
A NOVEL REDUNDANT DATA UPDATE ALGORITHM
FOR FAULT-TOLERANT SERVER-LESS

VIDEO-ON-DEMAND SYSTEMS

T. K. HO and JACK Y. B. LEE

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
Email: {tkho2@ie.cuhk.edu.hk, jacklee@computer.org}

Abstract: Recently, a new server-less architecture is proposed for building low-cost yet scalable video streaming
systems. In this architecture, video data are distributed among user hosts and these hosts cooperate to stream video
data to one another. To improve reliability, data and capacity redundancy are introduced to sustain node failures.
However, the data placement as well as the redundant data in the system will need to be updated whenever new nodes
join the system. This study is a first step in investigating the problem of updating redundant data when growing such
a server-less system by assimilating new nodes. Results show that the redundancy update overhead is very significant
and even exceeds that in data reorganization. To tackle this problem, this study presents a novel Sequential
Redundant Data Update (SRDU) algorithm that takes advantage of the structure of Reed-Solomon Erasure Correction
codes to reduce the redundancy update overhead by as much as 75%. Numerical results show that by further delaying
the update of redundant data until adding multiple nodes, say 10, we can further reduce the redundancy update
overhead by as much as 97%.

Keywords: Server-less, video-on-demand, redundant, update, reliable.

1. INTRODUCTION

Peer-to-peer and distributed computing has shown
great potentials in high-performance computing
applications. Apart from computational problems, data
and I/O-intensive applications can also benefit from
the inherent scalability offered by distributed
architectures. One such architecture, called server-less
video-on-demand architecture, recently proposed by
Lee and Leung [Lee and Leung, 2002a] adopted this
completely decentralized approach to eliminate the
need for costly high-capacity video servers.

Unlike conventional video-on-demand (VoD) systems
built around the well-understood client-server model, a
server-less VoD system is built entirely from user hosts.
Video data are distributed among these user hosts
which then cooperate to stream video data to one
another for playback. Lee and Leung [Lee and Leung,
2002a] showed that this server-less architecture is

This work was supported in part by the Hong Kong Special
Administrative Region Research Grant Council under a Direct Grant,
Grant CUHK4211/03E, and the Area-of-Excellence in Information
Technology.

easily scalable to hundreds of user hosts using
off-the-shelf computers and network switches.
Moreover, by incorporating data and capacity
redundancy into the system, one can even achieve
system-level reliability comparable to or even
exceeding those of dedicated video servers [Lee and
Leung, 2002b].

The study by Lee and Leung [Lee and Leung, 2002a] is
focused on the scalability and feasibility of the
server-less architecture. They did not, however,
address the practical problem of system growth when
new user hosts join the system. Specifically, as video
data are distributed among user hosts, these data will
need to be redistributed to newly joined hosts to utilize
their storage and streaming capacity. This problem has
been investigated by Ghandeharizadeh and Kim
[Ghandeharizadeh and Kim, 1996], Goel et al. [Goel et
al, 2002], and Ho and Lee [Ho and Lee, 2003]
respectively. Nevertheless, all three studies are focused
on the reorganization of the video data. The problem of
updating redundant data that are themselves computed
from the video data has not been addressed.

In this study, we investigate the problem of efficient
update of redundant data when video data are
reorganized during the growth of a server-less VoD
system. We found that updating redundant data can
incur significantly more overhead than data
reorganization. To tackle this problem, we are going to
present a new redundant data update algorithm called
Sequential Redundant Data Update that takes
advantage of the structure of Reed-Solomon erasure
codes [Plank, 1997] to reduce the redundant data
update overhead by as much as 75%. Numerical results
show that by further delaying the update of redundant
data until adding multiple nodes, say 10, we can
further reduce the redundancy update overhead by as
much as 97%.

In the next section, we first briefly review the
server-less VoD architecture and the previous works on
data reorganization. We formulate the data
reorganization problem in Section 3. The redundant
data regeneration and proposed update algorithm are
presented in Section 4 and 5 respectively; Section 6
gives the performance evaluation and Section 7
concludes the paper.

2. BACKGROUND

In this section, we first give a brief overview of the
server-less VoD architecture [Lee and Leung, 2002a]
and then review the existing works on data
reorganization.

