
 A Row-Permutated Data Reorganization Algorithm for
Growing Server-less Video-on-Demand Systems

T. K. Ho and Jack Y. B. Lee
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
Email: {tkho2@ie.cuhk.edu.hk, jacklee@computer.org}

Abstract

Recently, a new server-less architecture is proposed for
building low-cost yet scalable video streaming systems.
Compare to conventional client-server-based video
streaming systems, this server-less architecture does not
need any dedicated video server and yet is highly scalable.
Video data are distributed among user hosts and these
hosts cooperate to stream video data to one another. Thus
as new hosts join the system, they also add streaming and
storage capacity to absorb the added streaming load. This
study investigates the data reorganization problem when
growing a server-less video streaming system. Specifically,
as video data are distributed among user hosts, these data
will need to be redistributed to newly joined hosts to utilize
their storage and streaming capacity. This study presents a
new data reorganization algorithm that allows
controllable tradeoff between data reorganization
overhead and streaming load balance.

1. Introduction

Peer-to-peer and grid computing have shown great

potentials in high-performance computing applications.
Apart from computational problems, data and
I/O-intensive applications can also benefit from the
inherent scalability offered by grid-type architectures. One
such architecture, called server-less video-on-demand
architecture, recently proposed by Lee and Leung [1]
adopted this completely decentralized approach to
eliminate the need for costly high-capacity video servers.

Unlike conventional video-on-demand (VoD) systems
built around the well-understood client-server model, a
server-less VoD system is built entirely from user hosts.
Video data are distributed among these user hosts which
then cooperate to stream video data to one another for
playback. Lee and Leung [1] showed that this server-less
architecture is easily scalable to hundreds of user hosts

using off-the-shelf computers and network switches.
Moreover, by incorporating data and capacity redundancy
into the system, one can even achieve system-level
reliability comparable to or even exceeding those of
dedicated video servers [2].

The study by Lee and Leung [1] is focused on the
scalability and feasibility of the server-less architecture.
They did not, however, address the practical problem of
system growth when new user hosts join the system.
Specifically, as video data are distributed among user hosts,
these data will need to be redistributed to newly joined
hosts to utilize their storage and streaming capacity. We
tackle this problem in this study by presenting a new data
reorganization algorithm that allows controllable tradeoff
between data reorganization overhead and streaming load
balance.

We first review the server-less VoD architecture and
two previous works on data reorganization in Section 2,
and then present the new data reorganization algorithms in
Section 3 and 4; Section 5 compares the performance of
the studied algorithms and Section 6 concludes the paper.

2. Background

In this section, we first give a brief overview of the

server-less VoD architecture proposed by Lee and Leung
[1] and then review two existing works on data
reorganization.

2.1 The server-less architecture

A server-less VoD system comprises a pool of user

hosts, henceforth called nodes, connected by a network as
shown in Fig. 1. Each node has its own CPU, memory and
disk storage. Inside each node is a mini video server
software that serves a portion of each video title to other
nodes in the system. Unlike conventional video server, this
mini server software serves a much lower aggregate
bandwidth and therefore can readily be implemented in
today’s STBs and PCs. For large systems, the nodes can be

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

further divided into clusters where each cluster forms an
autonomous system that is independent from other
clusters.

For data placement, a video title is first divided into
fixed-size striping units (or called blocks) and then
distributed to all nodes in the cluster in a round-robin
manner. This node-level striping scheme avoids data
replication while at the same time divides the storage
requirement equally among all nodes in the cluster.

To initiate a video streaming session, a receiver node
will first locate the set of sender nodes carrying blocks of
the desired video title, the striping policy and other
parameters (format, bitrate, etc.) through the directory
service. These sender nodes will then be notified to start
transmitting the video blocks to the receiver node.

Let N be the number of nodes in the cluster and assume
all video titles are constant-bit-rate (CBR) encoded at the
same bitrate Rv. For a sender node in a cluster, it may have
to retrieve video data for up to N video streams, of which
N−1 of them are transmitted while the remaining one
played back locally. Note that as a video stream is served
by N nodes concurrently, each node only needs to serve a
bitrate of Rv/N for each video stream. With a round-based
transmission scheduler, a sender node simply transmits
one block to each receiver node in each round. Interested
readers are referred to the study by Lee and Leung [1] for
more details.

