual capturing will be widened by the
rebuffering event. Given that video data is played
sequentially, the latency cannot be reduced once intro-
duced, resulting in incremental latency whenever a rebuf-
fering event occurs.

Two common solutions to this problem are video skip-
ping and playback rate regulating. The former one is to skip
the download/playback of the late-arriving video segments
while the later one is to accelerate the playback. Both of
them can make the player catch up with the live event. For
instance, Miller et al. [25] proposed LOLYPOP that executes
video skipping once the playback latency is larger than a
pre-defined skipping threshold. Lim et al. [26] proposed
LoL that turns up the playback rate to lower latency. Zhao
et al. [27] developed L2AC that incorporates both of the
methods by training neural networks. Although the above
algorithms were designed with reducing latency in mind,
it’s still far from enough in practice, as different live services
can have very different latency requirements. Recently,
Zhang et al. [28] proposed LAPAS that can achieve tunable
latency control through analyzing past network trace data.
However, LAPAS suffers from several fundamental limita-
tions, which will be discussed in Section 3.

By contrast, the FLAS framework developed in this study
offers three superiorities: 1) In addition to achieving consis-
tent low latency over different network conditions, FLAS
can enable flexible latency control; 2) FLAS is a general
framework, which not only can be applied to optimizing
the existing algorithms, but also guide the design of new
latency-aware approaches. For instance, we applied FLAS

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3025

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

to L2AC [27] in Section 4, and explored a novel Genetic Pro-
gramming approach in Section 5. This feature enables FLAS
to incorporate any advanced techniques to fully liberate its
performance potential; 3) The two-phase design of FLAS
avoids the difficulties of real deployment, bringing a
completely practical solution to live streaming.

3 EVALUATION OF EXISTING ALGORITHMS

In this section, we evaluate the performance of five lead-
ing live streaming algorithms and then discuss their
limitations.

3.1 Experiment Setup

To evaluate the streaming algorithms in realistic network
settings, we employed an open-source trace-driven simula-
tor developed by Yi et al. [41], which supports frame-basis
video transmission [40], [43]. We refer readers to the paper
[41] and the source code [33] for more details. In our evalua-
tion, we changed the value of a few parameters in the simu-
lator, which were listed in Table 1. Five state-of-the-art live
streaming algorithms were evaluated: PID [23], DTBB [24],
LOLYPOP [25], L2AC [27], LAPAS [28].

The network conditions were emulated by replaying TCP
throughput trace data captured from real mobile networks.
The statistics of the trace data used in the evaluation were
summarized in Table 2, where #5 was captured by Riiser et al.
[38], #7 was provided by the simulator [33] and the rest
(#1�#4, and #6) were captured by us [36] (see Appendix A.1,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TPDS.2021.
3083202, for the throughput distribution). In the rest of the
paper, unless stated otherwise, the trace data used for evalua-
tions are composed of the dataset #1 to #7.

Two primary performance metrics were adopted: 1)mean
playback latency is defined as the average playback latency
experienced in each streaming session, and 2) QoE is calcu-
lated from the QoE function proposed by Yin et al. [11] com-
bined with a penalty for video data skipping [41]:

Q ¼ 1

K

XK�1

k¼0

rk�
XK�1

k¼1

rk � rk�1j j � 3:0� Z � 3:0� Z0 � 0:2�G

 !
;

(1)

where Z is the rebuffering duration, Z’ is the startup delay,
rk is the bitrate selected for segment k in Mbps, G is the
skipped video duration, K is the total number of segments
in one streaming session, and the weights of these compo-
nents (e.g., 3.0, 0.2) follow [11] and [41]. Moreover, we will
further consider other QoE metrics in Section 6.1.

3.2 Results and Discussions

Observation 1. Fig. 1 compares the mean value of QoE and
playback latency of the five streaming algorithms. We can see
that most algorithms are not latency tunable, so each achieves
only one specific tradeoff point between QoE and latency.
This is a significant limitation in practice as different types of
live streaming services can have very different latency/QoE
requirements. By comparison, LAPAS obtains a continuous
tradeoff trajectory, as LAPAS supports the configuration of
target latency and adopts a streaming-parameter-optimiza-
tion to track the target. Interested readers can refer to [28] for
more details.

However, under the same latency, the QoE performance
of LAPAS is much worse than L2AC (a more comprehen-
sive QoE comparison is in Appendix A.2, available in the
online supplemental material). We argue that this is because
LAPAS’s adaptation logic is a pre-programmed fixed heu-
ristic, which is inevitably restricted by the human intuitions.
In comparison, L2AC employs deep reinforcement learning
(i.e., A3C [29]) that learns a better adaptation logic based on its
past experience. Nonetheless, as we mentioned, L2AC is not a
latency-tunable algorithm, so it is incapable to achieve desired
latency-QoE tradeoffs based on the user’s requirements.

Observation 2. In Fig. 1, the error bars indicate the latency
range achieved in different streaming sessions by each algo-
rithm. We found that the latency across different sessions is
far from consistent, but varies substantially. To further inves-
tigate this issue, we plotted Fig. 2 to show latency variations
over a period of 40 days by using a 40-day TCP throughput
trace from dataset #1. To appreciate the variations in network
conditions, we also plotted the daily mean TCP throughput in
Fig. 2, which fluctuates significantly from a low of 3.3Mbps to
a high of 7.8 Mbps. As expected, the daily latency of most
algorithms (except LAPAS) fluctuate substantially under the
changing network conditions, e.g., the latency of DTBB ranges
from 2s to 39s, which is clearly undesirable in practice.

By contrast, LAPAS exhibits more consistent latency over
the 40 days (we set target latency to 1s). This is because
LAPAS optimizes/tunes the streaming parameter periodi-
cally through analyzing past throughput trace data to adapt
to the changing network conditions. However, this is at the
expense of extremely high computational complexity. Spe-
cifically, the video clients of LAPAS need to keep detecting
the network condition, collecting throughput trace data,
and then feedback to the streaming server. Based on the
trace data, the server periodically (daily) updates/optimizes
the parameters of the adaptation algorithm to adapt to the
changing network condition. As the network condition may
differ across different clients, the parameter optimization is

TABLE 1
Evaluation Settings

Streaming
parameters

Values

Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0, 6.5, 8.6}Mbps
[37]

Live event duration 3600s
Initial video bitrate 0.2 Mbps
Prefetching duration 0.04s, i.e., 1 frame

TABLE 2
Statistics of Seven Throughput Trace Datasets

Datasets

Features #1 #2 #3 #4 #5 #6 #7

Throughput (Mbps) 5.6 4.7 3.3 2.9 1.2 11.1 3.1
Variation (CoV) 0.4 0.4 0.7 0.5 0.8 0.7 0.6
Network type 3G 3G 3G 3G 3G LTE WiFi
Mobile operator S1 S2 S1 S1 S3 S2 S4
Collection location L1 L1 L2 L3 L4 L5 L6

3026 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

conducted separately for each client. Therefore, as the client
number increases, the computational overhead increases
dramatically. Based on our measurement, one-day optimi-
zation for 100 clients even costs �1320 CPU hours, which
undoubtedly occupies a large amount of computational
resource when the client scales, and hinders the large-scale
deployment on the real streaming platforms.

4 FLEXIBLE LATENCY AWARE STREAMING

To tackle the limitations of the existing algorithms, we
develop a unified framework called Flexible Latency Aware
Streaming (FLAS). FLAS is built upon two phases, namely
distributed offline training and online adaptation logic selection,
as depicted in Fig. 3. In this section, we first introduce the
design of FLAS and then evaluate its efficacy by applying it
to optimizing an existing algorithm L2AC [27].

4.1 Distributed Offline Training

To quantify the latency-QoE tradeoff under different net-
work conditions, we define a two-dimensional state quan-
tizer (SQ), denoted by

c
!¼ v; $h i; (2)

where the first dimension v is called latency coefficient and
the second dimension$ is named as throughput level.

