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Abstract—Video streaming is now ubiquitous in the mobile Internet. This motivated intense research in adaptive streaming 
algorithms to tackle mobile networks’ fluctuating conditions. Our investigations revealed that while existing algorithms can perform 
well in their intended operating environments, their performance can degrade substantially in other environments. This work 
tackles this challenge by developing a novel Ensemble Adaptive Streaming (EAS) paradigm to mobile video streaming. As 
opposed to designing a single streaming algorithm for all network conditions, we argue that different network conditions require 
different algorithms. We introduce the notion of network differentiators to segregate network conditions into different classes where 
each class has its own adaptation algorithm designed and optimized specifically for it. An EAS mobile streaming client then selects 
at runtime the matching adaptation algorithm using the same network differentiators on a per session basis for streaming. We 
show how EAS can be applied to existing machine-learning approaches to improve their performances. Moreover, to fully exploit 
EAS’s potential we developed the first Genetic Programming approach to evolve adaptive streaming algorithms. The resultant 
EAS-GP algorithms not only outperformed state-of-the-art algorithms substantially, but also exhibited remarkable robustness over 
time, location, mobile operators, as well as quality-of-experience metrics. 

Index Terms— Video Streaming; Mobile Network; Genetic Programming; Quality-of-experience. 

——————————      —————————— 

1 INTRODUCTION
ITH the rapid advances in high-speed mobile net-
works such as 4G/LTE [1] and the upcoming 5G [2], 

streaming video has become an essential application for 
mobile users. According to an on-going forecast [3], 
streaming video is poised to account for 75% of all mobile 
data traffic by 2020. 

Given streaming video’s ubiquitous importance its 
quality-of-experience (QoE) has become a grand challenge 
to content and service providers. Unlike wired networks 
where bandwidth is relatively abundant and consistent, 
mobile bandwidth is highly variable depending on a vari-
ety of factors such as coverage, mobility, user density, and 
so on. Therefore, it is now standard practice for content 
providers to deploy adaptive streaming systems to auto-
matically adjust the video bitrate in accordance to the net-
work bandwidth available. This has led to the recent stand-
ardization of adaptive video streaming framework by 
MPEG – known as MPEG-DASH [4], for wider inter-oper-
ability across different adaptive streaming systems. 

The heart of an adaptive video streaming system is its 
adaptation logic or algorithm. Using information collected 
during runtime, e.g., estimated throughput, client buffer 
occupancy, etc., the algorithm then determines the best bi-
trate for future video segments. Different adaptation logics 
differ in: (a) the types of parameters adopted in bitrate se-
lection; (b) the metrics they used for performance optimi-
zation; and (c) the tradeoffs between different metrics. 
These could either be explicitly designed into the algo-
rithm or an implicit behavior of the algorithm. 

Researchers have developed a wide variety of adaptive 
streaming algorithms in recent years (e.g., [5-13]). These 
have all shown significant QoE improvements compared 
to their non-adaptive counterparts. However, our investi-
gations revealed that while existing algorithms can per-
form well in their intended operating environments, their 
performances often degrade substantially in other envi-
ronments. This work proposes a novel Ensemble Adaptive 
Streaming (EAS) paradigm to tackle this challenge. As op-
posed to designing a single universal streaming algorithm 
for all network environments, we argue that different net-
works require different algorithms. We introduce the notion 
of network differentiators to segregate networks into differ-
ent classes where each class has its own adaptation algo-
rithm designed and optimized specifically for it. An EAS 
mobile streaming client then selects at runtime the match-
ing adaptation algorithm using the same network differen-
tiators for use in each streaming session.  

This work has four main contributions. First, our exten-
sive experiments confirmed that it is fundamentally diffi-
cult, if not impossible, for a single adaptation algorithm, 
even state-of-the-art ones such as MPC [5] and Pensieve 
[6], to perform equally well across a wide range of network 
conditions. Moreover, our investigations also showed that 
network conditions can and do vary significantly on a daily 
basis, even for the same location with no mobility. Thus op-
erating over a wide range of network conditions is not an 
option but a necessity in practice. 

Our second contribution is in developing the novel En-
semble Adaptive Streaming paradigm to tackle the above-
mentioned challenge. We introduce the notion of network 
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differentiators as a mean to segregate networks into sepa-
rate classes, and by designing specialized algorithms for 
each class one can achieve significant performance gains 
over existing approaches. 

Third, through applying EAS to Pensieve we discov-
ered that although EAS-Pensieve can achieve substantially 
better performance, its efficacy was still restricted under 
challenging network conditions, presumably due to the in-
herent structure of the neural network model employed. 
To tackle this limitation we developed, for the first time in 
the literature, a Genetic Programming (GP) [14] approach 
to evolve specialized adaptation algorithms for EAS. This 
EAS-GP approach not only substantially outperformed 
current state-of-the-art algorithms, but also exhibited re-
markable robustness over time, locations, mobile opera-
tors, and even different QoE metrics. Moreover, EAS-GP 
can be deployed with only minimal changes to existing 
streaming players, making it readily deployable. 

Last but not least, we developed a new rate-throughput-
buffer (RTB) analysis tool that can offer new insights into 
the inner-working of various adaptation algorithms. For 
example, it revealed the reason behind Pensieve’s signifi-
cant performance variations under challenging network 
conditions; and showed why it is fundamentally difficult 
for a single algorithm to perform well across a wide range 
of network conditions. 

The rest of the paper is organized as follows: Section 2 
reviews some previous related works; Section 3 demon-
strates the limitations of solo adaptive streaming; Section 4 
presents the EAS paradigm and demonstrates its potential 
by applying it to Pensieve; Section 5 presents a Genetic 
Programming approach to evolving specialized adapta-
tion algorithms for EAS; Section 6 compares performance 
of EAS against the state-of-the-arts; and Section 7 summa-
rizes the study and outlines some future work. 

2 RELATED WORK 
In recent years, video streaming protocols such as Mi-
crosoft Smooth-Streaming [15], Apple’s HLS [16] and 
Adobe’s HDS [17] have nearly all migrated to HTTP-based 
adaptive streaming. This class of protocols is being stand-
ardized under the umbrella of Dynamic Adaptive Stream-
ing over HTTP (i.e., DASH) [4]. A detailed review of exist-
ing works is beyond the scope of this work. We refer the 
interested readers to the studies by Seufert et al. [18], Juluri 
et al. [19], Kua et al. [20] and Bentaleb et al. [21] for survey 
and comparison of existing streaming algorithms. In the 
following we briefly review some related studies. 

Built-upon intuitions, researchers developed numerous 
adaptive streaming algorithms over the years. For exam-
ple, Spiteri et al. [7] devised an online control algorithm 
called BOLA that employed Lyapunov optimization tech-
niques to adapt the video bitrate; Liu et al. [8] proposed a 
data-driven framework called PSRA where past through-
put trace data are analyzed to automatically optimize 
streaming parameters according to the underlying net-
work and system configurations; Zahran et al. [9] proposed 
ARBITER+ which integrated several tunable components 

to ensure high video QoE; Qin et al. [10] designed an algo-
rithm that leveraged PID feedback control concepts to 
track a target buffer occupancy to prevent playback rebuff-
ering; and so on. 