2.2 Previous works on data reorganization

The problem of data reorganization has been studied in

the context of disk arrays [3-4]. The study by
Ghandeharizadeh and Kim [3] is the earliest study on data
reorganization known to the authors. They investigated the
data reorganization problem in the context of adding disks
to a continuous media server. They employed round-robin
data striping common in disk arrays and investigated and
analyzed techniques to perform data reorganization online,
i.e., without disrupting on-going video streams.

Due to the round-robin placement requirement, a large
portion of the data blocks will need to be redistributed to
maintain the data placement order when a new disk is
added, thus incurring significant data reorganization
overhead. Nevertheless, this approach has the distinct
advantage of achieving perfect streaming load balance.
When applied to the server-less VoD system, the
round-robin placement policy enables nodes in the system
to simply all transmit one block in each round to achieve
streaming load balance.

Given that the need to add new disks to a video server
occurs only sparingly, the tradeoff in reorganization
overhead to achieve perfect load balance is well justified.
By contrast, in a server-less VoD system with hundreds of

nodes, the frequency at which new nodes joining the
system will be significantly higher. Thus the same data
reorganization algorithm may incur too much overhead for
use in a server-less VoD system.

In a more recent study by Goel et al. [4], a
pseudo-random algorithm called SCADDAR for data
placement and data reorganization is proposed for use in
disk arrays. In this algorithm, each data block is initially
randomly distributed to the disks with equal probabilities.
When a new disk is added to the disk array, each block will
obtain a new sequence number according to their
randomized SCADDAR algorithm. If the reminder of this
number is equal to the disk number of the newly added
disk, the corresponding block will be moved to this new
disk. Otherwise, the block will reside at the original disk.

As SCADDAR no longer needs to maintain a fixed
round-robin placement order, it can reduce the
reorganization overhead significantly to approach the
theoretical lower bound. However, the authors did not
consider streaming load balance. If we apply SCADDAR
to the server-less VoD system that can grow to hundreds to
thousands of nodes, our results reveal that it can result in
significant streaming load imbalance, especially after a
large number of nodes are added to the system. For
example, in the same service round some nodes may need
to transmit more than one block while some other nodes
are idle. This load imbalance makes data transmission
scheduling more difficult and may reduce the streaming
capacity and/or the response time of the system.

The previous two pioneering studies can be considered
as two extremes of the tradeoff between data
reorganization overhead and load balance. In particular,
Ghandeharizadeh and Kim’s algorithm achieves perfect
load balance at the expense of substantial data
reorganization overhead; while the SCADDAR algorithm
achieves near-minimal data reorganization overhead at the
expense of load imbalance. In the next section, we present
a new data reorganization algorithm that can achieve
perfect streaming load balance and yet incurs significantly
lower reorganization overhead than the round-robin
algorithm, and in Section 4 we further generalize this
algorithm to allow one to strike a balance between data
reorganization overhead and streaming load balance.

3. Row-permutated data reorganization

We present a new row-permutated data reorganization

(RPDR) algorithm in this section. Section 3.1 describes the
placement policy while Section 3.2 explains the algorithm.

3.1 Placement policy

As Ghandeharizadeh and Kim’s study [3] showed, the

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

data reorganization overhead incurred in maintaining the
round-robin data placement order is very high. Therefore
we replace the round-robin placement policy in the
original server-less VoD architecture by a row-permutated
placement policy.

Specifically, a video title is again divided into
fixed-size blocks. With a N-node cluster, the first N video
blocks will be distributed to all N nodes in random order,
with each node storing exactly one of the N video blocks as
shown in Fig. 2a. This process repeats for the next N video
blocks and so on until all video blocks are distributed.