Latency Coefficient v. The function is to extract the rela-
tionship between playback latency and QoE. Specifically, let
mk be the time elapsed since the beginning of the live event
at the time of requesting segment k. The current playback
time point, denoted by lk, is known to the video player so
that the playback latency ak can be computed from

ak ¼ mk � lk: (3)

The mean playback latency over different video segments is
given by

b ¼ 1

K

XK�1

k¼0

ak; (4)

where K is the total number of segments in an epoch1. The
mean latency b is then combined with the QoE function,
denoted by Q (e.g., (1)), to form the objective function for
the training:

U ¼ Q� v� b; (5)

where v is the latency coefficient.
The objective function U will then be maximized during

the training. As the playback latency b andQoEQ are conflict-
ing metrics, the latency coefficient v can be tuned to control
the latency-QoE tradeoff. For instance, a larger value of vwill
train an adaptation logic with lower latency and worse QoE.
Based on this principle, we defineM values of v, i.e., {vp j p ¼
01,. . .,M-1}, to generateM different objective functions:

Up ¼ Q� vp � b; p¼ 0; 1; . . . ;M � 1; (6)

so that we can quantify M candidate latency-QoE tradeoff
points.

Throughput Level $. To tackle the latency variations across
different network conditions, we differentiate the network
conditions through throughput level, which is defined as the
mean throughput of each epoch (network type is also a poten-
tial differentiator, but it’s too coarse-grained to perform well,
c.f. Appendix A.1, available in the online supplemental mate-
rial). The challenge it that although throughput level can be
calculated directly offline as the trace data is given, it cannot
be known before streaming the actual video online. Therefore,
to keep the calculation method consistent, we propose to esti-
mate the throughput level.

Specifically, the throughput of new epoch j can be esti-
mated by the mean throughput of downloading epoch j-1:

Vj ¼ 1

m

Xm�1

k¼0

sj�1;k

dj�1;k
; (7)

Fig. 1. Comparison of QoE and playback latency (error bars span the
streaming session with top/bottom 10 percent latency).

Fig. 2. Comparison of daily latency over a period of 40 days.

Fig. 3. The system architecture of FLAS.

1. In the process of live streaming, the network condition may
change significantly, so the initial-selected adaptation logic may no lon-
ger be optimal later on. We thus propose to divide one streaming ses-
sion into multiple sub-sessions, called “epoch”, where each has a fixed
video duration (e.g., 300s), so the system can execute adaptation logic
re-selection in the interval of each epoch to adapt to the changing net-
work. This is illustrated in Fig. 3 and we will introduce the details in
Section 4.2.

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3027

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

where sj-1,k, and dj-1,k are the size and download time of seg-
ment k, and m is the segment number. We then apply a lin-
ear quantization policy to map the measured throughput Vj

to the discrete throughput level$j:

$j ¼ min
Vj

D

� �
; N � 1

� �
; (8)

where D is the quantization step size and N is the total step
number. The next step is to segregate the throughput trace
data of all epochs, Sj, j ¼ 01,. . .,J, into N network classes:

Cq ¼ Sj

��$j ¼ q; 8j� �
; q ¼ 0; 1; . . . ; N � 1; (9)

where each class will emulate a particular network condi-
tion for the training.

Training. With the state quantizer (SQ), FLAS obtains a
total ofM�N states:

Y
¼ Up; Cq

	

p ¼ 0; 1; . . . ;M � 1; q ¼ 0; 1; . . . ; N � 1j� �

;

(10)

where Up is the objective functions (defined (6)) and Cp is
the network class (defined in (9)). For each state, FLAS runs
a separate training process, denoted by function Tx(�), to
train a specialized adaptation logic:

Ap;q ¼ TxðUp; CqÞ; p ¼ 0; 1; . . . ;M � 1; q ¼ 0; 1; . . . ; N � 1;

(11)

where Ap,q is the trained logic set (illustrated in Fig. 3 where
each square represents an adaptation logic). During the
training, FLAS also records the mean QoE, denoted by Qp,q,
and mean latency, denoted by bp,q, of each state, which will
be utilized in the online phase.

4.2 Online Adaptation Logic Selection

The adaptation logics trained offline will be downloaded to
the video player (through DASH metadata [32]) for online
streaming. To cater to different latency requirements, FLAS
supports runtime configuration of target latency (e.g., 2s),
denoted by l, which is input as a player option. With l pre-
scribed, the system’s goal is to prevent the actual latency
from deviating from the target while maximizing QoE.

Initial Selection. FLAS first selects an adaptation logic to
run at epoch 0 through state quantizer (SQ). Specifically, the
video client begins a live streaming session with prefetching
m video segments where the total prefetching video dura-
tion equals to the target latency l. FLAS then measures the
mean throughput in downloading these m segments:

V0 ¼ 1

m

Xm�1

k¼0

s0;k
d0;k

; (12)

where s0,k, and d0,k are the size and download time of the
segment k. The average throughput V0 will then be mapped
to the throughput level:

$q� ¼ min
V0

D

� �
; N � 1

� �
; (13)

where D is the quantization step size and N is the the total
step number.

Then the next step is to determine latency coefficient, and
the criteria is to find which logic can achieve the highest
QoE while its playback latency does not exceed the target l:

max
p

Qp;q� s:t: bp;q� � �; p ¼ 0; 1; . . . ;M � 1; (14)

where Qp,q� (bp,q�) are the recorded QoE (latency) with
latency coefficient vp and throughput level $q�. Finally, the
video player will apply the matching adaptation logic to
epoch 0.

Inter-Epoch Selection. For streaming the subsequent
epochs (e.g., epoch 1�4 in Fig. 3), the network condition
may change significantly, so the previously selected adapta-
tion logic may no longer be optimal. Therefore, FLAS will
adjust the operational logic at the start of each epoch to
adapt to the changing network.

Specifically, at beginning of epoch j (j> 0), FLAS acti-
vates a PI feedback controller:

uj�1 ¼ Kpej�1 þKi

Xj�1

x¼0
ex; (15)

where Kp and Ki are tuning parameters representing the
proportional gain and integral gain of the PI controller [35],
and

ej�1 ¼ �j�1 � �; (16)

is the deviation between the actual latency jj� 1 and the tar-
get l in epoch j� 1.

To compensate for the latency deviation, FLAS will
adjust the target latency for epoch j based on the output of
the PI controller:

�j ¼ �j�1 � uj�1; (17)

where lj� 1 is the target latency adopted in epoch j� 1. An
intuitive example to illustrate this feedback principle is that, if
the actual latency is higher than the target in the current
epoch, one can set a lower target in the next epoch to shorten
the actual latency so that the deviation can be reduced.

With the new target latency lj, the next step is to select
the adaptation logic using SQ. First, throughput level is esti-
mated by the mean throughput in downloading the last m
segments in epoch j� 1:

Vj ¼ 1

m

Xm�1

k¼0

sj�1;k

dj�1;k
; (18)

where sj-1,k, and dj-1,k are the size and download time of seg-
ment k. The mean throughput Vj is then mapped to the
throughput level by

$q� ¼ min
Vj

D

� �
; N � 1

� �
: (19)

Latency coefficient is determined by

max
p

Qp;q� s:t: bp;q� � �j; p ¼ 0; 1; . . . ;M � 1; (20)

3028 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

which is similar to (14) except lj replacing l. Finally, the
video player will apply the matching adaptation logic to
epoch j.

4.3 Performance Evaluation

FLAS is a general framework that is able to optimize the
existing algorithms. To evaluate this applicability, in this
section, we apply FLAS to L2AC [27], where the training
function Tx(.) (see (11)) is deep reinforcement learning A3C
[29], and the output Ap,q are M�N neural networks. More
details are in Appendix A.3, available in the online supple-
mental material.