In another study Yin et al. [5] proposed Robust-MPC 
which makes bitrate decisions by solving a QoE maximiza-
tion problem over a horizon of several future segments. By 
optimizing directly for a desired QoE objective, Robust-
MPC can perform better than approaches that employed 
fixed heuristics. However, Robust-MPC was not tuned for 
different network environments and relies heavily on ac-
curate throughput estimation which are not always avail-
able. When throughput predictions are incorrect, Robust-
MPC’s performance can degrade significantly [22].  

Another approach to the design of adaptation algo-
rithms is based on machine learning techniques. Generally, 
in a separate training phase the system is exposed to the 
target operating environment where it makes bitrate deci-
sions solely through observations of the resulting perfor-
mance of past experiences. One approach is to model the 
bitrate adaptation problem as a Markov decision process 
(MDP) and then employ machine learning algorithms to 
solve it. For example, applying reinforcement learning (RL) 
in a tabular form (e.g., Q-learning [23]) is a common solu-
tion [11-13]. It represents the model to be learned as a table, 
with separate entries for all states (e.g., estimated through-
put, client buffer occupancy, etc.) as well as bitrate deci-
sions. The challenge lies in the choice of state space. A large 
state space can more accurately capture the environment’s 
characteristics albeit with tradeoffs in complexity and con-
vergence time [24].   

In another study, Mao et al. proposed Pensieve [6] - a 
system to generate adaptive streaming algorithms using 
A3C - a deep RL algorithm [25], through training a neural 
network for bitrate adaptation. Pensieve was shown to out-
perform many state-of-the-art adaptation algorithms. Most 
recently, Akhtar et al. [38] proposed Oboe that pre-com-
putes, for a given adaptive streaming algorithm, the best 
parameters for different network conditions, and then dy-
namically adjusts the parameters at run-time according to 
the changing network condition. 

Regardless of the approaches, current algorithms were 
all solo, i.e., a single optimized algorithm is to be used for 
all settings. We argue that this is sub-optimal as variations 
in network environments not only require adaptation of 
the video bitrate, but also adaptation of the adaptation algo-
rithm itself. We establish this argument in the next section. 

3 SOLO ADAPTIVE STREAMING 
In this section we demonstrate the limitations of solo adap-
tive streaming. 

3.1 Experiment Setup 
To evaluate streaming algorithms in realistic network set-
tings we employed trace-driven simulations where the 
simulator implemented the adaptive streaming algorithms 
and executed them using throughput trace data obtained 
from real-world production mobile networks.  
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Table 1 - Information of Throughput Trace Datasets. 
   Dataset   

Characteristics #1 #2 #3 #4 Overall
Mean Throughput (Mbps) 5.57 4.71 3.29 2.87 4.01 

Min/max Session   
Throughput (Mbps) 

0.20 / 
10.44 

0.38 / 
8.34 

0.09 / 
9.78 

0.22 / 
7.84 

0.09 / 
10.44 

Coefficient of Variation 0.44 0.39 0.74 0.53 0.53 
Location L1 L1 L2 L3 n/a 

Service Provider S1 S2 S1 S1 n/a 

Table 2 - System Settings. 
Parameters Values 

Bitrate Profile [0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0,  
6.5, 8.6, 10.0, 12.0] Mbps

Segment Duration 2 s 
Video Duration Empirical distribution (40 s to 600 s) 

Prefetch Duration 10 s 
Startup Bitrate 200 kbps 

Client Buffer Size 60 s 

Table 3 - Normalized QoE Performance (%) and Coeffi-
cient of Variation (CoV) for Solo-adaptive Streaming. 

 Dataset 
Algorithm #1 #2 #3 #4 Overall QoE Overall CoV
Pensieve 79.2 79.7 56.3 67.0 72.5 0.91 

MPC 72.8 78.1 73.5 76.4 74.6 0.55 
Stagefright 64.5 63.2 65.6 62.9 64.2 0.56 

 
We setup a platform in multiple production mobile net-

works to collect their TCP throughput trace data. The 
server host ran Linux Apache httpd [26] serving video data 
over TCP CUBIC [27]. The client was a notebook computer 
running Microsoft Windows 10 connected to the mobile 
network via a 3G/LTE USB modem. We developed a cus-
tom software to automatically initiate long TCP sessions to 
measure the actual throughput achievable over the mobile 
networks.  

At the time of writing, a total of 44 weeks’ trace data 
were captured using a stationary client in three locations 
under two mobile operators. The dataset is publicly avail-
able at [28]. Table 1 summarizes the datasets’ characteris-
tics, showing considerable variations.  

Table 2 summarizes the system settings adopted in the 
simulations. Through collaboration with an anonymous 
mobile operator we obtained an empirical video duration 
distribution (ranges from 40 seconds to 600 seconds) in one 
of their streaming servers for use as video duration distri-
bution in the simulations. The available video bitrates fol-
lowed Apple’s profile [16] augmented by two more bi-
trates at 10 Mbps and 12 Mbps. The initial video bitrate 
during prefetch is set to the lowest bitrate (i.e., 200 kbps) in 
accordance to the industry norm (to minimize startup de-
lay) and the client begins playback after buffering 10 s 
video. Upon rebuffering the player will pause playback 
and resume when a complete video segment is received. 
The DASH player was configured with a buffer capacity of 
60 s. These were consistently applied to all algorithms sim-
ulated. 

To evalaute streaming performance we adopted the 
QoE function proposed by Yin et al. [5]: 

1

1
1 1

1 K K

k k k p
k k

Q r r r Z Z
K θ θλ μ μ

−

+
= =

 
= − − − − 

 
           (1) 

where Zp is the total rebuffering duration, Zθ is the startup 
delay, rk is the bitrate selected for segment k, K is the total 
number of segments and the component weights follow 
the Balanced setting [5], i.e., λ= 1 and μ = μθ = 3000. We fur-
ther consider other QoE metrics in Section 6.4. 

 We simulated three streaming algorithms: Robust-
MPC [5] (henceforth called ‘MPC’), Pensieve [6], and 
Stagefright [29]. The first two are current state-of-the-art 
algorithms in the literature and the third is a hybrid band-
width-buffer-based algorithm implemented in the An-
droid operating system. For MPC and Pensieve, we used 
the implementation provided by Mao et al. [30]; and we im-
plemented Stagefright based on the Android source [29].  

For training Pensieve’s neural network1 we employed 
30 days’ trace data from each of the four datasets for a total 
of 120 days’ trace data and then randomly selected 2,000 
streaming sessions as the training dataset. The rest of the 
trace data (~50,000 streaming sessions) were then applied 
to evaluate all three algorithms. 

3.2 Results and Discussions 
Table 3 compares the streaming performance of the three 
algorithms simulated. We normalized the actual QoE per-
formance by the offline optimal computed according to 
Spiteri et al. [7], which serves as an upper bound on the 
QoE that an omniscient policy with complete and perfect 
knowledge of future network throughput can achieve.  

Normalized QoE (as opposed to actual QoE) enables us 
to compare the efficacy of an algorithm under different net-
work conditions. Specifically, if we compare the perfor-
mance of an algorithm operating under good versus poor 
network conditions, then the actual QoE will naturally be 
lower under poor network condition. This, however, does 
not tell us the efficacy of the algorithm under the two net-
work conditions. By normalizing against the upper bound 
we can then compensate for the inherent QoE differences 
due to differing network conditions so that the algorithms’ 
efficacy can be compared. For brevity we will use QoE and 
normalized QoE inter-changeably in the rest of the paper. 