It is easy to see that this row-permutated placement
policy achieves perfect streaming load balance same as the
original round-robin placement policy. Note that the
receiver node does not need to know the exact placement
order in each row as the sender nodes all stream video
blocks to the receiver node concurrently [1]. As long as
each video packet carries a sequence number relative to the
video stream, the receiver node can then re-sequence the
incoming packets for playback.

3.2 Data reorganization

Assuming the system has one cluster. Let B be the total

number of fixed-size blocks of a video title, and N be the
number of nodes in the system before the addition of a new
node. We use n to denote the current system size and thus
initially n=N. We denote block i of row j by vi,j, where
i=0,1,…,(B/n)-1, and j=0,1,…,n-1, or simply the (in+j)th
block of the video title.

After adding a new node to the system, n is increased to
N+1, and data reorganization is needed to redistribute
video data and streaming load to the newly added node.
We first re-index the video blocks vi,j, using n=N+1. For
example, v1,0 and v1,1 will become v0,N and v1,0 respectively
after re-indexing (see Fig. 2b for an example).

Next, we consider the re-indexed blocks in a
row-by-row manner to identify block overflows and block
underflows. Block overflows occur in a node when more
than one block from the same row resides in the node; and
block underflows occur in a node when none of the blocks
from the row resides in the node.

When a block overflow is detected (e.g. block v0,4, for
row 0 and blocks v1,3, v1,4 for row 1), then the overflow
blocks will be redistributed to nodes experiencing block
underflows (e.g. moving block v0,4 to node n4). Note that
the choice of target nodes to receive an overflow block can
be arbitrary as we no longer need to maintain a
round-robin data placement order. It is easy to see that the
number of overflows equal to the number of underflows
and thus after reorganization each node will store exactly
one block from a row as shown in Fig. 2d. As a result, this
row-permutated reorganization algorithm can achieve

perfect storage balanced and streaming load balance.
Compared to the round-robin placement policy, this

algorithm has significantly lower reorganization overhead
and at the same time, can still achieve perfect load balance.
In the next section, we relax the perfect load balance
constraint to further reduce the reorganization overhead.

4. Multi-row-permutated data reorganization

While perfect streaming load balance is desirable, the

cost of data reorganization, which itself consumes system
resources, can still be substantial. Depending on the
particular system configuration (e.g. disk throughput,
network bandwidth, system utilization, etc.), it may be
desirable to tradeoff some streaming load balance to
reduce the data reorganization overhead.

To tackle this challenge, we generalize the
row-permutated data reorganization algorithm into a
multi-row-permutated data reorganization (mRPDR)
algorithm. Specifically, a window size, denoted by w, is
used to configure the number of rows to consider when
identifying block overflows and underflows. Block
overflows are redefined to occur only if more than w
blocks from the w rows under consideration reside in the
same node; and block underflows are redefined to occur
only if fewer than w blocks from the w rows under
consideration reside in the same node.

Similarly, the overflow blocks in an overflow node will
be moved to the underflow nodes. However, unlike the
RPDR algorithm, the choice of which overflow blocks to
redistribute and which underflow nodes to receive the
overflow blocks will affect the streaming load balance of
the system. Fig. 3 illustrates this issue by comparing
different choices of overflow blocks and underflow nodes
with w=2.

Fig. 3a shows the placement of blocks after re-indexing.
The overflow nodes are n0 and n2 while the underflow
nodes are n1 ,n3 and n4. Fig. 3b shows one example of poor
selection of underflow nodes. Note that blocks vi,4 and vi,1
belonging to the same row are stored to the same node n1,
thus forcing this node to stream out both these two blocks
in a round. Fig. 3c shows another example of poor
selection of overflow blocks. Note that blocks vi,0 and vi,1
belonging to the same row are again stored to the same
node n0. By contrast, the case in Fig. 3d can achieve better
streaming load balance as blocks belonging to the same
row are now evenly distributed to all the nodes. Note that
the order of the blocks within a node is not important as the
node will independently retrieve a block from the disk for
transmission in each service round (c.f. Section 2.1).