2.1 Server-less VoD Architecture

A server-less VoD system comprises a pool of fully
connected user hosts, or called nodes in this paper.
Inside each node is a system software that can stream a
portion of each video title to as well as playback video
received from other nodes in the system. Unlike
conventional video server, this system software serves
a much lower aggregate bandwidth and thus can
readily be implemented in today’s set-top boxes (STBs)
and PCs. For large systems, the nodes can be further
divided into clusters where each cluster forms an
autonomous system that is independent from other
clusters.

For data placement, a video title is first divided into
fixed-size blocks and then equally distributed to all
nodes in the cluster. This node-level striping scheme
avoids data replication while at the same time share the
storage and streaming requirement equally among all
nodes in the cluster.

To initiate a video streaming session, a receiver node
will first locate the set of sender nodes carrying blocks
of the desired video title, the placement of the data
blocks and other parameters (format, bitrate, etc.)
through the directory service. These sender nodes will
then be notified to start streaming the video blocks to
the receiver node for playback.

Let N be the number of nodes in the cluster and assume
all video titles are constant-bit-rate (CBR) encoded at
the same bitrate Rv. A sender node in a cluster may
have to retrieve video data for up to N video streams,
of which N – 1 of them are transmitted while the
remaining one played back locally. Note that as a video
stream is served by N nodes concurrently, each node
only needs to serve a bitrate of Rv/N for each video
stream. With a round-based transmission scheduler, a
sender node simply transmits one block of video data
to each receiver node in each round. Interested readers
are referred to the study by Lee and Leung [Lee and
Leung, 2002a; Lee and Leung, 2002a] for more details.

2.2 Related Works

The problem of data reorganization has been studied in
the context of disk arrays [Ghandeharizadeh and Kim,
1996; Goel et al, 2002]. The study by
Ghandeharizadeh and Kim [Ghandeharizadeh and
Kim, 1996] is the earliest study on data reorganization
known to the authors. They investigated the data
reorganization problem in the context of adding disks
to a continuous media server. They employed
round-robin data striping common in disk arrays and
investigated and analyzed techniques to perform data
reorganization online, i.e., without disrupting on-going
video streams. However, their study assumed there is
no data redundancy in the disk array and thus did not
address the redundancy update problem.

In another study by Goel et al. [Goel et al, 2002], a
pseudo-random algorithm called SCADDAR for data
placement and data reorganization was proposed for
use in disk arrays. In this algorithm, each data block is
initially randomly distributed to the disks with equal
probabilities. When a new disk is added to the disk
array, each block will obtain a new sequence number
according to their randomized SCADDAR algorithm.
If the reminder of this number is equal to the disk
number of the newly added disk, the corresponding
block will be moved to this new disk. Otherwise, the
block will reside at the original disk.

In a recent study [Ho and Lee, 2003], Ho and Lee
proposed a more efficient data reorganization

algorithm called Row-Permutated Data
Reorganization that can achieve lower data
reorganization overhead and also allow controllable
tradeoff between streaming load balance and data
reorganization overhead.

While the previous pioneering studies have been
successful in reducing the data reorganization
overhead substantially, they did not yet address the
issue of redundant data update. Given that a server-less
VoD system is built from user hosts that are inherently
less reliable than dedicated video servers, fault tolerant
capability clearly becomes a necessity. To this end, one
will need to incorporate data and capacity
redundancies into the system and these redundant data
will need to be updated whenever new nodes are added.
To our knowledge this study is the first attempt at
tackling this redundant data update challenge. Our
study reveals that the overhead incurred in updating
these redundant data far exceeds even the overhead in
data reorganization.

3. OVERHEADS IN DATA REORGANIZATION

Based on the server-less VoD architecture presented in
Section 2.1, we formulate the system model in this
section and present the three types of overhead in
reorganizing data to accommodate newly added nodes.
Let B be the total number of fixed-size video data
blocks in the system and vj be the jth block of the video
title. For simplicity we consider only one video title
although the results can be readily extended to
multiple video titles.

Fig. 1 illustrates one possible placement of video data
in a server-less VoD system. Each block in the figure
represents either a Q-byte video data or a Q-byte
redundant data block. Blocks under the same column
are stored in the same node. The jth redundant data
block, denoted by ci,j, are computed from video data
stripe i, comprising blocks {vk, k=i(N-h), i(N-h)+1, …,
(i+1)(N-h)−1}}, using a systematic erasure-correction
code such as the Reed-Solomon Erasure Correction
(RSE) code [Plank, 1997]. Briefly speaking, with h
redundant data blocks in a data stripe, the system will
be able to sustain the failure of up to h nodes without
loosing any data. A previous study [Lee and Leung,
2002b] had shown that one can achieve system-level
reliability comparable to high-end dedicated video
server with redundancies of h/(N-h)≈0.2.