We conducted the trace-driven simulation as described
in Section 3. For the configuration of FLAS, we adopted 14
latency coefficients (defined in (6)) ranging from 0.01 to 1.8,
and 10 throughput levels (defined in (8)) with 1 Mbps quan-
tization step. Unless stated otherwise, the epoch duration is
set to 300s. The rest of the parameters are summarized in
Table 3.

Fig. 4 compares the latency-QoE performance of FLAS-
L2AC to the existing algorithms. We observed that FLAS not
only configures L2AC to offer a continuous tradeoff trajectory,
but also improves the QoE significantly (a more comprehen-
sive QoE comparison is in Appendix A.2, available in the
online supplemental material). This strongly suggests that
FLAS and L2AC can cooperate effectually to train more spe-
cializedneural networks tomatch the operating environments
better. Compared to LAPAS, FLAS-L2AC achieves much
higher QoE in the lower latency domain (�3s), and performs
similarly in the higher latency domain (>3s).

Fig. 5 plots the daily mean latency over a period of 40 days
(the trace data is fromdataset #1, c.f. Table 2).We set the target
latency to 1s for FLAS-L2AC and LAPAS. We observed that
among all the algorithms, only FLAS-L2AC and LAPAS
exhibit consistent latency and track the latency target closely
over the 40 days. As opposed to LAPAS requiring daily and

per-client basis optimization (discussed in Section 3), FLAS-
L2AC does not need to repeat the training at all, as the latency
variations largely due to network condition changes have
already been addressed. Moreover, FLAS’s offline training
carries most of the system complexity (requires about 3718
CPU hours and can be executed in full parallel) and once it is
completed no need to be re-executed, so that the deployment
for FLAS ismuch simpler.

Limitations of FLAS-L2AC. Fig. 6 compares the daily mean
QoE of FLAS-L2AC and LAPAS under 1s target latency over
the 40 days. We also plotted the daily mean TCP throughput
to appreciate the variation of network conditions. We found
that the QoE tracks the throughput closely, as the latter
directly impacts the delivered video bitrate, which is the pri-
mary factor affecting QoE. Moreover, a more interesting
observation is that, compared to LAPAS, FLAS-L2AC only
achieves better QoE performance in 30 of the 40 days and per-
forms worse in the rest 10 days. Referring to the daily
throughput, it appears that FLAS-L2AC becomes less effective
in networkswith poor network conditions.

To this end, we further studied the QoE performance
across different throughput levels. We divided all streaming
sessions into 10 throughput levels, with level l ¼ 01,. . .,8 col-
lecting sessions with average throughput within (l, lþ1]
Mbps, plus level 9 with average throughput 	9Mbps, and
then summarized the respective QoE of FLAS-L2AC and
LAPAS in Table 4. The results verify our conjecture that
FLAS-L2AC performs much worse in lower throughput lev-
els, especially at the lowest two (i.e., 0�1). Similar results
are in other target latency options.

One of the challenges in using machine-learning app-
roaches to solve problems is that the resultant solutions (e.g.,
neural network) are often opaque and difficult to analyze so
that the insights into their performance cannot be easily

TABLE 3
System Configurations of FLAS

System parameters Values

Epoch duration 300s
Latency coefficient A total of 18 coefficients ranging

from 0.01 to 1.8
Throughput level A total of 10 levels with quantization

step 1 Mbps
PI controller Kp ¼ 0.5, Ki ¼ 0.05 [35]

Fig. 4. Comparison of QoE and playback latency (error bars span the
streaming session with top/bottom 10 percent latency).

Fig. 5. Comparison of daily playback latency over 40 days.

Fig. 6. Comparison of daily QoE over a period of 40 days.

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3029

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

obtained. To shed light on the results in Fig. 6 and Table 4, we
attempted to tackle the challenge by analyzing the adaptation
logic’s bitrate selection behavior. Specifically, by fixing other
less critical parameters, e.g., set buffer occupancy to 2s and
the last segment bitrate to 200kbps, we can plot the bitrate
decision (y-axis) versus the measured throughput (x-axis) for
the adaptation logics.

We plotted the results in Fig. 7 for low (0), medium (5),
and high (9) throughput levels where the calibration values
of the y-axis indicate the available video bitrate versions. For
FLAS-L2AC, the results reveal that its bitrate adaptation is
aggressive. While this may work well in high throughput
levels with stable network conditions, it would cause disas-
trous consequences in low throughput levels which typically
have substantial fluctuations. Another issue of FLAS-L2AC
is the abrupt changes of the bitrate decision boundary. For
example, the bitrate changes sharply from 0.2 Mbps to 1.2
Mbps (from 0.2Mbps to 2.2Mbps in level 9) despite the avail-
ability of two intermediate bitrate choices 0.4 Mbps and 0.8
Mbps.We conjecture that in spite of using the state-of-the-art
deep reinforcement learning A3C, the adopted neural net-
work structure may still not be sufficiently flexible to explore
the complete solution space for the bitrate adaptation. In
comparison, LAPAS exhibits reasonable conservatism at
throughput level 0. However, the conservatism cannot be
properly changed at higher throughput levels due to the lim-
itations of the fixed heuristic logic, so that inevitably leads to
suboptimal performance.

GP Scheme. To further explore FLAS’s potential, we will
turn to a new approach in Section 5 – Genetic Programming
(GP). The preliminary results of FLAS-GP (i.e., applying FLAS
to GP) were plotted in Fig. 7 which presents a far more reason-
able behavior. We observed that, as the measured throughput
increases, the selected bitrate of FLAS-GP gradually increases
without any abrupt changes (unlike FLAS-L2AC). Specifically,
at level 0, it is clear that FLAS-GP intentionally selects bitrates

much lower than the measured throughput, as the network
condition is judged to be poor and high measured throughput
would be treated as exceptions that are unlikely to last. Thus
not raising the bitrate too far would effectively prevent rebuf-
fering in the future.At level 5, FLAS-GPbecomesmoremoder-
ate and balanced. At level 9, FLAS-GP becomes more
aggressive, even occasionally selecting bitrates higher than the
measured throughput. The intuition is that low measured
throughput at level 9 is likely short-term so maintaining high
bitrates can prevent unnecessary QoE degradations. We will
introduce the design of FLAS-GP in next section.

5 FLEXIBLE LATENCY AWARE VIA GP

Genetic Programming (GP) [30] is inspired by the process of
natural selection where a population evolves itself to adapt
to the changing environment through crossover, mutation,
and reproduction.

Why GP? GP encodes candidate solutions in the form of
expression trees [30] and does not impose a rigid structure on
them, so GP-based schemes can be free to explore the solution
space. This is totally different from deep-reinforcement-learn-
ing which holds a predefined fixed neural network structure
and only the neuron weights can be tuned. Therefore, using
GP can potentially resolve the problems of FLAS-L2AC.

In this section, we investigate the GP approach for FLAS
where adaptation logics are encoded with expression trees. In
addition, we improved the GP evolutionary process to make
it more suitable for evolving adaptation logic in the scenario
of live video streaming. It is worth noting that other machine
learning, heuristic techniques, and streaming protocol can be
operated by FLAS in a similarmanner.

5.1 Adaptation Logic and Expression Tree

In fact, expression tree is particularly suitable for represent-
ing adaptive streaming algorithms (logics). Fig. 8 shows an
example: the right-side expression tree is the equivalent of
the left-side expression, which is a hybrid-throughput-
buffer-based on-demand adaptation algorithm proposed by
Liu et al. [14]. This algorithm determines bitrate b according
to the estimated throughput c and the buffer occupancy u.
In the following, we will apply expression trees to encoding
playback/bitrate adaptation logics for live streaming.