Fig. 4 lists an algorithm to perform this load balanced
data reorganization. The algorithm proceeds in iterations,

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

each time considering one excess block. For each excess
block in each overflow node, the algorithm will first find
the row, denoted by Ai,y, containing the largest number of
blocks inside this node (Step 12). Then it locates an
underflow node (Step 13) and move one overflow block to
the underflow node (Step 14). If there are more than one
underflow nodes satisfying the criteria, it will be chosen
randomly. This process then repeats for each overflow
block in each overflow node.

Clearly increasing the window size w will decrease the
reorganization overhead at the expense of streaming load
imbalance. The RPDR algorithm presented in Section 3 is
a special case of the mRPDR algorithm with a window size
of w=1. At the other extreme, setting w to B/n will result in
minimal reorganization overhead but with significant
streaming load imbalance. We investigate in the next
section tradeoff between reorganization overhead and
streaming load balance.

5. Performance comparisons

In this section, we evaluate and compare the proposed

multi-row-permutated data reorganization algorithm with
the round-robin [3] and the SCADDAR [4] algorithms
originally proposed for disk arrays. The primary
performance metrics used for comparison are data
reorganization overhead and streaming load balance.

The results are computed numerically for a video title
with B=4,000 blocks. Unless stated otherwise the system
begins with a single node and then incrementally grows to
200 nodes by adding new nodes one by one. Each data
point is averaged over 50 results obtained from using
different random seeds for the random number generator
(used in SCADDAR and the mRPDR algorithms).

5.1 Data reorganization overhead

Data reorganization overhead is defined as the number

of data blocks that need to be redistributed during data
reorganization. This metric can reflect the time, memory
and bandwidth requirement incurred by the reorganization
process.

First, for a system with B blocks already evenly
distributed to n-1 nodes, the minimum number of blocks
that need to be redistributed when a new node is added is
simply equal to B/n, provided that perfect storage balance
is to be maintained. It is possible to achieve even lower
reorganization overhead (e.g. in SCADDAR) but then
some of the nodes will store and serve more data blocks
than others.

Next we derive the reorganization overhead for
round-robin placement. We observe that the ith block and
the (i+LCM(n-1,n))th block, where the function

LCM(n-1,n) computes the least common multiple of n-1
(original cluster size) and n (new cluster size), must reside
on the same node for all i so these blocks do not need to be
redistributed. As only one node is added each time, we
have LCM(n-1,n)=n(n-1). The overhead of round-robin
reorganization is thus approximately equal to
B(1–(1/LCM(n-1,n)))=B(n2–n–1)/(n2–n).

For the SCADDAR algorithm the reorganization
overhead must be measured but it has been shown to
approach the theoretical lower bound of B/n [4]. Similarly
the reorganization overheads of the proposed algorithms
are also measured and the results are plotted in Fig. 5.

There are three key observations. First, the round-robin
algorithm and the SCADDAR algorithm have the highest
and lowest reorganization overhead respectively.
Moreover, the differences increase when the system grows
larger. Second, the reorganization overhead of the mRPDR
algorithm varies within the top (round-robin) and the
bottom (SCADDAR) curves depending on the parameter
w, showing the tunable range of the mRPDR algorithm.
Third, for mRPDR with w=1, which achieves perfect
streaming load balance, the reorganization overhead is still
significantly lower than the round-robin algorithm. As
maintaining the round-robin placement order offers no
advantage in a server-less VoD system (c.f. Section 2.1),
the RPDR algorithm should be used in place of
round-robin when perfect streaming load balance is
required.

Another shortcoming of SCADDAR is the
unpredictable streaming imbalance. In particular, we can
determine the worst case streaming load imbalance for a
video stored using SCADDAR only after the
reorganization is completed. This may incur additional
complexity in scheduling as the amount of load imbalance
is unpredictable. By contrast, the mRPDR algorithm
simply guarantees that the load imbalance will always be
bounded from the above by w. Thus enabling a system
designer to incorporate this streaming load imbalance into
the system’s admission policy and scheduling algorithm.

