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Abstract: Recently, a new server-less architecture is proposed for building low-cost yet scalable video streaming 
systems. In this architecture, video data are distributed among user hosts and these hosts cooperate to stream video 
data to one another. To improve reliability, data and capacity redundancy are introduced to sustain node failures. 
However, the data placement as well as the redundant data in the system will need to be updated whenever new nodes 
join the system. This study is a first step in investigating the problem of updating redundant data when growing such 
a server-less system by assimilating new nodes. Results show that the redundancy update overhead is very significant 
and even exceeds that in data reorganization. To tackle this problem, this study presents a novel Sequential 
Redundant Data Update (SRDU) algorithm that takes advantage of the structure of Reed-Solomon Erasure Correction 
codes to reduce the redundancy update overhead by as much as 75%. Numerical results show that by further delaying 
the update of redundant data until adding multiple nodes, say 10, we can further reduce the redundancy update 
overhead by as much as 97%. 
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1. INTRODUCTION 

 
Peer-to-peer and distributed computing has shown 
great potentials in high-performance computing 
applications. Apart from computational problems, data 
and I/O-intensive applications can also benefit from 
the inherent scalability offered by distributed 
architectures. One such architecture, called server-less 
video-on-demand architecture, recently proposed by 
Lee and Leung [Lee and Leung, 2002a] adopted this 
completely decentralized approach to eliminate the 
need for costly high-capacity video servers. 
 
Unlike conventional video-on-demand (VoD) systems 
built around the well-understood client-server model, a 
server-less VoD system is built entirely from user hosts. 
Video data are distributed among these user hosts 
which then cooperate to stream video data to one 
another for playback. Lee and Leung [Lee and Leung, 
2002a] showed that this server-less  architecture is 
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easily scalable to hundreds of user hosts using 
off-the-shelf computers and network switches. 
Moreover, by incorporating data and capacity 
redundancy into the system, one can even achieve 
system-level reliability comparable to or even 
exceeding those of dedicated video servers [Lee and 
Leung, 2002b]. 
 
The study by Lee and Leung [Lee and Leung, 2002a] is 
focused on the scalability and feasibility of the 
server-less architecture. They did not, however, 
address the practical problem of system growth when 
new user hosts join the system. Specifically, as video 
data are distributed among user hosts, these data will 
need to be redistributed to newly joined hosts to utilize 
their storage and streaming capacity. This problem has 
been investigated by Ghandeharizadeh and Kim 
[Ghandeharizadeh and Kim, 1996], Goel et al. [Goel et 
al, 2002], and Ho and Lee [Ho and Lee, 2003] 
respectively. Nevertheless, all three studies are focused 
on the reorganization of the video data. The problem of 
updating redundant data that are themselves computed 
from the video data has not been addressed. 
 



In this study, we investigate the problem of efficient 
update of redundant data when video data are 
reorganized during the growth of a server-less VoD 
system. We found that updating redundant data can 
incur significantly more overhead than data 
reorganization. To tackle this problem, we are going to 
present a new redundant data update algorithm called 
Sequential Redundant Data Update that takes 
advantage of the structure of Reed-Solomon erasure 
codes [Plank, 1997] to reduce the redundant data 
update overhead by as much as 75%. Numerical results 
show that by further delaying the update of redundant 
data until adding multiple nodes, say 10, we can 
further reduce the redundancy update overhead by as 
much as 97%. 
 
In the next section, we first briefly review the 
server-less VoD architecture and the previous works on 
data reorganization. We formulate the data 
reorganization problem in Section 3. The redundant 
data regeneration and proposed update algorithm are 
presented in Section 4 and 5 respectively; Section 6 
gives the performance evaluation and Section 7 
concludes the paper. 

 
2. BACKGROUND 
 
In this section, we first give a brief overview of the 
server-less VoD architecture [Lee and Leung, 2002a] 
and then review the existing works on data 
reorganization. 

 
2.1 Server-less VoD Architecture 
 
A server-less VoD system comprises a pool of fully 
connected user hosts, or called nodes in this paper. 
Inside each node is a system software that can stream a 
portion of each video title to as well as playback video 
received from other nodes in the system. Unlike 
conventional video server, this system software serves 
a much lower aggregate bandwidth and thus can 
readily be implemented in today’s set-top boxes (STBs) 
and PCs. For large systems, the nodes can be further 
divided into clusters where each cluster forms an 
autonomous system that is independent from other 
clusters.  
 