Playback Adaptation. A problem in live streaming is called
latency accumulation and the source is playback rebuffering.
Specifically, a rebuffering event occurs when the video
player runs out of video data and thus has to suspend the
video playback until more data are received. The live event,
on the other hand, continues on and thus the time gap
between the video playback and the actual capturing will be
widened by the rebuffering. Worst still, as the subsequent

TABLE 4
QoE Performance Across Throughput Levels

(Target Latency ¼ 1s)

Algorithm Throughput Level

0�1 2�3 4�5 6�7 8�9

FLAS-L2AC -2.02 0.82 2.02 3.92 5.21
LAPAS -0.53 0.87 1.59 2.81 3.77

Fig. 7. Comparison of bitrate adaptation behavior in low (0), medium (5),
and high (9) throughput levels (target latency ¼ 2s).

Fig. 8. Illustration of the transform between adaptation algorithm and GP
expression tree (c, u are estimated throughput and buffer occupancy
respectively; g and t are numeric constants; b is video bitrate).

3030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

video data are played back in sequence, the widened gap will
be eventually accumulated into the playback latency for the
rest of the streaming session. Therefore, whenever a rebuffer-
ing event occurs, the playback latencywill be increased by the
rebuffering, which is clearly undesirable in live streaming.

To the best of our knowledge, there are two effective
methods to address this problem. The first one is video data
skipping [25]. Through skipping the download/playback of
the late-arriving video segments, the video player can then
catch up with the live event. However, this also introduces
playback glitch as a tradeoff thereby resulting in QoE degra-
dation [27]. By comparison, the second one, i.e., regulating
the playback rate [26],[28], has much fewer impacts on QoE.
The idea is to turn up the video playback framerate slightly
(e.g., within 5 percent) to catch up with the live event. Such
a slight change to the playback rate is much less perceivable
to viewers and thus can prevent the QoE degradation [31].

Therefore, in this work, we employ playback rate regula-
tion to control the latency. Fig. 9 illustrates the relationship
between playback latency, rebuffering, and playback rate.
The x-axis is wall-clock time while the y-axis is the playback
point in the video stream. Assuming the live streaming ses-
sion starts at time point zero then the live event’s timeline is
a 45-degree line passing through the origin. A video player
streaming the live event will first buffer video data up to
the target latency (2s in this example) before commencing
playback, thereby resulting in an initial latency of 2s. When
a rebuffering event occurs at time t1, the client suspends
video playback for 1s before resuming it at time t1þ1. Due
to the rebuffering event, the playback latency is then
increased to 3s, thus exceeding the latency target of 2s. To
reduce playback latency, the player increases playback rate
until the target is reached, after which it reverts back to nor-
mal playback rate.

To control the playback rate automatically, we explore the
use of GP to evolve playback adaptation logics. Specifically,
the input of an expression tree is called variable operand2,
which captures the network and streaming states. We define
variable set<, which includes four variable operands:

<¼ fd; z; b;ag; (21)

where d is the average TCP throughput in downloading the
past x (e.g., x ¼ 5) video segments; z is the current buffer
occupancy; b is the bitrate of the previous video segment;

and a is the playback latency. The first three variables are
commonly employed in on-demand streaming while the
last one is specific to live video streaming.

In addition to input variables, we also need numeric con-
stants to construct adaptation logics, which can be intro-
duced into the expression tree via constant operand. We
define constant set = , where the constant operands are ran-
domly generated over a given range D:

= ¼ fx 2 R;�D < x < Dg: (22)

As opposed to operand, the non-leaf node of the expression
tree is called operator, which performs a specific operation on
its child nodes to produce a result to serve its parent node.We
define set @which contains four arithmetic operators:

@ ¼ fþ;�;�;
g: (23)

The above operands and operators are specially chosen
such that the resultant expression tree can be presented in the
form of a mathematical equation which can be simply imple-
mented into video players. The output of the expression tree
is playback rate multiplier, denoted by u. Specifically, u ¼ 1
means normal playback rate and u> 1 (u< 1) speeds up (slows
down) the playback rate by a factor of u. Note that slowing
down the playback rate serves the purpose to assist in avoid-
ing playback rebuffering by buffering up more data in the
case of the actual latency lower than the target.

In practice, one wants to make the playback rate change
imperceptible so that it does not degrade the user experi-
ence. Previous work [28], [31], [45] found that, for both
video and audio, playback rate changes within �5 percent
are imperceivable to most viewers, so we applied a maxi-
mum change limit kmax to the playback rate multiplier:

r ¼
minðu; 1þ kmaxÞ; u > 1
u; u ¼ 1
maxðu; 1� kmaxÞ; u < 1

8<
: ; (24)

where kmax ¼ 5%.
Bitrate Adaptation. For evolving bitrate adaptation logics,

we define variable set F that includes five variable oper-
ands:

F ¼ fd; z; b;a; rg: (25)

Comparing (25) to (21), an additional operand r – the
playback rate calculated from (24) is added. This means that
the bitrate adaptation logic has knowledge of the playback
rate decision to enable the two kinds of adaptation logics to
evolve jointly (c.f. Section 5.2). The definitions of the con-
stant operands and operators in bitrate adaptation are iden-
tical to (22) and (23) respectively. The output of the
expression tree is video bitrate, denoted by r, but as r is a
real number while bitrate choices are discrete, it needs to be
mapped to the closest available bitrate version by

h ¼ argmin
h

rh � rj j; (26)

where rh, h ¼ 01,. . .,H-1, are the available bitrate versions.

Fig. 9. Illustration of using adaptive playback to control playback latency.

2. Expression trees comprise two types of components: operands –
leaf nodes, and operators – non-leaf nodes. The choices of operands and
operators determine GP’s search space.

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3031

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

5.2 Latency-Aware GP Evolutionary Process

The two types of adaptation logics (for playback rate and
bitrate) are not independent but should work together to
optimize QoE and playback latency in live video streaming.
On one hand, given the different functions performed by
the two types of logics, they should be evolved in separate
GP populations. On the other hand, system performance is
a result of running them simultaneously so one also needs a
way to evolve them jointly. To this end, we drew on the
methodology of cooperative coevolution [34] and developed
a new latency-aware evolutionary process to co-evolve the
two types of logics.

Populations. The evolutionary process begins with two
separate initial populations, one for playback rate adapta-
tion and the other for bitrate adaptation, each containing g

(e.g., g ¼ 800) randomly-generated individuals (i.e., expres-
sion trees). We adopted the method proposed by Koza et al.
[30] to generate the initial populations.

Let It,g (Ip,g) and It,g,k2It,g (Ip,g,k2Ip,g) be the population set
and individual k, k ¼ 01,. . .,K–1, in the population in genera-
tion g, g ¼ 01,. . .,G-1, for playback (bitrate) adaptation logics
respectively. We link each pair of individuals (It,g,k and Ip,g,k)
from the two populations (It,g and Ip,g) according to the fixed
order k to form a combined individual, denoted by Ic,g,k:

Ic;g;k ¼ fIt;g;k; Ip;g;kg: (27)

It’s worth noting that, in the study of Potter et al. [34], they
proposed to link each individual in the current population
with the best-performing individual in the other population.
However, this method is not suitable for this work as the two
types of individuals are not independently optimized for sepa-
rate performancemetrics butmust work together to determine
the common metric. Therefore, we adopted fixed linkage
which makes either individual evolve in accordance with its
counterpart, hence enables synergy between them.

Joint Fitness Evaluation. InGP, each generation of population
evolves by means of reproducing offspring to form the next
generation. This is done by first evaluating the fitness of each
individual where the fitness indicates the goodness of the can-
didate solution [30]. In this work, fitness is jointly determined
by both bitrate and playback adaptation logics, so it should be
evaluated upon the combined individual, i.e., (27).