From Table 3 both Pensieve and MPC outperformed 
Stagefright in overall QoE performance. Interestingly, Pen-
sieve achieved better QoE than MPC in datasets #1 and #2 
but performed worse in datasets #3 and #4. Noting the da-
tasets’ throughput in Table 1 it appears that Pensieve is 
more effective in networks with higher throughput.  

To further analyze the results across different network 
conditions we divided all streaming sessions into 10 
throughput levels, with level l=0,1,…,8 collecting sessions 
with average throughput within (l, l+1] Mbps, plus level 9 

———————————————— 
1Based on the author’s suggestion [30], we experimented 5 neural net-

work models with five different initial entropy weights ranging from 1
to 5 respectively, and linearly reduced the values in a gradual fashion
until the entropy weight eventually reached 0.1 (after 100,000 iterations). 
From the trained 5 models, we then selected the best performing model
in the validation.
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with average throughput ≥ 9Mbps, and then plotted their 
respective QoE performance in Fig. 1. It clearly shows the 
reason for the QoE variations in Pensieve – the normalized 
QoE performance, i.e., efficacy, degraded significantly at 
the two lowest throughput levels (where dataset #3 and #4 
have more of them). 

Even more surprisingly, Stagefright achieved signifi-
cantly higher QoE than Pensieve at throughput level 0. 
This shows that better-performing algorithm does exist for 
that throughput level, just that it was not adopted by Pen-
sieve during training. We argue that this is due to the fun-
damental limitation of solo adaptive streaming – the opti-
mal adaptation logics for different network conditions are 
simply incompatible. With only one choice in hand, Pen-
sieve therefore did its best to train an algorithm that max-
imizes overall QoE performance. 

4 ENSEMBLE ADAPTIVE STREAMING 
In music a solo instrument can only cover a limited range 
of the scale. To produce the full spectrum of sound one 
needs an ensemble of different instruments to cover the full 
musical scale. Along the same principle we propose a 
novel Ensemble Adaptive Streaming (EAS) paradigm to 
incorporate a set of complementary adaptation algorithms 
for which the matching algorithm can then be dynamically 
selected at runtime for use in each streaming session. We 
first investigate in this section the application of EAS to 
Pensieve and explore a new approach in Section 5. 

4.1 Network Differentiators 
In EAS the system is equipped with a set of adaptation al-
gorithms. The key is that the algorithms should be comple-
mentary, i.e., they should each cover (and thus optimized 
for) a subset of the target network environments but to-
gether, provide full coverage. Consequently the first chal-
lenge is to devise means to segregate network environ-
ments into disjoint classes so that specialized adaptation 
algorithms can be designed/optimized for each one. 

To tackle this we introduce the notion of network differ-
entiators (ND) {Vi, i=0,…,N-1} which are quantitative met-
rics that can be obtained, measured, or estimated from the 
network the system operates in for each streaming session. 
Each ND, i.e., Vi, computes into a scalar value over a range, 
Vi,min≤Vi≤Vi,max, which can then be sub-divided into classes 
Wi=0,1,…,Mi-1, according to a mapping policy Ψi: 

Ψ⎯ ⎯→
ii iV W                                    (2) 

Together the chosen NDs then form a ND vector  

−=


0 1 1, , , NW W W W                            (3) 

which divides the problem space into  
−

=

Ω =∏
1

0

N

i
i

M                                    (4) 

classes for which each class will have its own specialized 
adaptation algorithm. Obviously the choice of NDs is one 
of the keys to EAS. We draw on the observations in Section 
3 to define a ND in the next section. 

 
Fig. 1.  Comparison of QoE performance across throughput levels. 

4.2 Session Throughput Levels 
According to the results in Section 3, efficacy of the three 
algorithms evaluated were impacted substantially by the 
level of session throughput. This suggests that session 
throughput could potentially be a good network differen-
tiator. By dividing the problem space using session 
throughput as the ND we can then design separate algo-
rithms for each network class to match its characteristics. 

After offline training the ensemble of adaptation algo-
rithms are either loaded into the client in client-driven ad-
aptation or installed into the server in server-driven adap-
tation. Either way the system will need to select the match-
ing adaptation algorithm, i.e., neural network in the case 
of Pensieve, for use in each new streaming session.  

This poses a challenge, however, as while the ND can 
be calculated during training as the trace data were given, 
it cannot be known at the beginning of an actual streaming 
session. Therefore we need a way to estimate the ND. 
Moreover, the same estimation method should also be 
adopted in training despite the availability of full trace 
data so that the training environment is the same as testing. 

The estimation method for a ND depends on its type, its 
definition, and the environment it operates in. For session 
throughput we propose two methods to estimate it:  

Method 1: inter-stream estimation. If a user watches 
multiple videos in a roll then we could estimate the ND for 
the new streaming session j from the session throughput 
of the previous completed streaming session j-1: 

−

=

= 
1

- 1 ,
0 ,

0 - 1 ,

1 n
j k

j
k j k

s
V

n d
                           (5) 

where n is the number of segments, sj-1,k, and dj-1,k are size 
and download time for segment k in session j-1.  

 There are limitations to this method. For example, it 
may be the first video a user watches or an extended period 
of time has elapsed since the completion of the previous 
streaming session so that the network environment may 
have changed already. 

Method 2: intra-stream estimation. To tackle inter-
stream estimation’s limitation we propose a second 
method to estimate the ND based on measurement within 
the new streaming session j. In particular, client video 
player typically prefetches a number of video segments (or 
video duration) before commencing playback.  
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Table 4 - Normalized QoE Performance (%) and Coeffi-
cient of Variation (CoV) for EAS-Pensieve. 
 Dataset 

Algorithm #1 #2 #3 #4 Overall QoE Overall CoV
EAS-Pensieve-1 86.8 86.4 78.9 83.1 84.4 0.70 
EAS-Pensieve-2 85.7 85.6 76.0 81.3 82.9 0.69 

Pensieve 79.2 79.7 56.3 67.0 72.5 0.91 
MPC 72.8 78.1 73.5 76.4 74.6 0.55 

Stagefright 64.5 63.2 65.6 62.9 64.2 0.56 

The throughput in downloading the prefetch segments 
reflects the current network condition and thus could offer 
an estimation of the ND. Most importantly this eliminates 
the dependency on a previously completed streaming ses-
sion. 

Let α be the pre-configured bitrate for the first m 
segments during prefetch, i.e.,  

, , 0 , 1 , . . . 1j kr k mα= = −                       (6) 

where rj,k denotes the selected video bitrate for the kth 
segment in session j. After segment m-1 is received the sys-
tem can then estimate the ND from 

−

=

= 
1

,
0 ,

0 ,

1 m
j k

j
k j k

s
V

m d
                              (7) 

where sj,k, and dj,k are size and download time for segment 
k in the prefetch phase of session j. 

Nevertheless, there are also tradeoffs to this method, 
e.g., the prefetch duration is typically short (to reduce 
startup delay) so the number of measurement samples will 
be small. This may impact the estimation accuracy for cer-
tain types of ND (c.f. Appendix A.2). 