When one or more new nodes join the system, they
will add both streaming load as well as capacity to the
system. There are three types of overhead in

assimilating these new nodes into the system. First, to
utilize their streaming and storage capacity, the system
will need to redistribute portion of the video data to
these new nodes. The system may also need to
reorganize video data in the existing nodes to maintain
streaming load balance [Ho and Lee, 2003]. This data
reorganization process incurs overhead in the form of
relocating data blocks within nodes in the system.

Second, as these redundant data are computed from the
data stripe, relocation of the data blocks will require
corresponding update to the redundant data blocks.
This redundant data update process incurs overhead in
transmitting data blocks to the nodes for regenerating
the redundant data blocks.

Third, as the system grows larger with more nodes, the
system reliability will decrease if the number of
redundancies h is kept constant. To improve reliability,
we will need to introduce new redundancies to the
system (i.e., increasing h). This redundant data
addition process incurs overhead in transmitting data
blocks to the nodes for generating the new redundant
data blocks.

To our knowledge, only the data reorganization
process has been investigated [Ho and Lee, 2003;
Ghandeharizadeh and Kim, 1996; Goel et al, 2002]. In
this study, we investigate the redundant data update
process and leave the redundant data addition process
for future work. Common to all three processes, the
goal is to minimize the overhead incurred when new
nodes are assimilated into the system.

4. REDUNDANT DATA REGENERATION

For a general systematic erasure-correction code in a
system with N nodes and h redundancies, we will need
all (N−h) data blocks in a stripe to compute the
corresponding h redundant data blocks. As individual
data and redundant blocks of a stripe are all stored in
different nodes, the data blocks will all need to be
transmitted to the redundant nodes (i.e., nodes storing
the redundant data blocks) for regenerating the new
redundant data blocks.

Therefore for a system with B data blocks, a total of B
blocks will need to be transmitted to and received by
the redundant node to support redundant data
regeneration. Clearly this overhead is very significant
and worst, increases with the system scale and level of
redundancies.

On the other hand, if a central archive server storing all

video data is available in the system, then it can simply
regenerate the new redundant data blocks locally and
send them to the redundant nodes to replace the old
redundant data blocks. In this case, the number of
blocks sent will be reduced by a factor of (N−h) to
(B/(N−h)). Nevertheless maintaining this central
archive server will incur its own costs, and depending
on applications, may not be desirable or even feasible.

Reconsidering the generation of a redundant data
block from a data stripe, we can observe that in most
cases, the reorganized data stripe still comprises many
data blocks from the old data stripe before
reorganization. For example, in growing a system from
N nodes to N+1 nodes, the first data stripe will be
reorganized from the composition of {v0, v1, …,
vN−h−1} to {v0, v1, …, vN−h−1, vN−h}, which differs by
only one data block vN−h. This motivates us to
investigate techniques to reuse the old redundant block
to compute the new redundant block such that only a
portion of the data stripe will be needed.

5. SEQUENTIAL REDUNDANT DATA UPDATE

Among different erasure correction codes there is a
class of codes called linear systematic block erasure
correction codes, with the Reed-Solomon Erasure
Correction code being one well-known example. One
key property of linear systematic block codes is the use
of strictly linear matrix multiplications in computing
the redundant data, and this very property enables us to
reuse original redundant data to compute the updated
redundant data.

Specifically, let (N-h) and h be the number of data
nodes and redundant nodes in the system respectively.
Assuming the number of redundant nodes in the
system is fixed, then we can apply the (N, h)-RSE code
to compute the h redundant data blocks from each
stripe of (N-h) data blocks using

1,1 1,2 1,3 1, ,0

2,1 2,2 2,3 2, ,1

,1 ,2 ,3 , , 1

,0

,1

1 1 1
, 1

,0

,1

1 1 1 1
1 2 3

1 2 3 ()

N h i

N h i

h h h h N h i N h

i

i

h h h
i N h

i

i

i

f f f f d
f f f f d

F D

f f f f d

d
dN h

dN h

c
c

c

−

−

− − −

− − −
− −

   
   