This presents a challenge as the fitness of the adaptation
logic is affected by the network conditions aswell as the evalu-
ation metric adopted. To tackle this challenge, we propose to
employ trace-driven simulations to evaluate the fitness accord-
ing to a given fitness function (e.g., (6)). To ensure that the eval-
uation covers a broad range of network conditions, each
combined individual is evaluated over L (e.g., L¼ 200) stream-
ing sessions using throughput trace data. Now given the trace
data of session j, denoted by Sj, the combined individual Ic,g,k
can be executed (denoted by the function F(�)) to produce a set
of performance metrics (e.g., bitrate, rebuffering duration,
playback latency and etc.), collectively denoted by Pk,j:

Pk;j ¼ F ðIc;g;k; SjÞ (28)

Finally, the fitness, denoted by fc,g,k, is computed from the
mean of all L streaming sessions:

fc;g;k ¼ 1

L

XL�1

j¼0

UðPk;jÞ (29)

where U(�) is the objective function adopted (i.e., (6)).
Selection, Crossover, and Mutation. Once the fitness of all

individuals are obtained, GP performs selection, crossover
and mutation for the bitrate and playback adaptation popu-
lation separately to reproduce offspring. Selection is to pick
out the parent individuals with good fitness. Crossover/
Mutation is to explore the combination/modification of the
parent’s genes such that the gene diversity in the offspring
can be improved to broaden the solution search space. Inter-
ested readers can refer to Potter et al. [34] and Koza et al. [30]
for more details.

Termination. The reproduced offspring forms the popula-
tions of the next generation and then all the processes repeat
until a predefined maximum number of generation G (e.g.,
G ¼ 50) is reached. As the evolutionary process goes on, GP
can explore a wide spectrum of candidate solutions in the
solution space to progressively evolve better-performing
individuals. In the end, the combined individual with the
best fitness in the final populations will be selected as the
adaptation logic for online streaming.

5.3 FLAS-GP

In this section, we apply FLAS to the above GP scheme. Spe-
cifically, in offline training, FLAS-GP uses state quantizer
(SQ) to quantify M�N latency-QoE tradeoff states, i.e., (10).
For each state, it executes a separate evolutionary process
(c.f. Section 5.2), denoted by the function TGP(�), to evolve a
specialized adaptation logic:

Ap;q ¼ TGP ðUp; CqÞ; p ¼ 0; 1; . . . ;M � 1; q ¼ 0; 1; . . . ; N � 1

(30)

where Up denotes the objective function with latency coeffi-
cient vp (defined in (6)), Cq denotes throughput trace data
class q (defined in (9)), and Ap,q is the evolved logic set
including a total of M�N adaptation logics. It is worth not-
ing that GP is only one candidate scheme to carry out
FLAS’s training phase, and other machine learning or heu-
ristic paradigms can be operated in a similar manner.

Online Adaptation Logic Selection is identical to that in Sec-
tion 4.2. In particular, the video player does not need any GP
evolutionary components or expensive computational opera-
tions at runtime. The only modification needed is to append a
lightweight module into the player to determine the state of
each epoch online and then apply thematching logics to them,
i.e., (12)�(20). Overall, in the two-phase design, most of the
computations are completed in offline training, and a simple
strategy is kept online, so that FLAS-GP can be readily imple-
mented into real streaming platforms.

5.4 Discussions on Online Training

FLAS trains the adaptation logics in an offline task, so the
logic is generated a priori and then is unmodified after
deployments. However, conceivably, the logics may still
need to be re-trained upon major changes in the network
environment, e.g., when introduced into 6G networks with
much higher bandwidth limit. Therefore, the current two

3032 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

phase design (see Section 5.3) may not be flexible enough to
deal with this situation.

Nevertheless, FLAS can inherently support an approach,
i.e., conducting the training online directly on the video client,
where the adaptation logic can be re-trained periodically as
new data arrives. However, this raises two challenges. First, it
significantly increases the computational overhead for the cli-
ent. Second, it requires the system to learn from a small
amount of data and converge to good performance quickly.
We leave this as our futurework.

6 PERFORMANCE EVALUATION

In this section, we conduct a systematic and thorough evalu-
ation for FLAS and compare it to the state-of-the-arts. We
employed the trace-driven simulations as described in Sec-
tion 3. The configurations of FLAS are summarized in
Table 3. For the GP evolutionary process, we adopted a pop-
ulation size of 800 (i.e., 800 combined individuals), and the
population was evolved for 50 generations.

6.1 Latency-QoE Tradeoff

Among all the algorithms evaluated, three of them support
targeting playback latency, namely FLAS-GP, FLAS-L2AC,
and LAPAS. We first evaluate how well the three track the
target latency. Table 5 summarizes the actual latency versus
the target, and the results show that the three algorithms
perform similarly, all of which achieve the actual latency
close to the target.

We further quantify the deviation of the actual latency
from the target, by defining a newmetric – LatencyMean Abso-
lute Deviation (henceforth called “Latency-MAD”), which char-
acterizes the average absolute difference between the actual
and the target latency:

x ¼ 1

L

XL�1

j¼0

jbj � �j (31)

where bj is the actual mean latency during streaming epoch
j, l is the target latency and L is the total number of
streamed epochs.

The results are summarized in Table 6 where lower
latency-MAD indicates the target latency being better
tracked. We can see that the two FLAS-based algorithms
achieve significantly lower latency-MAD than LAPAS. This
benefits from FLAS’s online adaptation logic selection
which periodically adjusts the operational logic to adapt to
the changing network conditions.

Next,we investigate the tradeoff performance betweenQoE
and playback latency. We observed in Fig. 10 that FLAS-GP
achieves a continuous tradeoff trajectory where QoE is much

higher than all other algorithms across the latency from 1.0s to
9.0s. Table 7 summarizes the QoE of FLAS-GP, FLAS-L2AC
and LAPAS across throughput level 0�9. Note that we only
listed the results under 2s target latency, as similar results
were obtained with other target options. Remarkably, FLAS-
GP resolves the performance flaw of FLAS-L2AC, and outper-
forms the other two algorithms significantly across all the
throughput levels. This clearly demonstrates thatwith the flex-
ible expression tree, GP enables FLAS to generate more spe-
cialized algorithms tomatch the network conditions better.

Table 8 compares the video quality (measured by the
SSIM model from [39]), rebuffering duration, and video
bitrate switches for the three algorithms. The results show
that FLAS-L2AC exhibit substantially longer rebuffering
duration and more bitrate switches, thereby degrading its
QoE performance. This is largely due to FLAS-L2AC’s
aggressiveness in bitrate selection (c.f. Section 4.3) which is
not suited in low bandwidth and high variability networks.
In comparison, although FLAS-GP does not outperform
other algorithms on every QoE metric, it is able to balance
each metric to optimize the overall QoE.

To see if the above observations are consistent under dif-
ferent QoE metrics, we repeated the experiments with
another QoE function proposed by Mao et al. [17]:

Q0 ¼ 1

K

XK�1

k¼0

#k�
XK�1

k¼1

#k � #k�1j j � 2:66� Z � 0:2�G

 !

(32)

where Z is the playback rebuffering duration, G is the
skipped video duration, K is the total number of segments
in one streaming session and

#k ¼ log ðrk=rminÞ; (33)

TABLE 5
Actual Mean Latency (s) Vs. Target Latency

Algorithm Target Latency (s)

1 3 5 7 9

FLAS-GP 0.86 2.93 4.87 6.91 8.98
FLAS-L2AC 0.96 2.92 4.99 6.87 8.84
LAPAS 1.05 2.83 5.32 7.40 9.33

TABLE 6
Comparison of Latency-MAD (s)

Algorithm Target Latency (s)

1 3 5 7 9

FLAS-GP 0.30 0.37 0.43 0.47 0.48
FLAS-L2AC 0.31 0.36 0.41 0.45 0.50
LAPAS 0.56 0.65 0.75 0.87 0.98

Fig. 10. Comparison of latency-QoE tradeoff under QoE function (1)
(error bars span the streaming session with top/bottom 10 percent
latency).