For mapping policy we employed a linear quantization 
policy (c.f. Appendix A.2 for other policies): 

  
= −   Δ  

0
0 0

0

m in , 1
V

W M                       (8)  

where Δ0 is the quantization step size and M0 is the number 
of classes for ND V0. With only a single ND the ND vector 
is simply equal to 

=


0W W                                   (9)  

The second step in EAS is to design and optimize sepa-
rate adaptation algorithms for each network class. In this 
section we employed the leading machine learning 
method Pensieve [6] as the tool to design separate neural 
networks for use in each network class. 

Specifically, we modified Pensieve’s offline training 
phase by first dividing all streaming sessions Sj, j=0,1,…,N, 
into M0 network classes according to (9): 

{ }= = ∀ = −


 0, ,  0,1, , 1i j jC S W i j i M            (10)  

where 
jW

 is the ND vector for streaming session j.  
Finally we ran separate Pensieve training instances, de-

noted by the function TPensieve(⋅), for each network class to 
obtain M0 neural networks, denoted by η  i, for use in each 
of the matching network classes: 

 
Fig. 2.  Comparison of QoE performance across throughput levels. 

( )η = = − 0,   0 , 1 , , 1i P e n s i e v e iT C i M           (11) 

4.3 Performance Evaluation 
In the following we analyze the performance of applying 
EAS to Pensieve using session throughput as the ND. We 
implemented two versions: EAS-Pensieve-1 and EAS-Pen-
sieve-2 which employed inter- and intra-stream estima-
tions respectively and compare them to the original Pen-
sieve [6], MPC [5], and Stagefright [27]. We adopted the 
linear mapping policy in (8) with bin size of Δ0 = 1 Mbps 
and M0=10 network classes. We used 30 days’ trace data 
from each of the 4 datasets in Table 1 and randomly se-
lected 200 streaming sessions for training each network 
class. Other settings are the same as Section 3. 

Table 4 summarizes the test subjects’ normalized QoE 
performance and their coefficient of variation (CoV) across 
the 4 datasets. First, performances of Pensieve in dataset #3 
and #4 were improved significantly by EAS, i.e., from 
56.3% and 67.0% to 76.0%/78.9% and 81.3%/83.1% respec-
tively. As these two datasets have lower average band-
width (c.f. Table 1) this suggests that EAS successfully en-
abled Pensieve to train better-matching neural networks to 
deal with the more challenging network conditions.  

Furthermore, EAS was able to improve Pensieve’s per-
formance even for datasets #1 and #2, suggesting that re-
lieved of the burden to cater to lower bandwidth networks, 
EAS enabled Pensieve to train more effective neural net-
works to exploit the higher bandwidth available. It is 
worth noting that the overall performance of original Pen-
sieve was sufficiently impacted by dataset #3 and #4 such 
that it underperformed MPC in overall QoE performance. 
By contrast, EAS enabled Pensieve to fully exploit its po-
tential to outperform MPC. 

Comparing EAS-Pensieve-1 with inter-stream ND esti-
mation to EAS-Pensieve-2 with intra-stream ND estima-
tion we can quantify the performance tradeoffs in the lat-
ter: it ranges from 0.8% to 2.9% across the four datasets 
with an average of 1.5%. This suggests that intra-stream es-
timation offers a good alternative for practical deploy-
ment. 

To further analyze EAS-Pensieve’s performance, we 
plot in Fig. 2 its normalized QoE across the 10 throughput 
levels. The suboptimal performance of Pensieve at the low 
throughput extreme observed in Section 3 was improved 
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substantially by EAS. Unexpectedly, at the lowest through-
put level 0, Stagefright still managed to perform signifi-
cantly better than even EAS-Pensieve. We conjecture that 
despite Pensieve’s use of deep learning approach, its spe-
cific neural network topology may not be sufficiently flex-
ible to explore the complete solution space. To this end we 
turn to a new approach to designing and optimizing adap-
tation logics – genetic programming. 

5 EVOLVING ADAPTATION ALGORITHMS VIA GP 
Genetic programming (GP) [14] was inspired by the pro-
cess of natural selection in nature where a population 
evolves and adapts itself to the changing environment 
through crossover, mutation, and reproduction. GP pre-
sents two desirable features to the application of EAS to 
adaptive streaming. First, GP encodes candidate solutions 
using expression trees [14] which are particularly suitable 
for representing algorithms. In fact, many existing adap-
tive streaming algorithms can be mapped to relatively sim-
ple expression trees. Second, apart from the tree structure 
GP does not impose a rigid structure on the solution. The 
evolution process is free to explore the solution space that 
can be represented by expression trees. This potentially 
can resolve the limitation of Pensieve at the lower through-
put levels. 

In this section we apply GP to evolve the ensemble of 
adaptation algorithms for use in Ensemble Adaptive 
Streaming. We adopted the same principles in EAS and ap-
plied GP to evolve separate adaptation logic for each net-
work class according to the chosen network differentiator. 
It is worth noting that other evolutionary or machine learn-
ing approaches may also be applied in a similar manner 
and thus could be a fruitful direction for future work. 

5.1 Adaptation Logics as Expression Trees 
Compared to genetic algorithm [31] where candidate solu-
tions are typically encoded as a bit-string, GP encodes can-
didate solutions using expression trees which comprise two 
types of components: operands and operators as illustrated 
in Fig. 3.  

We capture network and system states as inputs in a GP 
expression tree via variable operands. In particular, we de-
fine a set ℜ of four domain-specific inputs: 

ℜ={ }c,u,b,q                                 (12) 

where c is the average TCP throughput in downloading the 
past x (e.g., x=5) video segments; u is the current buffer oc-
cupancy measured in playback time at the time of request-
ing the next segment; b is the bitrate of the last video seg-
ment; and q is remaining video duration - the duration of 
video segments which have not yet been downloaded.  

In addition to input variables, adaptive streaming algo-
rithms often incorporate numeric constants and multiply-
ing coefficients in computing the video bitrate (e.g., n1 to n4 
in Fig. 3). To represent these we define a set ℑ of GP oper-
ands which comprises numeric constants randomly gener-
ated over a given range D: 

ℑ= ∈ − < <{ , }x D x D                     (13) 

 
Fig. 3. Illustration of GP expression tree and the process of crossover 
in reproduction. (c, u are estimated throughput and buffer occupancy 
respectively; n1…n4 are numeric constants). 

The non-leaf nodes of an expression tree are operators, 
which are functions that take inputs to calculate an output 
value. As depicted in Fig. 3, the inputs themselves can also 
be a subtree comprising another function and so on. In this 
work, we employed a set of four arithmetic functions as 
operators:  

ℵ= + − × ÷{ , , , }                              (14) 

To execute an expression tree one begins with the root 
node and then recursively executes each subtree to 
compute the final numeric output r which is the video 
bitrate for the next video segment to be downloaded. 

In practice there are a finite number of discrete video 
bitrate choices available so the computed video bitrate r 
will be mapped to the closest bitrate level available: 

=arg  min h
h

h rτ −                          (15) 

where τh, h=0,1,…,H-1 are the actual bitrate of video bitrate 
level h for the next video segment. 

To illustrate, let us consider the three expression trees 
in Fig. 3. The top-left tree represents a bandwidth-based al-
gorithm which selects future bitrate from the product of 
the estimated throughput c and the constant n1. In contrast, 
the bottom-left tree represents a buffer-based algorithm 
which adapts the bitrate according to the current client 
buffer occupancy u. Finally, the right-side tree represents a 
hybrid-bandwidth-buffer-based adaptation logic which is the 
equivalent of the one proposed by Liu et al. [8]. 