   ⋅ =
   
   
      

  
  −   =
  
  

−     

=

K

K

M M M M M

K

K

K

MM M M M

K

M

, 1h

C

−

 
 
  =
 
 
  

(1)
where the F, D, and C are the Vandermonde matrix
[Plank, 1997], the video data vector, and the redundant
data vector respectively; and di,j, ci,k represent data
block j (j=0,1,…,N−h−1) and redundant block k
(k=0,1,…,h−1) of stripe i respectively. Elements in F
is computed from fi,j = ji-1 and are constants. Note that
the matrix multiplication in (1) is computed over
Galois Fields of 2w where N < 2w. For example, by
setting w=16 then the code can support up to 65,535
nodes.

In the following sections, we present a novel
Sequential Redundant Data Update (SRDU) algorithm
comprising three techniques, namely Reuse of
Original Redundant Data, Parity Group Reshuffling,
and Reuse of Transmitted Data, to substantially reduce
the redundancy update overhead.

5.1 Reuse of Original Redundant Data

To illustrate how original redundant data can be reused,
consider the examples in Fig. 1 and 2, which represent
respectively the system configuration before and after
the addition of one new node. In the original
configuration in Fig. 1, there are 4 data nodes and 2
redundant nodes. Now the first two original redundant
data in redundant node r1, denoted by c0,1 and c1,1, are
computed from

3

0,1 2, 1
0

j j
j

c f v+
=

= ∑ (2)

and

7

1,1 2, 4 1
4

j j
j

c f v− +
=

= ∑ (3)

according to (1).

After a new node is added, the system configuration
will be changed to that in Fig. 2. Now the two new
redundant data block, denoted by c’0,1 and c’1,1, are
computed from

4

0,1 2, 1
0

' j j
j

c f v+
=

= ∑ (4)

and

9

1,1 2, 5 1
5

' j j
j

c f v− +
=

= ∑ (5)

Comparing (4) with (2) we can observe that they share
four common terms in vj − v0, v1, v2, v3. Thus we can
rewrite (4) as follows:

3

0,1 2, 1 2,5 4
0

0,1 2,5 4

' j j
j

c f v f v

c f v

+
=

= +

= +

∑ (6)

In other words, we can compute c’0,1 using the original
redundant data c0,1 plus data block v4. Therefore
instead of sending all five data blocks to redundant
node r1, we now only need to send one data block, i.e.,
v4, thereby dramatically reducing the overheads in
updating the redundant data c’0,1.

5.2 Parity Group Reshuffling

In some cases, the previous straightforward reuse
technique cannot be applied due to differences in the
coefficients fi,j. For example, c’1,1 is computed from v5
to v9 and share common terms in v5, v6, and v7 with c1,1.
Thus it may appears that we can reuse the common
terms and send only v8 and v9 to r1 to compute c’1,1.
However, analyzing the equation for c’1,1 −

()

9

1,1 2, 5 1
5

2,1 5 2,2 6 2,3 7 2,4 8 2,5 9

' j j
j

c f v

f v f v f v f v f v

− +
=

=

= + + + +

∑
 (7)

and for c1,1 −

()

7

1,1 2, 4 1
4

2,1 4 2,2 5 2,3 6 2,4 7

j j
j

c f v

f v f v f v f v

− +
=

=

= + + +

∑
 (8)

we found that the common terms v5, v6, and v7 now
have different coefficients fi,j (e.g., f2,1v5 versus f2,2v5).
As a result, we cannot reuse c1,1 in computing c’1,1.

To tackle this problem, we propose to reshuffle the
order of computations for c’1,1 to

()1,1 2,1 8 2,2 5 2,3 6 2,4 7 2,5 9'c f v f v f v f v f v= + + + + (9)

thus enabling us to reuse c1,1 in the computation:

()

7

1,1 2,1 8 2, 4 1 2,1 4 2,5 9
4

2,1 8 1,1 2,1 4 2,5 9

' j j
j

c f v f v f v f v

f v c f v f v

− +
=

 
= + − + 

 
= + − +

∑
 (10)

This reduces the number of data block transmissions
from 5 to 3. Note that the receiver node will also need
to use the reshuffled order to correctly decode the
parity group. This parity group order information can
either be generated dynamically, or simply be sent
along the video data blocks.