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3033

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

where rk is the bitrate selected for segment k and rmin is the
lowest available bitrate. The penalty weights in (32) follow
[17] and [41]. Fig. 11 plots the latency-QoE tradeoff under
this QoE function. We observed very similar patterns in the
results which are consistent with the observations in Fig. 10.
FLAS-GP again consistently outperforms all other algo-
rithms, more so at the lower end of the latency.

6.2 Robustness

In this section, we investigate the robustness of FLAS.
Again, we only show the results under 2s target latency, as
similar results were obtained with other options. We first
consider temporal robustness. Fig. 12 plots the daily
latency-MAD (defined by (31)) over a period of 40 days (the
trace data is from #1, c.f. Table 2). As expected, the latency-
MAD of LAPAS is much higher than that of FLAS and
exhibits far more fluctuations due to the changing network
condition (see the daily throughput variations) over the 40
days. We also plotted the daily mean QoE, where FLAS-GP
outperforms FLAS-L2AC and LAPAS substantially, achiev-
ing the highest QoE in 39 of the 40 days.

Next, we consider spatial robustness – performance over
different network characteristics, e.g., network types, ser-
vice providers and etc. (see Table 2). In order to explore the
impact of trace-data usage mode in the training, we experi-
mented with two training methods for FLAS: (a) we trained
FLAS using 60 days’ trace data from dataset #1 only, which
is indicated by the “-D1” suffix (e.g., “FLAS-GP-D1”); and
(b) we trained FLAS using 60 days’ trace data consisting of
the data in #1�#7, which is indicated by the “-Mix” suffix
(e.g., “FLAS-GP-Mix”). In both cases, unseen trace data
were used to obtain the performance results.

Tables 9 and 10 summarize the latency-MAD and QoE
respectively achieved by FLAS-GP, FLAS-L2AC and
LAPAS under the seven datasets. FLAS achieves far more
precise latency and better QoE performance than LAPAS.
Noticeably, FLAS-GP outperforms FLAS-L2AC in QoE by
6.3�18.1 percent across the seven datasets, which again
exhibits the superiority of the GP scheme. More interest-
ingly, FLAS trained with “-D1” and “-Mixed” perform
similarly across the seven datasets despite being trained

using very different trace data (e.g., the LTE network #6 has
much higher mean throughput than 3G network #1). This
indicates that FLAS is spatially robust.

Overall, the above results point to an important charac-
teristic of FLAS – it is both temporally and spatially robust.
This strongly suggests that as long as FLAS is trained with a
wide spectrum of network conditions, the resultant adapta-
tion logic would be sufficiently general that could be
applied to a much wider range of networks. Moreover, as
the variations in network conditions have already been
accounted for by the design of FLAS, it is not necessary to
repeat the training process at all (unless new networks with
completely different features are introduced, c.f. Section 5.4).
This can greatly simplify the system deployment.

6.3 Sensitivity Analysis

In this section, we analyze the sensitivity of FLAS with
respect to epoch duration and live event duration. FLAS
executes the online adaptation logic selection at the begin-
ning of each epoch (c.f. Section 4.2). This leads to the ques-
tion of epoch duration choices. Table 11 compares the QoE
of FLAS-GP across epoch durations ranging from 50s to
600s. Again only the results with 2s target latency were
listed. Clearly, a longer epoch can result in better QoE per-
formance. This is because each video epoch is regarded as a
separate streaming session and longer epoch duration offers
more room (i.e., time) for the adaptation logics to maneuver
so that they do not need to be too conservative.

However, longer epoch does have a tradeoff – higher
latency-MAD. As demonstrated in Table 11, the latency-

TABLE 7
QoE Performance Across Throughput Levels

(Target Latency ¼ 2s)

Algorithm Throughput Level

0�1 2�3 4�5 6�7 8�9

FLAS-GP 0.64 2.04 3.47 5.31 7.76
FLAS-L2AC -1.11 1.72 3.06 4.83 6.97
LAPAS 0.21 1.79 2.79 4.07 5.20

TABLE 8
Comparison of Streaming Metrics. (Target Latency ¼ 2s)

FLAS-GP FLAS-L2AC LAPAS

Video quality (SSIM) 0.949 0.956 0.922
Rebuffer duration (s) 9.5 21.3 12.6
Bitrate switches (�102) 5.6 13.4 4.4

Fig. 11. Comparison of latency-QoE tradeoff under QoE function (32)
(error bars span the streaming session with top/bottom 10 percent
latency).

Fig. 12. Comparison of latency-MAD and QoE over 40 days (target
latency¼ 2s).

3034 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

MAD increases with longer epoch durations because longer
epochs reduce the execution frequency of FLAS’s online
adaptation logic selection, thereby hampering the client’s
responsiveness to the changes in network conditions. Mean-
while, the QoE improvement tapers off for the epoch dura-
tion longer than 300s, so we adopted 300s as the default
epoch duration in this work.

Live events can have a very wide range of durations, rang-
ing from minutes to hours, and another advantage of epoch-
based FLAS is that the offline training can be decoupled from
the actual live event duration. For example, Table 12 shows
the QoE and latency-MAD for live event durations from 5
mins all the way up to 24 hours where FLAS-GP maintains
consistent QoE and low latency deviations in all cases. This
strongly suggests that FLAS can be applied to a wide range of
live streaming services from short-term events (e.g., live
sports, live shows) to round-the-clock services (e.g., news
channels and video surveillance).

7 SUMMARIES AND FUTURE WORK

The FLAS framework proposed in this paper offers a new
approach to flexible latency control for live streaming serv-
ices. It not only enables precise control of playback latency all
the way down to 1s, but also can achieve substantially better
QoE performance than the state-of-the-art streaming algo-
rithms. Moreover, FLAS exhibits remarkable robustness over
time, mobile operators, and even network types, thereby

significantly reducing the need to train streaming algorithms
repeatedly. Its client-side implementation is relatively simple
and does not contain any computationally intensive opera-
tions. Therefore, FLAS can be readily implemented into the
real streaming platforms, offering service providers a new
tool for high-performance live streaming services.

This work is only the first step in this direction. There are
many opportunities for future research. For instance, as FLAS
is decoupled from the underlying streaming algorithms, it
means that one can replace the later to explore the use of other
machine learning or heuristic paradigms to further improve
the performance. On the other hand, in addition to DASH,
there are also some other prevalent live streaming protocols,
e.g., WebRTC [42], so exploring FLAS’s extension to support
different protocols is also a fruitful direction for futurework.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and the
anonymous reviewers for their insightful comments in
improving this article. This work was supported in part by the
Centre forAdvances in Reliability and SafetyLimited (CAiRS),
under AIR@InnoHK Research Cluster, General Program of
National Natural Science Foundation of China under Grant
62072439, in part by the National Key Research and Develop-
ment Program of China (13th Five-Year Plan) under Grant
2016YFB1000200, in part by the Shandong Provincial Natural
Science Foundation under Grant ZR2019LZH004, in part by
the BeijingMunicipalNatural Science Foundation underGrant
4212028, and in part by the State Key Laboratory of Computer
Architecture Innovation Fund underGrant carch4503.

REFERENCES

[1] YouTube Live. Accessed: Apr. 8, 2021. [Online]. Available: https://
www.youtube.com/channel/UC4R8DWoMoI7CAwX8_LjQHig

[2] Facebook Live. Accessed: Apr. 8, 2021. [Online]. Available: https://
live.fb.com/

[3] Latency Options of YouTube Live. Accessed: Apr. 8, 2021. [Online].
Available: https://support.google.com/youtube/answer/7444635?
hl¼en

[4] Latency Options of Twitch. Accessed: Apr. 8, 2021. [Online]. Avail-
able: https://help.twitch.tv/s/article/low-latency-video?language¼
en_US

[5] Latency Options of Amazon Web Services for Live Streaming.
Accessed: Apr. 8, 2021. [Online]. Available: https://aws.amazon.
com/media/tech/video-latency-in-live-streaming/?nc1¼h_ls

[6] G. Zhang and J. Y. B. Lee, “Ensemble adaptive streaming-A new
paradigm to generate streaming algorithms via specializations,”
IEEE Trans. Mobile Comput., vol. 19, no. 6, pp. 1346–1358, Jun. 2020.