It is worth noting that the choices of operands and op-
erators determine the solution space for GP. A desirable 
property of the above choices in (12) and (14) is that the re-
sultant expression trees can all be mapped directly into 
mathematical equations as illustrated in Fig. 3. This simplifies 
implementation significantly as incorporation of a GP-
evolved solution is as simple as replacing the equation 
adopted in the adaptation logic. 

5.2 The Evolutionary Process 
In GP, a population of candidate solutions to an optimiza-
tion problem is evolved towards better solutions through 
an evolutionary process [14]. In the following, we present 
the methodology adopted for evolving adaptive streaming 
algorithms. 
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Initialization. The evolutionary process begins with an 
initial population of κ (e.g., κ=800) randomly-generated in-
dividuals. We adopted the method proposed by Koza [14] 
in generating the initial population with a maximum tree 
depth of 5.  

Fitness evaluation. Each generation of population 
evolves by means of producing offspring to form the next 
generation. This is done by first evaluating the fitness of 
each individual in the population which indicates the 
goodness of each solution in the problem domain. This 
presents a challenge as the performance of an adaptive 
streaming algorithm not only depends on the adaptation 
logic, but also depends on the network conditions as well 
as the QoE metric adopted. 

To tackle this challenge, we propose to employ trace-
driven simulation to evaluate the actual performance of a 
given individual according to a given QoE metric over a 
period of time. To ensure the fitness evaluation covers a 
broad range of network conditions each individual’s fit-
ness is evaluated over L (e.g., L=200) streaming sessions 
randomly selected from all 4 datasets in Section 3. 

Let Ik∈I as the kth individual out of the set of population 
I. Now given the throughput trace data of session j in 
dataset E, denoted by Sj∈E, expression tree Ik can be 
executed (denoted by the function F(⋅)) to produce a set of 
performance metrics (e.g., average bitrate, rebuffering 
duration, etc.), collectively denoted by Pk,j: 

=, ( , )k j k jP F I S                               (16) 

Finally, the fitness of the kth individual, denoted by fk, is 
computed from the mean QoE of all L streaming sessions: 

−

=

= 
1

,
0

1 ( )
L

k k j
j

f U P
L

                              (17) 

where U(⋅) is the QoE function adopted.  
Selection. Once the fitness for all individuals in the 

population is obtained, GP then performs selection (e.g., 
tournament selection [32]) among individuals to generate 
offspring for the next generation. Individuals with better 
fitness will stochastically have more chance to reproduce, 
i.e., the process of selection is guided by the fitness metric 
(i.e., QoE). Selection gives preference to better individuals 
to allow them to pass on their genes to the next generation.  

Crossover and mutation. After selection, GP randomly 
explores the combination of good genes in selected indi-
viduals through crossover – a process where a sub-tree from 
each of two parent individuals are swapped to form an off-
spring. This is illustrated in Fig. 3 where the two parent 
individuals on the left perform crossover to form an off-
spring that integrates both bandwidth information c and 
buffer information u into its adaptation logic. In addition 
to crossover, GP also implements mutation where a sub-
tree in an individual is replaced by another randomly-gen-
erated sub-tree using the same random tree generation 
method as used in the initial population. Mutation in-
creases the diversity of the population to broaden the 
search space and to enable GP to escape local minima.  

Termination. The set of reproduced offspring then 
forms the next generation and the process repeats until it 

reaches a pre-defined maximum number of generations G 
(e.g., G=50). Generation after generation, GP can then ex-
plore a wide spectrum of candidate solutions in the solu-
tion space to progressively evolve better adaptation algo-
rithms. The best individual from the final population will 
then be selected as the adaptive streaming algorithm for 
use in actual streaming sessions. 

5.3 System Architecture 
EAS-GP operates in two phases: an offline evolutionary 
phase and an online streaming phase. The offline phase 
runs separately from the streaming platform except that it 
makes use of throughput trace data collected from the 
latter. This can be done by capturing (e.g., tcpdump) the 
throughput trace data at the servers as a byproduct of 
actual streaming sessions or via measurements as 
described in Section 3.  

To evolve separate adaptation algorithms for each net-
work class, we first divide all training streaming sessions 
Sj, j=0,1,…,N into M0 network classes according to (9) and 
(10). For each network class i we run a separate GP evolu-
tion process, denoted by the function TGP(⋅), using trace 
data subset Ci for fitness evaluation as described in Section 
5.2. This enables GP to evolve specialized algorithms for 
each network class.  

After the evolution process is terminated the expression 
tree with the highest fitness value, denoted by iε , will be 
adopted for use in each of the matching network classes: 

( )ε = = − 0,   0 , 1 , , 1i G P iT C i M             (18) 

Finally we transform the M0 expression trees into their 
mathematical equation counterparts for use in either the 
server (server-driven adaptation) or the client (client-
driven adaptation). In either case, the online streaming 
platform itself does not need any GP components. The only 
modifications needed are: (a) an extra module to estimate 
the network differentiators during the prefetch phase; (b) 
an initial step to select using the estimated NDs the 
matching equation for bitrate adaptation according to the 
network class the streaming session is classfied into. The 
rest of the streaming process will be identical to ordinary 
adaptive streaming so implementation of EAS-GP can be 
readily be applied to existing or new streaming platforms. 

To demonstrate EAS-GP’s practicality we implemented 
a version of it into the well-known dash.js video player [33] 
by simply modifying the “changeQuality” function in the 
“AbrController” class [34] with 154 lines of codes. The 
trained expression trees are represented as text (in a prefix-
notation) that can either be downloaded separately to the 
client or even embedded within the video playlist. The 
trained expression trees are typically small in size (e.g., 
~9KB in our experiments) so the extra overhead is 
negligible. A demo of EAS-GP implemented via dash.js can 
be tested online at [35]. 

6 RESULTS AND DISCUSSIONS 
In this section we evaluate performance of the EAS-opti-
mized algorithms and compare them to current state-of-
the-art adaptive streaming algorithms. 
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Table 5 - Comparison of Normalized QoE Performance 
(%) and Coefficient of Variation (CoV). 

 Dataset 
Algorithm #1 #2 #3 #4 Overall QoE Overall CoV
EAS-GP-1 90.2 90.6 87.2 90.1 89.6 0.60 
EAS-GP-2 87.1 87.4 84.8 87.0 87.0 0.60 
Solo-GP 84.6 85.3 78.7 84.4 84.4 0.62 

EAS-Pensieve-1 86.8 86.4 78.9 83.1 84.4 0.70 
EAS-Pensieve-2 85.7 85.6 76.0 81.3 82.9 0.69 

Pensieve 79.2 79.7 56.3 67.0 72.5 0.91 
MPC 72.8 78.1 73.5 76.4 74.6 0.55 

Stagefright 64.5 63.2 65.6 62.9 64.2 0.56 
 

6.1 Methodology 
We employed trace-driven simulation as described in Sec-
tion 3 for performance evaluation. The system settings are 
the same as described in Section 3. Sensitivity analysis of 
key system parameters can be found in Appendix A.2. A 
total of 8 algorithms were simulated: Android’s Stagefright 
[29], Robust MPC [5], original Pensieve [6], EAS-Pensieve-
1 (with inter-stream ND estimation), EAS-Pensieve-2 (with 
intra-stream ND estimation), Solo-GP (i.e., evolving a sin-
gle algorithm only), EAS-GP-1 (with inter-stream ND esti-
mation), and EAS-GP-2 (with intra-stream ND estimation). 