Interestingly, there may be more than one way to reuse
redundant block in updating the redundant data, and
possibly with different redundant update overhead. For
example, consider the redundant generation function
for c2,1:

11

2,1 2, 8 1
8

2,1 8 2,2 9 2,3 10 2,4 11()

j j
j

c f v

f v f v f v f v

− +
=

=

= + + +

∑ (11)

If we reshuffle the order of computations for c’1,1 to

1,1 2,1 8 2,2 9 2,3 5 2,4 6 2,5 7' ()c f v f v f v f v f v= + + + + (12)

then we can reuse c2,1 in the computation:

11

1,1 2, 8 1 2,3 10 2,4 11
8

2,3 5 2,4 6 2,5 7

2,1 2,3 10 2,4 11

2,3 5 2,4 6 2,5 7

' ()

()

j j
j

c f v f v f v

f v f v f v
c f v f v

f v f v f v

− +
=

= − +

+ + +

= − +

+ + +

∑
 (13)

However, in this case the number of data block
transmissions is 5, which is two blocks more than that
of reusing c1,1. Thus in the SRDU algorithm, the
system will first compute the redundancy update
overhead for all reusable redundant blocks and select
the one with the lowest overhead for reuse.

5.3 Reuse of Transmitted Data

A third way to reduce overhead is to reuse data blocks
already transmitted to a redundant node in computing
another redundant data. Reconsidering the previous
example in computing c’1,1, the data blocks needed are
v4, v8, and v9. However, v4 has already been sent to the
redundant node when computing c’0,1 (c.f. Equation
(6)) and thus can simply be reused. As a redundant

block is computed from a stripe of (N-h) data blocks,
we need to cache at most (N-h) data blocks from
previous updates at the redundant node.

6. PERFORMANCE EVALUATION

In this section, we evaluate the Sequential Redundant
Data Update algorithm using simulation. Beginning
with a small system, we add new nodes to the system
and then apply the SRDU algorithm to update the
redundant data blocks. Performance is measured by
the number of data blocks that need to be sent to the
redundant nodes – or simply called redundancy update
overhead. The total number of data blocks is 40,000
and is fixed throughout the simulation. For simplicity
the redundancy update overhead for updating one
redundant node is presented. For systems with more
than one redundant node, the total overhead is simply
multiplied by the number of redundant nodes.

6.1 Redundancy Update Overhead in Continuous
System Growth

In the first experiment, we begin with a system of five
data nodes and one redundant node. Then we add a
new node to the system one by one, each time the
redundant data blocks are completely updated using
the SRDU algorithm. This continues until the system
grows to 400 data nodes.

Fig. 3 plots the redundancy update overhead versus
system size from 6 to 400. As expected, Redundant
Data Regeneration performs the worst, essentially
requiring all data blocks to be sent to the redundant
node for regenerating the redundant data. On the other
hand, regenerating redundant data using a centralized
archive server incurs the least overhead, albeit at the
expense of extra centralized facility.

Surprisingly, direct reuse of the original redundant data
also performs very poorly. This is because the
algorithm maintains the same data order within the
parity group in computing the redundant data, and thus
severely restricts the redundant data that can be reused.
Once this restriction is relaxed by reshuffling the parity
group, the overhead is reduced by half to around
20,000 blocks. Caching already transmitted data
blocks further reduces the overhead by half to around
10,000 blocks. Thus with all three techniques
combined, the SRDU algorithm can reduce the
redundancy update overhead by as much as 75%.

6.2 Batched Redundancy Update

In the previous experiment, we always completely
update all redundant data blocks before adding another
new node. Clearly this is inefficient if new nodes are
added frequently or added to the system in a batch. To
address this issue, we conduct a second experiment
where redundant data blocks are not updated until a
fixed number of nodes, say W, are added – batched
redundancy update. During this time, storage and
streaming capacity in the new nodes are not utilized
and thus this approach represents tradeoffs between
redundancy update overhead and resource utilization.
Fig. 4 plots the redundancy update overhead versus the
batch size W for initial system size of 80 nodes. The
key observation is that the normalized per-node
redundancy update overhead decreases significantly
with the batch size. A second observation is that the
gain in caching transmitted data blocks reduces when
the batch size increases. This is because the number of
common term in reusable redundant blocks increases
with larger batch size, and thus reducing the need for
raw data blocks to update the new redundant data.