[7] C. Liu, I. Bouazizi, and M. Gabbouj, “Rate adaptation for adaptive
HTTP streaming,” in Proc. ACM Conf. Multimedia Syst., 2011,
pp. 169–174.

[8] J. Jiang, V. Sekar, and H. Zhang, “Improving fairness, efficiency,
and stability in HTTP-based adaptive video streaming with FES-
TIVE,” in Proc. Conf. Emerg. Netw. Experiments Technol., 2012,
pp. 97–108.

TABLE 9
Latency-MAD (s) Across Seven Datasets (Target Latency ¼ 2s)

Algorithm Datasets

#1 #2 #3 #4 #5 #6 #7

FLAS-GP-D1 0.35 0.24 0.40 0.35 0.43 0.34 0.36
FLAS-GP-Mix 0.34 0.22 0.41 0.35 0.44 0.35 0.37
FLAS-L2AC-D1 0.34 0.24 0.40 0.36 0.43 0.35 0.36
FLAS-L2AC-Mix 0.35 0.23 0.39 0.34 0.44 0.33 0.33
LAPAS 0.63 0.45 0.74 0.67 0.88 0.57 0.63

TABLE 12
Impact of Live Event Duration (Target Latency ¼ 2s)

Live event
duration

5
mins

10
mins

30
mins

1
hour

6
hours

24
hours

QoE 3.33 3.38 3.41 3.44 3.43 3.41
Latency-MAD (s) 0.41 0.40 0.39 0.39 0.37 0.39

TABLE 10
QoE Performance Across Seven Datasets

(Target Latency ¼ 2s)

Algorithm Datasets

#1 #2 #3 #4 #5 #6 #7

FLAS-GP-D1 3.54 2.83 1.90 2.15 0.90 9.02 2.39
FLAS-GP-Mix 3.46 2.91 1.93 2.21 0.87 9.06 2.43
FLAS-L2AC-D1 3.04 2.61 1.63 1.91 0.81 8.01 2.13
FLAS-L2AC-Mix 3.01 2.66 1.71 1.93 0.75 7.87 2.09
LAPAS 2.64 1.92 1.40 1.60 0.77 6.73 1.84

TABLE 11
Impact of Epoch Duration (Target Latency ¼ 2s)

Epoch duration (s) 50 100 300 600

QoE 3.00 3.29 3.44 3.46
Latency-MAD (s) 0.22 0.30 0.39 0.58

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3035

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

https://www.youtube.com/channel/UC4R8DWoMoI7CAwX8_LjQHig
https://www.youtube.com/channel/UC4R8DWoMoI7CAwX8_LjQHig
https://live.fb.com/
https://live.fb.com/
https://support.google.com/youtube/answer/7444635?hl=en
https://support.google.com/youtube/answer/7444635?hl=en
https://support.google.com/youtube/answer/7444635?hl=en
https://help.twitch.tv/s/article/low-latency-video?language=en_US
https://help.twitch.tv/s/article/low-latency-video?language=en_US
https://aws.amazon.com/media/tech/video-latency-in-live-streaming/?nc1=h_ls
https://aws.amazon.com/media/tech/video-latency-in-live-streaming/?nc1=h_ls
https://aws.amazon.com/media/tech/video-latency-in-live-streaming/?nc1=h_ls

[9] T. Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson,
“A buffer-based approach to rate adaptation: Evidence from a
large video streaming service,” in Proc. ACM SIGCOMM, 2014,
pp. 187–198.

[10] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-opti-
mal bitrate adaptation for online videos,” in Proc. IEEE INFO-
COM, 2016, pp. 1–9.

[11] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A control-theoretic
approach for dynamic adaptive video streaming over HTTP,” in
Proc. ACM SIGCOMM, 2015, pp. 325–338.

[12] A. H. Zahran, D. Raca, and C. Sreenan. “ARBITERþ: Adaptive rate-
based intelligent HTTP streaming algorithm for mobile networks,”
IEEE Trans.Mobile Comput., vol. 17, no. 12, pp. 2716–2728, Apr. 2018.

[13] Y. Qin et al., “A control theoretic approach to ABR video stream-
ing: A fresh look at PID-based rate adaptation,” in Proc. IEEE
INFOCOM, 2017, pp. 1–9.

[14] Y. Liu and J. Y. B. Lee, “A unified framework for automatic qual-
ity-of-experience optimization in mobile video streaming,” in
Proc. IEEE INFOCOM., 2016, pp. 1–9.

[15] Y. Liu and J. Y. B. Lee, “Post-streaming rate analysis—A new
approach to mobile video streaming with predictable perform-
ance,” IEEE Trans. Mobile Comput., vol. 16, no. 12, pp. 3488–3501,
Dec. 2017.

[16] Z. Akhtar, Y. S. Nam, and R. Govindan, “Oboe: Auto-tuning video
ABR algorithms to network conditions” in Proc. ACM SIGCOMM,
2018, pp. 44–58.

[17] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video
streaming with pensieve,” in Proc. ACM SIGCOMM, 2017,
pp. 197–210.

[18] F. Chiariotti, S. D’Aronco, and L. Toni, “Online learning adapta-
tion strategy for DASH clients,” in Proc. ACM Multimedia Syst.,
2016, pp. 8:1–8:12.

[19] V. Mart�ın, J. Cabrera, and N. Garc�ıa, “Design, optimization and
evaluation of a q-learning HTTP adaptive streaming client,” IEEE
Trans. Consum. Electron., vol. 62, no. 4, pp. 380–388, Nov. 2016.

[20] M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, “D-DASH: A
deep q-learning framework for DASH video streaming,” IEEE
Trans. Cogn. Commun. Netw., vol. 3, no. 4, pp. 703–718, Dec. 2017.

[21] N. Chen et al., “Cuttlefish: Neural configuration adaptation for
video analysis in live augmented reality,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 32, no. 4, pp. 830–841, Apr. 2021.

[22] L. De Cicco, S. Mascolo, and V. Palmisano, “Feedback control for
adaptive live video streaming,” in Proc. ACM Multimedia Syst.,
2011, pp. 145–156.

[23] J. Wang, S. Meng, J. Sun, and Z. Quo, “A general PID-based rate
adaptation approach for TCP-based live streaming over mobile
networks,” in Proc. IEEE Int. Conf. Multimedia Expo, 2016, pp. 1–6.

[24] L. Xie, C. Zhou, and X. Zhang, “Dynamic threshold based rate
adaptation for HTTP live streaming,” in Proc. IEEE Int. Symp. Cir-
cuits Syst., 2017, pp. 1–4.

[25] K. Miller, A. K. Al-Tamimi, and A. Wolisz, “QoE-based low-delay
live streaming using throughput predictions,” ACM Trans. Multi-
media Comput. Commun. Appl., vol. 13, no. 1, pp. 1–24, Jan. 2017.

[26] M. Lim, M. N. Akcay, and A. Bentaleb, “When they go high, we go
low: Low-latency live streaming Dash.js with LoL,” in Proc. ACM
Multimedia Syst. Conf., 2020, pp. 321–326.

[27] Y. Zhao, Q. W. Shen, and W. Li, “Latency aware adaptive video
streaming using ensemble deep reinforcement learning,” in Proc.
ACM Int. Conf. Multimedia, 2019, pp. 2647–2651.