So far we have assumed that the system is reorganized
whenever a new node joins the system. Clearly this is
inefficient for systems where new nodes are frequently
added. Instead, we can wait until there are a number of
nodes, say k, added before performing reorganization. Fig.
6 shows the per-node reorganization overhead for w=1 and
k ranging from 1 to 5. We observe that the per-node
reorganization overhead does decrease significantly for
larger value of k. However, this is done at the expense of
resource utilization as resources in the newly added nodes
cannot be utilized until data reorganization is completed.
Thus there is a tradeoff between reorganization overhead
and resource utilization, and further investigation is
warranted to quantify the tradeoff in terms of the other

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

system parameters.

5.2 Streaming load balance

To evaluate streaming load balance, recall that the

sender nodes transmit one video block per round per video
stream (c.f. Section 2.1). Thus if there are more than one
block of a row residing in a node, this node may
experience scheduling overflow during transmission,
depending on the utilization of the system. Therefore
counting the number of such overflow blocks will give an
indicator on the degree of load imbalance.

Fig. 7 plots the proportion of blocks that are overflow
blocks for the various data reorganization algorithms. As
expected, both round-robin and RPDR achieve zero
overflow, i.e., perfect streaming load balance. Surprisingly,
the SCADDAR algorithm results in over 35% overflow
blocks. By contrast, the mRPDR algorithm can achieve
different levels of block overflow using different window
size. This enables the system designer, knowing the system
configurations, to choose the best tradeoff between
reorganization overhead and streaming load balance.

6. Conclusion and future works

In this study, we investigated the problem of data

reorganization when growing a server-less VoD system.
We found that the round-robin and the SCADDAR
algorithms are two extremes in the tradeoff between
reorganization overhead and streaming load balance. We
presented a new RPDR algorithm that can achieve perfect
streaming load balance as the round-robin algorithm and
yet required significantly less reorganization overhead. We
then generalize this to a multi-row-permutated data
reorganization (mRPDR) algorithm that can further allow

the system designer to control the tradeoff between
reorganization overhead and streaming load balance.

This study is a small step in studying the larger problem
of data reorganization in grid-based storage systems in
general, and server-less VoD system in particular. Some of
the open problems include how to integrate the cost of data
reorganization and the cost of streaming load imbalance
into a unified optimization framework to determine the
optimal configuration of the mRPDR algorithm; how to
transparently perform data reorganization without
disrupting on-going video streams; how to perform data
reorganization with heterogeneous nodes with varying
storage and streaming capacity; how to support node-level
fault tolerance to improve system reliability; and how to
shrink a system when nodes leave the system.

References

[1] Jack Y. B. Lee and W. T. Leung, “Study of a Server-less

Architecture for Video-on-Demand Applications,” Proc.
IEEE International Conference on Multimedia and Expo.,
August 2002.

[2] Jack Y. B. Lee and W. T. Leung, “Design and Analysis of a
Fault-Tolerant Mechanism for a Server-Less
Video-On-Demand System,” Proc. 2002 International
Conference on Parallel and Distributed Systems, Taiwan,
Dec 17-20, 2002.

[3] S. Ghandeharizadeh and D. Kim, “On-line reorganization of
data in scalable continuous media servers,” Proc. 7th
International Conference on Database and Expert Systems
Applications, September 1996.

[4] A. Goel, C. Shahabi, S.-Y. Yao, and R. Zimmerman,
“SCADDAR: An efficient randomized technique to
reorganize continuous media blocks,” Proc. International
Conference on Data Engineering, 2002.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Autonomous
Clusters

STB

STB

STB

STB

STB

Playback

Figure 1. A server-less architecture for video streaming.