Unless stated otherwise the training dataset is com-
posed of 30 days’ trace data from each of datasets #1 to #4. 
We employed estimated session throughput as the net-
work differentiator using the linear quantization policy in 
(8) to divide session into M0=10 network classes with quan-
tization step size of Δ0=1 Mbps. In the GP evolution process 
we adopted a population size of 800; fitness was evaluated 
using the same set of training trace data as used in Pensieve; 
the population was evolved for 50 generations after which 
the expression tree with the best fitness (i.e., highest QoE 
according to (17)) was then adopted for online perfor-
mance evaluation using unseen trace data.  

The performance metric is normalized QoE as described 
in Section 3. Note that the QoE function in (1) can be con-
figured via component weights into three versions: Bal-
anced, Avoid Rebuffering, and Avoid Instability [5]. Except for 
Stagefright which is QoE function agnostic, the same QoE 
function was used in both training and testing for MPC, 
Pensieve, and GP unless stated otherwise.  

6.2 QoE Performance Comparisons 
Table 5 compares the normalized QoE of all algorithms 
tested. First, Solo-GP performed remarkably well against 
existing algorithms, matching the performance of EAS-
Pensieve-1. Moreover, EAS further improved GP’s perfor-
mance by 2.5% to 10.8% across the four datasets, reaching 
close to or over 90% normalized QoE performance. Given 
that 100% normalized QoE is not realizable (requires com-
plete trace data a priori), the level of performance achieved 
by EAS-GP is remarkably close to the upper bound. 

Second, comparing EAS-GP-1 with EAS-GP-2 shows 
that inter-stream ND estimation can achieve slightly 
higher (2.4% to 3.2%) performance than intra-stream ND 
estimation, consistent with the findings for EAS-Pensieve-
1 and EAS-Pensieve-2.  

 

Fig. 4. Comparison of QoE performance across throughput levels. 

To analyze the algorithms’ performance across different 
network conditions we plot in Fig. 4 the QoE versus 
throughput levels from 0 to 9. Since the performance of in-
ter-stream ND and intra-stream ND are very close, we plot 
only the intra-stream ND curves for EAS-Pensieve and 
EAS-GP to reduce clutter.  

We observe that although Solo-GP performed well in 
overall QoE, its performance at the lowest throughput 
level 0 is still substantially lower than Stagefright. This is a 
fundamental limitation to any solo-algorithm approach as 
it is difficult, if not impossible, for a single adaptation logic 
to work well for all kinds of network conditions. Unlike 
Pensieve however, the more flexible expression tree struc-
ture of GP enabled EAS to evolve specialized algorithms 
for all 10 throughput levels. In fact, at throughput level 0 
EAS-GP outperformed Stagefright. Similarly, comparing 
to Solo-GP, EAS-GP also achieved substantially higher 
QoE at the high throughput levels. 

The above results clearly demonstrate the fundamental 
limitation of solo adaptive streaming. Moreover, merely 
applying EAS, despite the substantial performance gains 
in EAS-Pensieve, may not be sufficient on its own. One also 
needs a platform for which EAS can fully explore and ex-
ploit specializations to match the wide range of network 
conditions for optimal performance. The GP platform pre-
sented in Section 5 offers one such platform which worked 
remarkable well. More work is warranted to explore other 
machine learning or evolutionary computation platforms 
to see if one can push the envelope even further. 

6.3 Robustness Analysis 
An often neglected dimension of algorithms trained and 
optimized from trace data is their robustness. Specifically, 
we consider two robustness metrics in this section, namely 
temporal robustness and spatial robustness. 

Temporal robustness concerns an algorithm’s perfor-
mance consistency over time. Fig. 5 plots the algorithms’ 
QoE performance for dataset #1 and #3 over time where the 
x-axis is the number of days after training was completed. 
We also plot daily-averaged throughput in the same graph 
to show how the average throughput varied from day to 
day. 
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(a) Dataset #1 

 

(b) Dataset #3 

Fig. 5. Comparison of temporal robustness. 

 Table 6 - Comparison of Spatial Robustness via 
Normalized QoE (%).  

 Dataset 
Algorithm #1 #2 #3 #4 #5 #6 
EAS-GP-2 87.3 87.3 84.4 86.6 76.5 84.1 
Solo-GP 84.3 85.1 75.4 83.2 55.2 79.4 

EAS-Pensieve-2 84.2 84.7 69.9 78.8 37.0 76.4 
Pensieve 81.6 79.5 51.5 69.0 21.7 70.1 
 
The first observation is that daily averaged throughput 

can vary quite significantly even though the trace data 
were captured in the same physical location by a stationary 
client. This will pose challenges to solo adaptive streaming 
and the results indeed confirmed that – original Pensieve 
and to a lesser extent, Solo-GP, both exhibited substantially 
more variations than their EAS counterparts. By contrast, 
EAS-GP-2 consistently achieved the highest QoE perfor-
mance across all 47 days tested. This suggests that with 
EAS-GP-2 one may not need to re-evolve the algorithm at all 
as the variations are largely due to network condition 
changes which have already been addressed by EAS. 

Spatial robustness concerns an algorithm’s performance 
consistency over different network characteristics, e.g., ge-
ographical locations and service providers, which presum-
ably may exhibit different ranges of network conditions. 
Previously, GP and Pensieve were trained using trace data 
from all 4 datasets. An interesting scenario is to train using 
just one trace dataset and then test using different datasets. 

 
(a) Color by dataset. 

 
(b) Color by throughput level. 

Fig. 6. Normalized QoE of EAS-GP-2 versus throughput coefficient-
of-variation (CoV). Each marker represents one throughput level from 
a dataset. 

Table 6 summarizes the results of such an experiment 
where an algorithm is trained using 60 days’ trace data 
from dataset #1 and then tested in dataset #1 to #6 (in each 
case all unseen trace data in a dataset were used for test-
ing). We note that datasets #1 to #4 were captured by our-
selves in production mobile networks with a stationary cli-
ent while dataset #5 (mobile network with client mobility) 
and #6 (wired network) were obtained from [36] and [37] 
respectively. 

Not surprisingly, the algorithms’ QoE performances 
varied across testing datasets. Pensieve and to a lesser ex-
tent EAS-Pensieve-2 did exhibit larger variations, e.g., with 
QoE dropping to 21.7% and 37.0% in dataset #5 (which has 
a mean throughput of only 1.19 Mbps). This is due to Pen-
sieve’s tendency for more aggressive bitrate selections (c.f. 
Section 6.6 and Appendix A.1). In comparison, Solo-GP is 
more robust, e.g., maintaining a QoE of 55.2% in dataset #5. 
EAS-GP-2 achieved the highest spatial robustness, main-
taining a QoE of 76.5% even in the challenging dataset #5, 
and QoE of over 84% in all other datasets. 