For data placement, a video title is first divided into 
fixed-size blocks and then equally distributed to all 
nodes in the cluster. This node-level striping scheme 
avoids data replication while at the same time share the 
storage and streaming requirement equally among all 
nodes in the cluster. 
 

To initiate a video streaming session, a receiver node 
will first locate the set of sender nodes carrying blocks 
of the desired video title, the placement of the data 
blocks and other parameters (format, bitrate, etc.) 
through the directory service. These sender nodes will 
then be notified to start streaming the video blocks to 
the receiver node for playback. 
 
Let N be the number of nodes in the cluster and assume 
all video titles are constant-bit-rate (CBR) encoded at 
the same bitrate Rv. A sender node in a cluster may 
have to retrieve video data for up to N video streams, 
of which N – 1 of them are transmitted while the 
remaining one played back locally. Note that as a video 
stream is served by N nodes concurrently, each node 
only needs to serve a bitrate of Rv/N for each video 
stream. With a round-based transmission scheduler, a 
sender node simply transmits one block of video data 
to each receiver node in each round. Interested readers 
are referred to the study by Lee and Leung [Lee and 
Leung, 2002a; Lee and Leung, 2002a] for more details. 

 
2.2 Related Works 
 
The problem of data reorganization has been studied in 
the context of disk arrays [Ghandeharizadeh and Kim, 
1996; Goel et al, 2002]. The study by 
Ghandeharizadeh and Kim [Ghandeharizadeh and 
Kim, 1996] is the earliest study on data reorganization 
known to the authors. They investigated the data 
reorganization problem in the context of adding disks 
to a continuous media server. They employed 
round-robin data striping common in disk arrays and 
investigated and analyzed techniques to perform data 
reorganization online, i.e., without disrupting on-going 
video streams. However, their study assumed there is 
no data redundancy in the disk array and thus did not 
address the redundancy update problem. 
 
In another study by Goel et al. [Goel et al, 2002], a 
pseudo-random algorithm called SCADDAR for data 
placement and data reorganization was proposed for 
use in disk arrays. In this algorithm, each data block is 
initially randomly distributed to the disks with equal 
probabilities. When a new disk is added to the disk 
array, each block will obtain a new sequence number 
according to their randomized SCADDAR algorithm. 
If the reminder of this number is equal to the disk 
number of the newly added disk, the corresponding 
block will be moved to this new disk. Otherwise, the 
block will reside at the original disk.  
 
In a recent study [Ho and Lee, 2003], Ho and Lee 
proposed a more efficient data reorganization 



algorithm called Row-Permutated Data 
Reorganization that can achieve lower data 
reorganization overhead and also allow controllable 
tradeoff between streaming load balance and data 
reorganization overhead.  
 
While the previous pioneering studies have been 
successful in reducing the data reorganization 
overhead substantially, they did not yet address the 
issue of redundant data update. Given that a server-less 
VoD system is built from user hosts that are inherently 
less reliable than dedicated video servers, fault tolerant 
capability clearly becomes a necessity. To this end, one 
will need to incorporate data and capacity 
redundancies into the system and these redundant data 
will need to be updated whenever new nodes are added. 
To our knowledge this study is the first attempt at 
tackling this redundant data update challenge. Our 
study reveals that the overhead incurred in updating 
these redundant data far exceeds even the overhead in 
data reorganization. 
 
3. OVERHEADS IN DATA REORGANIZATION 
 
Based on the server-less VoD architecture presented in 
Section 2.1, we formulate the system model in this 
section and present the three types of overhead in 
reorganizing data to accommodate newly added nodes. 
Let B be the total number of fixed-size video data 
blocks in the system and vj be the jth block of the video 
title. For simplicity we consider only one video title 
although the results can be readily extended to 
multiple video titles. 
 