7. CONCLUSION AND FUTURE WORKS

This study is a first step in tackling the problem of
redundant data update. As the results clearly showed,
the redundancy update overhead is even more
significant than data reorganization overhead and thus
cannot be ignored. By taking advantage of the
structure of RSE codes, we were able to substantially
reduce the overhead by as much as 75%, and by
performing update in a batch, we manage to reduce the
overhead further by 97% for a batch size of 10.
Nevertheless, batched redundancy update is not
without tradeoffs. In particular, the storage and
streaming capacity of the new nodes cannot be utilized
until the system is reconfigured. Thus further
investigations are warranted to quantify the tradeoffs
to determine the optimal batch size that can balance
between redundancy update overhead and resource
utilization.

REFERENCES

[Lee and Leung, 2002a] Jack Y. B. Lee and W. T.
Leung, “Study of a Server-less Architecture for
Video-on-Demand Applications”. In Proc. IEEE
International Conference on Multimedia and Expo.,
August 2002.

[Lee and Leung, 2002b] Jack Y. B. Lee and W. T.
Leung, “Design and Analysis of a Fault-Tolerant

Mechanism for a Server-Less Video-On-Demand
System”. In Proc. 2002 International Conference on
Parallel and Distributed Systems, Taiwan, Dec 17-20,
2002.

[Ho and Lee, 2003] T. K. Ho and Jack Y. B. Lee, "A
Row-Permutated Data Reorganization Algorithm for
Growing Server-less Video-on-Demand Systems". In
Proc. International Symposium on Cluster Computing
and the Grid 2003, Tokyo, Japan.

[Ghandeharizadeh and Kim, 1996] S.
Ghandeharizadeh and D. Kim, “On-line
Reorganization of Data in Scalable Continuous Media
Servers”. In Proc. 7th International Conference on
Database and Expert Systems Applications, September
1996.

[Goel et al, 2002] A. Goel, C. Shahabi, S.-Y. Yao, and
R. Zimmerman, “SCADDAR: An Efficient
Randomized Technique to Reorganize Continuous
Media Blocks”. In Proc. International Conference on
Data Engineering, 2002.

[Plank, 1997] J. S. Plank, "A Tutorial on
Reed-Solomon Coding for Fault-Tolerance in
RAID-like Systems". Software -- Practice and
Experience, vol. 27, no. 9, pp. 995-1012, September,
1997.

Fig. 1. Data placement before addition of nodes.

Fig. 2. Data placement after adding one data node.

Fig. 3. Redundancy update overhead versus
system size.

Fig. 4. Per-node redundancy update overhead versus
batch size.

T.K. Ho received his BEng degree in
Information Engineering from The
Chinese University of Hong Kong in
2002. He is currently studying for his
MPhil degree at the same department
and participating in the Server-less
Video Streaming Systems Project in
the Multimedia Communications

Laboratory (http://www.mcl.ie.cuhk.edu.hk).

v0 v1 v2 v3 c0,0 c0,1

d2d1d0 d3 r0 r1

v4

v8

v12

c1,0

c2,0

c3,0

c1,1

c2,1

c3,1

v5 v6 v7

v9 v10 v11

v13 v14 v15

v16 c4,0 c4,1v17 v18 v19

v0 v1 v2 v3 c’0,0 c’0,1

d2d1d0 d3 r0 r1

v5

v10

v15

c’1,0

c’2,0

c’3,0

c’1,1

c’2,1

c’3,1

v6 v7 v8

v11 v12 v13

v16 v17 v18

v4

d4

v9

v14

v19

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50 100 150 200 250 300 350 400

System Size (nodes)

R
ed

un
da

nc
y

U
pd

at
e

O
ve

rh
ea

d
(b

lo
ck

s)

Regeneration by Fully Distributed Data

Regeneration by a Archive Server

Direct Reuse + Reshuffling

Direct Reuse + Reshuffling + Caching

Direct Reuse

100

1000

10000

100000

0 50 100 150 200

batch size W (nodes)

Pe
r-

no
de

 R
ed

un
da

nc
y

U
pd

at
e

O
ve

he
ad

 (b
lo

ck
s)

Direct Reuse + Reshuffling +
 Caching, Starting at 80

Direct Reuse + Reshuffling,
Starting at 80 Direct Reuse,

Starting at 80

	c0: Proceedings 17th European Simulation Multiconference
(c) SCS Europe BVBA, 2003 ISBN 3-936150-25-7