To further analyze factors that impact QoE performance 
we plot in Fig. 6(a) the normalized QoE of EAS-GP-2 ver-
sus throughput coefficient-of-variation (CoV) for each 
throughput level from the 6 datasets. We observe a clear 
relation between throughput CoV and QoE which is con-
sistent with intuition as the more variable the throughput 
is, the more difficult it is to adapt the video bitrate. An in-
teresting observation is that high CoV is not limited to da-
taset #5 and the latter also has throughput levels with low 
CoV. 
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Table 7 - Proportion of Video Sessions (%) Across 
Throughput Levels 

 Throughput level 
Dataset 0-1 2-3 4-5 6-7 8-9 

#1 6.5 18.8 47.1 24.2 3.4 
#2 14.2 43.6 38.1 4.0 0.1 
#3 52.7 18.3 18.3 9.3 1.4
#4 28.0 46.7 23.8 1.5 0 
#5 85.6 13.3 1.1 0 0 
#6 27.5 44.9 23.2 3.3 1.1

Table 8 - Comparison of Predicted QoE and Actual QoE 
of EAS-GP-2 

Dataset Predicted QoE Actual QoE 
#2 2747 2918 
#3 2015 2065 
#4 2037 2277 
#5 720 793 
#6 2101 2392 

 
If we replot the same figure by assigning colors accord-

ing to throughput levels in Fig. 6(b) then it becomes clear 
that QoE/CoV are also correlated to throughput level itself. 
Generally speaking the lower the throughput level, the 
higher the CoV and the lower the QoE. Again this is con-
sistent with intuition as throughput is directly affected by 
the network condition. This also explains why session 
throughput works well as a network differentiator. 

Given the correlation between session throughput CoV 
and QoE one may wonder if the former could be a good 
network differentiator as well. We did test this idea and 
found that it did not offer any significant performance 
gains as estimating session throughput CoV, especially us-
ing intra-stream estimation, is highly error-prone, thereby 
resulting in frequent misclassifications. More work is thus 
warranted to investigate this topic further. 

Finally, to understand why EAS-GP-2’s QoE perfor-
mance is lower in dataset #5 we turn to Table 7 which sum-
marizes the proportion of throughput levels in each da-
taset. Note in dataset #5 85.6% of the sessions belong to 
throughput level 0 and 1. As these low throughput levels 
generally have lower QoE therefore the overall QoE be-
comes lower in dataset #5. 

A deeper analysis of spatial robustness requires differ-
entiation between an algorithm’s inherent efficacy versus its 
effectiveness under the given network condition (i.e., 
throughput level). To illustrate the idea let us reconsider 
EAS-GP-2’s performance across throughput levels in Fig. 
4. It is clear that its QoE increased with higher throughput 
levels as discussed earlier. The set of QoE for each through-
put level thus represents the algorithm’s inherent efficacy. 

If an algorithm is spatially robust then we would expect 
it to exhibit similar effectiveness even in completely differ-
ent locations. To test this idea, let Qi be the mean absolute 
QoE for throughput level i for an algorithm trained and 
tested using dataset #1. Different datasets will have differ-
ent compositions of throughput levels, e.g., dataset #5 has 
mostly lower throughput levels, and to account for that we 
can apply weighted average to calculate the predicted abso-
lute QoE performance in the target dataset from 

Table 9 - Comparison of Normalized QoE Performance 
(%) against QoE metrics. Except for EAS-GP-3 (see text) 
all others were trained using the Balanced QoE metric. 
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where iγ  is the proportion of video sessions in throughput 
level i in the target dataset and M0 is the total number of 
throughput levels. The physical meaning of (19) is what 
the absolute QoE performance would have been if the al-
gorithm’s efficacy is the same in the target dataset as in da-
taset #1. 

The results for EAS-GP-2 are summarized in Table 8 for 
target datasets #2 to #6. It is clear from the results that the 
actual absolute QoE achieved is similar to the predicted 
one, suggesting that EAS-GP-2 performed consistently 
even when trained in one dataset and then tested in a com-
pletely different dataset. Differences in normalized QoE 
performance is largely due to different throughput level 
compositions. 

The above results point to an important characteristic of 
EAS-GP – it is both temporally and spatially robust. This 
strongly suggests that although EAS-GP was trained using 
trace data, its ensemble of algorithms is sufficiently general 
that it could be applied to a much wider range of networks 
covered by the network classes. Moreover, it may not even 
be necessary to retrain it periodically as variations in daily 
throughput has already been accounted for by EAS. 

6.4 Revisiting QoE Metrics 
Another interesting question is on the choice of QoE met-
ric. In the literature many different QoE metrics have been 
proposed and obviously an algorithm’s performance will 
depend on the QoE metric chosen. No matter the choice, 
an algorithm is always tested using the same QoE metric 
as used in training.  

In practice, one can envision that different users may 
have different QoE preferences (some may prefer higher 
video quality while others prefer less rebuffering). The 
problem is that these preferences are currently not known 
and thus one can only train the adaptation algorithm using 
one QoE metric. 

To investigate this problem we first conducted an ex-
periment to train the algorithms using the Balanced ver-
sion [5] of the QoE function in (1) and then tested it in 5 
different QoE functions/variations, namely, Balanced, 
Avoid Rebuffering [5], Avoid Variations [5], QoE-log [6], 
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and QoE-HD [6]. The QoE-log function applies log to the 
video bitrate to reflect diminishing return as the bitrate in-
creases. In contrast, QoE-HD favors high video quality by 
giving more weights to the higher bitrate choices. The re-
sults are summarized in Table 9.  

As expected, the choice of QoE function in testing af-
fects the algorithms’ performance. MPC performed rela-
tively consistently except for Avoid Variations, suggesting 
that MPC switches bitrates more often than others. Pen-
sieve’s QoE degraded significantly under Avoid Rebuffer-
ing and QoE-log functions. This is due to Pensieve’s inher-
ently more aggressive bitrate choices (c.f. Section 6.6) 
which led to higher video bitrate (discounted under both 
QoE functions) at the expense of more rebuffering. By con-
trast, it performed best under QoE-HD where its more ag-
gressive bitrate choices were rewarded. This behavior car-
ried over to EAS-Pensieve-2 albeit in a far less extent. 

Solo-GP is surprisingly robust to QoE functions while 
EAS-GP-2 degraded under Avoid Rebuffering and QoE-
log. This suggests that EAS allows better optimization 
(87.0% vs 84.4% in Solo-GP) when the testing QoE is same 
as in training but becomes over-specialized under dissimi-
lar QoE functions. 

In principle, to avoid over-specialization one can expose 
the GP population to a more diverse environment. To ex-
plore this idea we ran another experiment where the fit-
ness evaluation step was modified to randomly select one 
out of the five QoE functions for each video session so that 
the population will be exposed to all five QoE functions. 
The results are shown in Table 9 in the row named EAS-
GP-3. Compared to EAS-GP-2 the degradations in Avoid 
Rebuffering and QoE-log have been eliminated. In fact 
EAS-GP-3 now performed best under these two QoE func-
tions. The tradeoffs are modest decrease in performance 
under the other three QoE functions. Overall, the gain in 
robustness far outweighs the slight losses elsewhere, sug-
gesting that employing multiple QoE functions (with suf-
ficiently diverse preferences) during training could be a 
key to solving the QoE-diversity challenge. 

Another direction for future research is to explore ways 
to capture user’s QoE preference as another network dif-
ferentiator, e.g., offering a slider in the user interface to en-
able the user to control the tradeoff between video quality 
and rebuffering. In this way EAS-GP can then be used to 
evolve specialized algorithms for different QoE prefer-
ences, potentially achieving even better performance with-
out the tradeoffs. 