Fig. 1 illustrates one possible placement of video data 
in a server-less VoD system. Each block in the figure 
represents either a Q-byte video data or a Q-byte 
redundant data block. Blocks under the same column 
are stored in the same node. The jth redundant data 
block, denoted by ci,j, are computed from video data 
stripe i, comprising blocks {vk, k=i(N-h), i(N-h)+1, …, 
(i+1)(N-h)−1}}, using a systematic erasure-correction 
code such as the Reed-Solomon Erasure Correction 
(RSE) code [Plank, 1997]. Briefly speaking, with h 
redundant data blocks in a data stripe, the system will 
be able to sustain the failure of up to h nodes without 
loosing any data. A previous study [Lee and Leung, 
2002b] had shown that one can achieve system-level 
reliability comparable to high-end dedicated video 
server with redundancies of h/(N-h)≈0.2. 
 
When one or more new nodes join the system, they 
will add both streaming load as well as capacity to the 
system. There are three types of overhead in 

assimilating these new nodes into the system. First, to 
utilize their streaming and storage capacity, the system 
will need to redistribute portion of the video data to 
these new nodes. The system may also need to 
reorganize video data in the existing nodes to maintain 
streaming load balance [Ho and Lee, 2003]. This data 
reorganization process incurs overhead in the form of 
relocating data blocks within nodes in the system. 
 
Second, as these redundant data are computed from the 
data stripe, relocation of the data blocks will require 
corresponding update to the redundant data blocks. 
This redundant data update process incurs overhead in 
transmitting data blocks to the nodes for regenerating 
the redundant data blocks. 
 
Third, as the system grows larger with more nodes, the 
system reliability will decrease if the number of 
redundancies h is kept constant. To improve reliability, 
we will need to introduce new redundancies to the 
system (i.e., increasing h). This redundant data 
addition process incurs overhead in transmitting data 
blocks to the nodes for generating the new redundant 
data blocks. 
 
To our knowledge, only the data reorganization 
process has been investigated [Ho and Lee, 2003; 
Ghandeharizadeh and Kim, 1996; Goel et al, 2002]. In 
this study, we investigate the redundant data update 
process and leave the redundant data addition process 
for future work. Common to all three processes, the 
goal is to minimize the overhead incurred when new 
nodes are assimilated into the system. 

 
4. REDUNDANT DATA REGENERATION 
 
For a general systematic erasure-correction code in a 
system with N nodes and h redundancies, we will need 
all (N−h) data blocks in a stripe to compute the 
corresponding h redundant data blocks. As individual 
data and redundant blocks of a stripe are all stored in 
different nodes, the data blocks will all need to be 
transmitted to the redundant nodes (i.e., nodes storing 
the redundant data blocks) for regenerating the new 
redundant data blocks. 
 
Therefore for a system with B data blocks, a total of B 
blocks will need to be transmitted to and received by 
the redundant node to support redundant data 
regeneration. Clearly this overhead is very significant 
and worst, increases with the system scale and level of 
redundancies. 
 
On the other hand, if a central archive server storing all 



video data is available in the system, then it can simply 
regenerate the new redundant data blocks locally and 
send them to the redundant nodes to replace the old 
redundant data blocks. In this case, the number of 
blocks sent will be reduced by a factor of (N−h) to 
(B/(N−h)). Nevertheless maintaining this central 
archive server will incur its own costs, and depending 
on applications, may not be desirable or even feasible. 
 
Reconsidering the generation of a redundant data 
block from a data stripe, we can observe that in most 
cases, the reorganized data stripe still comprises many 
data blocks from the old data stripe before 
reorganization. For example, in growing a system from 
N nodes to N+1 nodes, the first data stripe will be 
reorganized from the composition of {v0, v1, …, 
vN−h−1} to {v0, v1, …, vN−h−1, vN−h}, which differs by 
only one data block vN−h. This motivates us to 
investigate techniques to reuse the old redundant block 
to compute the new redundant block such that only a 
portion of the data stripe will be needed. 

 
5. SEQUENTIAL REDUNDANT DATA UPDATE 
 
Among different erasure correction codes there is a 
class of codes called linear systematic block erasure 
correction codes, with the Reed-Solomon Erasure 
Correction code being one well-known example. One 
key property of linear systematic block codes is the use 
of strictly linear matrix multiplications in computing 
the redundant data, and this very property enables us to 
reuse original redundant data to compute the updated 
redundant data.  
 