Figure 2. The row-permutated data reorganization algorithm.

n3n0 n1

v0,0 v0,1 v0,3

v1,0 v1,1v1,3

n2

v0,2

v1,2

v2,0 v2,1 v2,3

v3,0v3,1 v3,3

v2,2

v3,2

v4,0 v4,1 v4,3 v4,2

a) original placement

n3n0 n1

v0,0 v0,1 v0,3

v0,4 v1,0v1,2

n2

v0,2

v1,1

v1,3 v1,4 v2,1

v2,2v2,3 v3,0

v2,0

v2,4

v3,1 v3,2 v3,4 v3,3

n4

b) after re-indexing and start to reorganize row 0

n3n0 n1

v0,0 v0,1 v0,3 v0,4

v1,0v1,2

n2

v0,2

v1,1 v1,3v1,4

v2,1 v2,2v2,3 v2,0 v2,4

n4

v3,0v3,1 v3,2 v3,4 v3,3

d) result of reorganization

n3n0 n1 n2 n4

c) start to reorganize row 1

v0,0 v0,1 v0,3 v0,4

v1,0v1,2

v0,2

v1,1

v1,3 v1,4 v2,1

v2,2v2,3 v3,0

v2.0

v2,4

v3,1 v3,2 v3,4 v3,3

excess
block

overflow
node

underflow
node

underflow
nodes

excess
blocks

overflow nodes

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Figure 3. The multi-row-permutated data reorganization algorithm.

Step 01: R0, R1, …, Rw-1 is the rows under consideration
Step 02: n0, n1, …, nn-1 is the nodes in the system
Step 03: Ax,y is the number of blocks of row Rx in node ny
Step 04: Y is the set of overflow nodes
Step 05: Y�φ
Step 06: for (int y=0 to n-1) {

Step 07: if
1

,
0

w

x y
x

A w
−

=

>∑

Step 08: then add node ny to the set Y
Step 09: }
Step 10: for each ny∈Y {
Step 11: for each overflow block in ny {
Step 12: Ai,y �max(A0,y, A1,y, …, Aw-1,y)

Step 13: find y’ such that (Ai,y’ < Ai,y) AND (, 'x y

x

A w<∑)

AND (Ai,y’ is minimum within underflow nodes)
Step 14: Move one block of Ri in ny to ny’
Step 15: Ai,y � Ai,y – 1
Step 16: Ai,y’ � Ai,y’ + 1
Step 17: }
Step 18: }

Figure 4. Pseudo-code for the multi-row-permutated data reorganization algorithm.

n3n0 n1

vi,0

vi,1

vi,3vi,4

vi+1,0vi+1,2

n2

vi,2

vi+1,1

vi+1,3 vi+1,4

n4

n3n0 n1

vi,0

vi,1

vi,3vi,4

vi+1,0vi+1,2

n2

vi,2

vi+1,1 vi+1,3

vi+1,4

n4

a) original placement after re-indexing

c) poor selection of excess blocks
 in overflow nodes

w=2

n3n0 n1

vi,0

vi,1

vi,3vi,4

vi+1,0vi+1,2

n2

vi,2 vi+1,1

vi+1,3 vi+1,4

n4

b) poor selection of underflow nodes

n3n0 n1

vi,0

vi,1

vi,3vi,4

vi+1,0vi+1,2

n2

vi,2 vi+1,1

vi+1,3 vi+1,4

n4

d) choice of blocks in overflow nodes and choice
 of underflow nodes using proposed algorithm

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Figure 5. Comparison of reorganization

overhead versus system size.

Figure 6. Comparison of per-node

reorganization overhead versus system size.

Figure 7. Comparison of overflow blocks

proportion versus system size.

10

100

1000

10000

0 50 100 150 200

System Size (nodes)

R
eo

rg
an

iz
at

io
n

O
ve

rh
ea

d
(b

lo
ck

s)

SCADDAR

Round-Robin

w=10

w=5

w=2

mRPDR :
w=1

Lower Bound
(Storage Balanced)

10

100

1000

10000

0 50 100 150 200

System Size (nodes)

Pe
r-

no
de

 R
eo

rg
an

iz
at

io
n

O
ve

rh
ea

d
(b

lo
ck

s)

k = 1

k = 2

k = 3

k = 5

Lower Bound
(Storage Balanced)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200

System Size (nodes)

O
ve

rf
lo

w
 B

lo
ck

s
Pr

op
or

tio
n

Round-Robin and
mRPDR with w=1

SCADDAR

w=10

w=5

w=2

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