6.5 Revisiting Segment Size 
All the experiments so far adopted a fixed video segment 
duration of 2 seconds. Intuitively the choice of segment du-
ration should be the same in both training and testing as it 
directly affects the adaptation interval as well as measure-
ment of the network environment.  

Normally this would not present a problem as long as 
the service provider can control the segment size. Other-
wise it is also straightforward to incorporate segment size 
as an additional network differentiator to evolve special-
ized algorithms for it.  

Table 10 - Impact of Segment Size on Normalized QoE 
(%). EAS-GP-4 incorporates Segment Size as an extra ND. 

 
Algorithm 

Segment Size  
for Training (s) 

Segment Size for Testing (s) 
2 4 10 

EAS-GP-2 2 87.0 62.3 -40.3 
EAS-GP-2 4 81.9 87.7 67.7 
EAS-GP-2 10 73.5 82.2 87.3 
EAS-GP-4 Determined by ND 87.0 87.7 87.3 

Table 10 illustrates this idea by comparing EAS-GP-2’s 
QoE under different pairs of {training, testing} segment 
sizes. It is clear that the evolved algorithms are sensitive to 
segment size and this can be easily addressed by incorpo-
rating the latter as an extra ND in EAS-GP (denoted by 
EAS-GP-4). 

6.6 Adaptation Logic Analysis 
One of the challenges in machine-learning approach to 
problem solving is that the resultant solutions are often 
opaque and difficult to analyze so that insights into their 
performance cannot be easily obtained. In this section we 
attempt to shed lights on this challenge by presenting a 
rate-throughput-buffer (RTB) visual approach to analyze 
the behavior of bitrate adaptation logics. 

Specifically, by fixing other less critical parameters, i.e., 
the last segment bitrate = 200kbps and remaining video du-
ration = 200 seconds, we can plot the bitrate decision (z-
axis) versus measured throughput (y-axis) and buffer oc-
cupancy (x-axis) as a 3D surface plot for each adaptation 
algorithm. 

First, we analyze the algorithms’ behavior at the lowest 
throughput level 0 using RTB plots in Fig. 7. We first inves-
tigate the original Pensieve where its performance suffered 
at throughput level 0. Its RTB plot in Fig. 7a revealed one 
behavior of Pensieve – its bitrate selection logic is relatively 
aggressive even when the throughput is low. For example, 
at a measured throughput of around 1 Mbps, Pensieve still 
selects a bitrate of 3.3 Mbps even if the buffer occupancy is 
0. While this may work well in high throughput levels 
(more on that later) it clearly explains its performance at 
the lower throughput levels. 

Next we investigate EAS-Pensieve in Fig. 7b. Section 4.3 
showed that EAS-Pensieve improved Pensieve’s perfor-
mance at throughput level 0 but was still far from optimal. 
This is confirmed by its RTB plot which shows reduced ag-
gressiveness at lower buffer occupancies - a higher bitrate 
will not be selected unless both throughput and buffer oc-
cupancy reached a certain level. Its bitrate decision bound-
ary, however, is abrupt – it changes sharply from 0.2 Mbps 
to 1.2 Mbps, despite the availability of intermediate bitrate 
choices (0.4 Mbps and 0.8 Mbps). 

Finally, we investigate EAS-GP’s behavior in Fig. 7c. Its 
RTB plot shows a surprisingly intuitive bitrate adaptation 
logic – bitrate is gradually increased for higher throughput 
and buffer occupancy. Moreover, the RTB plot also reveals 
another important ingredient to the algorithm – its bitrate 
selection is more conservative than normal. For example, 
for measured throughput of 1.2 Mbps couple with buffer 
occupancy of 30 seconds, it will select a video bitrate of 
only 0.8 Mbps.  



12 IEEE TRANSACTIONS ON MOBILE COMPUTING, TMC-2018-09-0571 

 

 
(a) Pensieve 

 
(b) EAS-Pensieve 

  

(c) EAS-GP 
 

Fig. 7. Rate-Throughput-Buffer (RTB) plots for throughput level 0. 

Knowing that it operates at throughput level 0 environ-
ment (0~1Mbps), the higher observed throughput is in fact 
treated by EAS-GP as exceptions that is unlikely to last. 
Therefore not raising the bitrate too far effectively prevents 
rebuffering in the future. 

This last point is further illustrated in Fig. 8 which plots 
the RTB for EAS-GP for low (0), medium (5), and high (9) 
throughput levels. At level 0 it is clear that EAS-GP inten-
tionally selects bitrates lower than the observed through-
put as the network condition is assumed to be poor. By 
contrast, at level 5 EAS-GP becomes more balanced in its 
bitrate selection. Finally, at level 9 EAS-GP now becomes 
more aggressive, often selecting bitrates higher than the 
observed throughput. Intuitively, at throughput level 9, 
the lower observed throughput is likely short-term so 
maintaining high video bitrate can prevent unnecessary 
QoE degradations.  

 
(a) Throughput level 0 algorithm 

 
(b) Throughput level 5 algorithm 

 
(c) Throughput level 9 algorithm 

Fig. 8. Comparison of EAS-GP RTB in throughput levels 0, 5, and 9. 

This analysis also explains why one algorithm cannot 
work well for all network conditions as the desired behav-
iors under different network conditions are simply incom-
patible. 

7 SUMMARY AND FUTURE WORK 
This work uncovered three new insights in the design of 
adaptive video streaming: (a) it is both possible and prac-
tical to quantitatively (via network differentiators) classify 
networks into different classes and then apply specialized 
adaptation algorithm to each network class to obtain sig-
nificant performance gains; (b) machine learning ap-
proaches may themselves impose constraints on the repre-
sentable solutions and as such, a broader exploration and 
investigation is warranted on the automatic design of ad-
aptation logics; and (c) the proposed EAS-GP approach not 
only evolved adaptation algorithms that outperformed the 
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current state-of-the-art, but also exhibited remarkably high 
spatial, temporal, and even QoE robustness.  

The last point is of particular importance as we conjec-
ture that EAS couple with proper choice of network differ-
entiators could offer a way to design adaptation algo-
rithms that can perform consistently well in a very broad 
range of network conditions and over a long time horizon 
without the need to retrain for specific locations and time.  

Looking forward more work is warranted to explore the 
choice and design of other network differentiators, to ex-
plore the use of other machine learning or automatic de-
sign paradigms to train adaptation logics, and to explore 
EAS’s robustness in a wider range of network types (e.g., 
WiFi, 5G). In addition, this work only considered the sin-
gle-client case. Nowadays it is not uncommon to have mul-
tiple streaming players sharing an Internet connection, 
e.g., in a home network. Previous works [39-40] have 
shown that adaptation algorithms may behave unpredict-
ably when sharing a bottleneck as the inherent on-off na-
ture of segment downloads could negatively impact 
throughput estimation. Our initial results have shown that 
this could be mitigated by allowing unlimited client buffer 
as that enables the clients to download segments nonstop 
until completion, thereby allowing TCP to achieve fair 
bandwidth sharing. However this may not be desirable in 
some use cases, e.g., due to storage constraint or data wast-
age [41], and thus more work is warranted to further tackle 
this challenge. 
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