Specifically, let (N-h) and h be the number of data 
nodes and redundant nodes in the system respectively. 
Assuming the number of redundant nodes in the 
system is fixed, then we can apply the (N, h)-RSE code 
to compute the h redundant data blocks from each 
stripe of (N-h) data blocks using 
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(1) 
where the F, D, and C are the Vandermonde matrix 
[Plank, 1997], the video data vector, and the redundant 
data vector respectively; and di,j, ci,k represent data 
block j (j=0,1,…,N−h−1) and redundant block k 
(k=0,1,…,h−1) of stripe i respectively. Elements in F 
is computed from fi,j = ji-1 and are constants. Note that 
the matrix multiplication in (1) is computed over 
Galois Fields of 2w where N < 2w. For example, by 
setting w=16 then the code can support up to 65,535 
nodes. 
 
In the following sections, we present a novel 
Sequential Redundant Data Update (SRDU) algorithm 
comprising three techniques, namely Reuse of 
Original Redundant Data, Parity Group Reshuffling, 
and Reuse of Transmitted Data, to substantially reduce 
the redundancy update overhead. 

 
5.1 Reuse of Original Redundant Data 
 
To illustrate how original redundant data can be reused, 
consider the examples in Fig. 1 and 2, which represent 
respectively the system configuration before and after 
the addition of one new node. In the original 
configuration in Fig. 1, there are 4 data nodes and 2 
redundant nodes. Now the first two original redundant 
data in redundant node r1, denoted by c0,1 and c1,1, are 
computed from 
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according to (1). 



After a new node is added, the system configuration 
will be changed to that in Fig. 2. Now the two new 
redundant data block, denoted by c’0,1 and c’1,1, are 
computed from 
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Comparing (4) with (2) we can observe that they share 
four common terms in vj − v0, v1, v2, v3. Thus we can 
rewrite (4) as follows: 

 

3

0,1 2, 1 2,5 4
0

0,1 2,5 4

' j j
j

c f v f v

c f v

+
=

= +

= +

∑  (6) 

In other words, we can compute c’0,1 using the original 
redundant data c0,1 plus data block v4. Therefore 
instead of sending all five data blocks to redundant 
node r1, we now only need to send one data block, i.e., 
v4, thereby dramatically reducing the overheads in 
updating the redundant data c’0,1. 

 
5.2 Parity Group Reshuffling 
 
In some cases, the previous straightforward reuse 
technique cannot be applied due to differences in the 
coefficients fi,j. For example, c’1,1 is computed from v5 
to v9 and share common terms in v5, v6, and v7 with c1,1. 
Thus it may appears that we can reuse the common 
terms and send only v8 and v9 to r1 to compute c’1,1. 
However, analyzing the equation for c’1,1 −  
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we found that the common terms v5, v6, and v7 now 
have different coefficients fi,j (e.g., f2,1v5 versus f2,2v5). 
As a result, we cannot reuse c1,1 in computing c’1,1. 
 
To tackle this problem, we propose to reshuffle the 
order of computations for c’1,1 to 

( )1,1 2,1 8 2,2 5 2,3 6 2,4 7 2,5 9'c f v f v f v f v f v= + + + +  (9) 

thus enabling us to reuse c1,1 in the computation: 
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This reduces the number of data block transmissions 
from 5 to 3. Note that the receiver node will also need 
to use the reshuffled order to correctly decode the 
parity group. This parity group order information can 
either be generated dynamically, or simply be sent 
along the video data blocks. 
 
Interestingly, there may be more than one way to reuse 
redundant block in updating the redundant data, and 
possibly with different redundant update overhead. For 
example, consider the redundant generation function 
for c2,1: 
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If we reshuffle the order of computations for c’1,1 to 

1,1 2,1 8 2,2 9 2,3 5 2,4 6 2,5 7' ( )c f v f v f v f v f v= + + + +  (12) 

then we can reuse c2,1 in the computation: 
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However, in this case the number of data block 
transmissions is 5, which is two blocks more than that 
of reusing c1,1. Thus in the SRDU algorithm, the 
system will first compute the redundancy update 
overhead for all reusable redundant blocks and select 
the one with the lowest overhead for reuse. 