[28] G. Zhang, and J. Y. B. Lee, “LAPAS: Latency-aware playback-
adaptive streaming,” in Proc. IEEE Wirel. Commun. Netw. Conf.,
2019, pp. 1–6.

[29] V. Mnih, A. P. Badia, M. Mirza, and A. Graves, “Asynchronous
methods for deep reinforcement learning,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 1928–1937.

[30] J. R. Koza, “Genetic programming as a means for programming
computers by natural selection,” Statis. Comput., vol. 4, no. 2,
pp. 87–112, Jun. 1994.

[31] L. Golubchik, J. C. S. Lui, and R. R. Muntz, “Reducing I/O demands
in video-on-demand storage servers,” in Proc. ACM SIGMETRICS
Joint Int. Conf.Meas.Model. Comput. Syst., 1995, pp. 25–36.

[32] T. Stockhammer, “Dynamic adaptive streaming over HTTP:
Standards and design principles,” in Proc. ACM Multimedia Syst.,
2011, pp. 133–144.

[33] Trace Driven Simulator. Accessed: Apr. 8, 2021. [Online]. Available:
https://github.com/NGnetLab/Live-Video-Streaming-Challenge

[34] M. A. Potter, and K. A. D. Jong, “Cooperative coevolution: An
architecture for evolving coadapted subcomponents,” Evol. Com-
put., vol. 8, no. 1, pp. 1–29, 2000.

[35] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis,
design, and technology,” IEEE Trans. Control Syst. Technol.,
vol. 13, no. 4, pp. 559–576, Jul. 2005.

[36] Mobile Throughput Trace Data. Accessed: Apr. 8, 2021. [Online].
Available: http://sonar.mclab.info/tracedata/TCP/

[37] “Best practices for creating and deploying HTTP live streaming
media for the iPhone and iPad,” Apple Inc., Cupertino, CA, Aug.
2016. [Online]. Available: https://developer.apple.com/library/
ios/technotes/tn2224/_index.html

[38] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Commute path bandwidth traces from 3G networks: Analysis and
applications,” in Proc. ACMMultimedia Syst., 2013, pp. 114–118.

[39] A. Bentaleb, A. C. Begen, R. Zimmermann, and S. Harous,
“SDNHAS: An SDN-enabled architecture to optimize QoE in
HTTP adaptive streaming,” IEEE Trans. Multimedia, vol. 19,
no. 10, pp. 2136–2151, Oct. 2017.

[40] T. Lyko, M. Broadbent, and N. Race, “Evaluation of CMAF in live
streaming scenarios,” in Proc. ACM Workshop Netw. Operating
Syst. Support Digit. Audio Video, 2020, pp. 21–26.

[41] G. Yi et al., “The ACM multimedia 2019 live video streaming
grand challenge,” in Proc. ACM Int. Conf. Multimedia, 2019,
pp. 2622–2626.

[42] J. Kim, Y. Jung, and H. Yeo, “Neural-enhanced live streaming:
Improving live video ingest via online learning,” Proc. ACM SIG-
COMM, 2020, pp. 107–125.

[43] W. Law, “Ultra-low-latency streaming using chunked-encoded and
chunked-transferred CMAF,” Akamai, Tech. Rep. 19, Oct. 2018.

Guanghui Zhang received the master’s degree
in electronic science and technology from Peking
University, Beijing, China, in 2016 and the PhD
degree in information engineering from The Chi-
nese University of Hong Kong, Shatin, Hong
Kong, in 2020. He is currently a postdoctoral fel-
low with the Department of Electronic and Infor-
mation Engineering, The Hong Kong Polytechnic
University, Kowloon, Hong Kong, where he par-
ticipated in the research and development of mul-
timedia technology.

Jack Y. B. Lee (Senior Member, IEEE) received
the BEng and PhD degrees in information engi-
neering from the Chinese University of Hong
Kong, Shatin, Hong Kong, in 1993 and 1997,
respectively. He is currently an associate profes-
sor with the Department of Information Engineer-
ing, Chinese University of Hong Kong. His
research group focuses on multimedia communi-
cations systems, mobile communications, proto-
cols, and applications. He specializes in tackling
research challenges arising from real-world sys-

tems. He works closely with the industry to uncover new research chal-
lenges and opportunities for new services and applications. His systems
research from his lab have been adopted and deployed by the industry.

Ke Liu received the BEng and PhD degrees in
information engineering from the Chinese Univer-
sity of Hong Kong, Shatin, Hong Kong, in 2008 and
2013, respectively. From 2017 to 2018, he was a
postdoc scholar with the School of Industrial Engi-
neering, Purdue University, IN, USA. He is cur-
rently an associate professor with the Advanced
System Group, Key Laboratory of Computer Sys-
tem and Architecture, Institute of Computing Tech-
nology, Chinese Academy of Science, Beijing,
China, where he participated in the research of pro-
tocol optimization and cloud computing.

3036 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 12, DECEMBER 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

https://github.com/NGnetLab/Live-Video-Streaming-Challenge
http://sonar.mclab.info/tracedata/TCP/

Haibo Hu (Senior Member, IEEE) is currently an
associate professor with the Department of Elec-
tronic and Information Engineering, Hong Kong
Polytechnic University, and the programme leader
of BSc (Hons.) in information security. He has auth-
ored or coauthored more than 80 research papers
in refereed journals, international conferences, and
book chapters. His research interests include
cybersecurity, data privacy, Internet of Things, and
adversarial machine learning. As a principal investi-
gator, he was the recipient of more than 20 million

HKdollars of external research grants fromHongKongandmainlandChina
as of year 2020. He was on the organizing committee of many international
conferences, such as ACM GIS 2020 and 2021, IEEE ICDSC 2020, IEEE
MDM 2019, DASFAA 2011, DaMEN 2011 and 2013 and CloudDB 2011,
and on the programme committee of dozens of international conferences
and symposiums. He was the recipient of a number of titles and awards,
including the IEEE MDM 2019 Best Paper Award, WAIM Distinguished
Young Lecturer, ICDE 2020 Outstanding Reviewer, VLDB 2018 Distin-
guished Reviewer, ACM-HK Best PhD Paper, Microsoft Imagine Cup, and
GS1 Internet of ThingsAward.

Vaneet Aggarwal (Senior Member, IEEE) received
the BTech degree in electrical engineering from the
Indian Institute of Technology Kanpur, India, in
2005, and the MA and PhD degrees in electrical
engineering from Princeton University, Princeton,
NJ, USA, in 2007 and 2010, respectively. From
2010 to 2014, he was a senior member of the Tech-
nical Staff Research, AT&T Labs Research, Bed-
minster, NJ, USA. He was an Adjunct Assistant
Professor with Columbia University, NY, from 2013
to 2014, and an Adjunct Professor with IISc Banga-

lore, India, from 2018 to 2019. He is currently a faculty with Purdue Univer-
sity, West Lafayette, IN, USA. His current research interests include
communications and networking, video streaming, cloud computing, and
machine learning. Dr. Aggarwal was the recipient of the Princeton Uni-
versity’s Porter Ogden Jacobus Honorific Fellowship in 2009, the AT&T
Vice President Excellence Award in 2012, the AT&T Senior Vice President
Excellence Award in 2014, the 2017 JackNeubauerMemorial Award recog-
nizing the Best Systems Paper published in the IEEE Transactions on
Vehicular Technology, and the 2018 Infocom Workshop HotPOST Best
Paper Award. He is on theEditorial Board of the IEEETransactions onCom-
munications, IEEE Transactions on Green Communications and Network-
ing, and IEEE/ACMTransactions onNetworking.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: UNIFIED FRAMEWORK FOR FLEXIBLE PLAYBACK LATENCY CONTROL IN LIVE VIDEO STREAMING 3037

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 05,2022 at 03:05:49 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