 
5.3 Reuse of Transmitted Data 
 
A third way to reduce overhead is to reuse data blocks 
already transmitted to a redundant node in computing 
another redundant data. Reconsidering the previous 
example in computing c’1,1, the data blocks needed are 
v4, v8, and v9. However, v4 has already been sent to the 
redundant node when computing c’0,1 (c.f. Equation 
(6)) and thus can simply be reused. As a redundant 



block is computed from a stripe of (N-h) data blocks, 
we need to cache at most (N-h) data blocks from 
previous updates at the redundant node. 

 
6. PERFORMANCE EVALUATION 
 
In this section, we evaluate the Sequential Redundant 
Data Update algorithm using simulation. Beginning 
with a small system, we add new nodes to the system 
and then apply the SRDU algorithm to update the 
redundant data blocks. Performance is measured by 
the number of data blocks that need to be sent to the 
redundant nodes – or simply called redundancy update 
overhead. The total number of data blocks is 40,000 
and is fixed throughout the simulation. For simplicity 
the redundancy update overhead for updating one 
redundant node is presented. For systems with more 
than one redundant node, the total overhead is simply 
multiplied by the number of redundant nodes. 
 
 
6.1 Redundancy Update Overhead in Continuous 
System Growth 

 
In the first experiment, we begin with a system of five 
data nodes and one redundant node. Then we add a 
new node to the system one by one, each time the 
redundant data blocks are completely updated using 
the SRDU algorithm. This continues until the system 
grows to 400 data nodes. 
 
Fig. 3 plots the redundancy update overhead versus 
system size from 6 to 400. As expected, Redundant 
Data Regeneration performs the worst, essentially 
requiring all data blocks to be sent to the redundant 
node for regenerating the redundant data. On the other 
hand, regenerating redundant data using a centralized 
archive server incurs the least overhead, albeit at the 
expense of extra centralized facility. 
 
Surprisingly, direct reuse of the original redundant data 
also performs very poorly. This is because the 
algorithm maintains the same data order within the 
parity group in computing the redundant data, and thus 
severely restricts the redundant data that can be reused. 
Once this restriction is relaxed by reshuffling the parity 
group, the overhead is reduced by half to around 
20,000 blocks. Caching already transmitted data 
blocks further reduces the overhead by half to around 
10,000 blocks. Thus with all three techniques 
combined, the SRDU algorithm can reduce the 
redundancy update overhead by as much as 75%. 

 

6.2 Batched Redundancy Update 
 
In the previous experiment, we always completely 
update all redundant data blocks before adding another 
new node. Clearly this is inefficient if new nodes are 
added frequently or added to the system in a batch. To 
address this issue, we conduct a second experiment 
where redundant data blocks are not updated until a 
fixed number of nodes, say W, are added – batched 
redundancy update. During this time, storage and 
streaming capacity in the new nodes are not utilized 
and thus this approach represents tradeoffs between 
redundancy update overhead and resource utilization. 
Fig. 4 plots the redundancy update overhead versus the 
batch size W for initial system size of 80 nodes. The 
key observation is that the normalized per-node 
redundancy update overhead decreases significantly 
with the batch size. A second observation is that the 
gain in caching transmitted data blocks reduces when 
the batch size increases. This is because the number of 
common term in reusable redundant blocks increases 
with larger batch size, and thus reducing the need for 
raw data blocks to update the new redundant data. 

 
7. CONCLUSION AND FUTURE WORKS 
 
This study is a first step in tackling the problem of 
redundant data update. As the results clearly showed, 
the redundancy update overhead is even more 
significant than data reorganization overhead and thus 
cannot be ignored. By taking advantage of the 
structure of RSE codes, we were able to substantially 
reduce the overhead by as much as 75%, and by 
performing update in a batch, we manage to reduce the 
overhead further by 97% for a batch size of 10. 
Nevertheless, batched redundancy update is not 
without tradeoffs. In particular, the storage and 
streaming capacity of the new nodes cannot be utilized 
until the system is reconfigured. Thus further 
investigations are warranted to quantify the tradeoffs 
to determine the optimal batch size that can balance 
between redundancy update overhead and resource 
utilization. 
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Fig. 1. Data placement before addition of nodes. 
 
 

Fig. 2. Data placement after adding one data node. 
 

 

Fig. 3. Redundancy update overhead versus  
system size. 

 
 
 

Fig. 4. Per-node redundancy update overhead versus 
batch size. 
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