
A Data-Driven Framework for TCP to Achieve
Flexible QoS Control in Mobile Data Networks

Jiaqi Yao∗†§, Ke Liu†¶§, Ting Liang†¶, Theophilus A. Benson††, Jack Y. B. Lee∥,
Vaneet Aggarwal‡‡, Yungang Bao†¶, Mingyu Chen†‡¶

∗Henan Institute of Advanced Technology, Zhengzhou University
†State Key Lab of Processors, and Research Center for Advanced Computer Systems, Institute of Computing Technology, CAS

‡Zhongguancun Laboratory ¶University of Chinese Academy of Sciences ††Carnegie Mellon University
∥The Chinese University of Hong Kong ‡‡Purdue University

Abstract—Learning-based approaches have shown their great
potential to adapt themselves to various environments (e.g., PCC
and Sprout). Unfortunately, they do not consistently achieve
superior QoS across different network conditions and config-
urations in mobile networks. Furthermore, although they can
offer multiple application objectives by adjusting a preference
weight vector, it is challenging for users to accurately express an
application objective with a weight vector. In this work, we argue
that, if configured correctly, the delay-based TCP scheme can
outperform learned ones, and allow users to directly specify their
objectives. To this end, we propose Post-QoS Analysis (PQSA),
a data-driven framework that trains the key QoS-impacting
parameters of the scheme to capture the statistical correlations
between QoS objectives, network conditions, and configurations,
thereby determining the optimal parameter-set that meets the
user-defined QoS objective under different network conditions
and configurations. To support this, we enhance conventional
delay-based TCP design to develop a Generalized TCP-like Rate
controller (GR) by exporting three key parameters. Extensive
evaluations show that PQSA-optimized GR outperforms existing
schemes in different scenarios consistently, and enables service
providers to control the QoS flexibly.

I. INTRODUCTION

With the rapid advances in high-speed mobile networks such
as 4G/LTE and 5G [8], various mobile apps with stringent
Quality-of-Service (QoS) requirements are emerging, such
as live video streaming, video conferencing, which requires
real-time interaction with many users (i.e., low delay), while
maximizing the video/picture quality (i.e., high throughput).
Given that the mobile network does not provide any delay
or throughput guarantee, the primary focus of the content
provider or mobile operators nowadays is the development of
rate control algorithms that achieves the application’s desirable
QoS – desirable delay-throughput tradeoff, by incorporating
the inherent characteristics of mobile networks, e.g., band-
width fluctuations. To address it, a plethora of Congestion
Control Algorithms (CCA) has been proposed, which can be
classified into two design spaces:

TCP-like Scheme. Its CCA designs usually rest on certain
assumptions about the network and application objective, and

§Equal contribution

hard-wire predefined events to predetermined actions [1], [2],
[7], [9]–[11], [21], [22], [24], [27], [29], e.g., TCP-Westwood
assumes the existence of non-congestion-related losses, thus
avoids halving the Congestion Window (CWnd) blindly by
taking into account the bandwidth at which congestion oc-
curs [27]. However, when those assumptions are not held, per-
formance degrades dramatically. In other words, conventional
TCP-like CCAs cannot achieve consistent QoSs in different
conditions without being manually tuned for each one [5].

Learning-based Scheme. Its CCA designs employ learning
approaches (e.g., Deep Reinforcement Learning (DRL)) to
adapt themselves to various conditions [3], [5], [12]–[14],
[18], [23], [26], [28], [30], [32]–[35], thus avoiding tuning
or engineering for every single one of them. However, as
will show later (§II), the learning-based CCAs, despite being
trained under a wide range of network environments, can and
do perform very inconsistently across different network condi-
tions (e.g., bandwidth fluctuation degree, propagation delay),
network configurations (e.g., mobile base station buffer size),
and application behaviors (e.g., flow duration) presumably
because their learned models are not specialized trained for
each of them [5], [14], but optimized for a general one. As
such, ultimately the resultant QoS is highly dictated by actual
network conditions or configurations.

Moreover, the recent learning-based CCAs support multiple
application (or QoS) objectives by incorporating a weight vec-
tor of throughput and delay into their training [14], [23], [26].
However, they leave the burden of weight vector configurations
to users who have no clue to map the vector to application-
level objectives. In specific, a weight vector is introduced
to indicate the significance of the three primary performance
metrics, namely throughput, latency, and packet loss rate [14],
[23], [26]. However, converting the application objective into
a specific weight vector for diverse applications or services,
such as interactive live streaming like online games, which
require a delay of tens of milliseconds, is a challenging task.

Therefore, both CCAs, despite being designed to function
in mobile networks of all sizes and shapes, failed to achieve
consistent QoS under different network conditions (e.g., from
3G networks with a few Mbps peak bandwidth to 4G/5G
networks with tens or hundreds of Mbps peak bandwidth; from979-8-3503-9973-8/23/$31.00 ©2023 IEEE

20
23

 IE
EE

/A
CM

 3
1s

t I
nt

er
na

tio
na

l S
ym

po
siu

m
 o

n
Q

ua
lit

y
of

 S
er

vi
ce

 (I
W

Q
oS

) |
 9

79
-8

-3
50

3-
99

73
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IW
Q

O
S5

71
98

.2
02

3.
10

18
87

65

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

TABLE I
Dataset Statistics. The dataset #1 to #4 are collected by authors and
the rest of datasets are publicly available. S stands for Stationary

and M stands for Mobile.
Location Network

Type
Service
Provider

Trace
Duration Mobility Throughput

(Mbps)
Variation

(CoV)
#1 4G SMT 177h S 15.04 0.63
#2 3G SMT 169h S 2.31 0.66
#3 3G SMT 161h S 4.87 0.32
#4 3G SMT 168h S 7.49 0.19
#5 4G AT&T 2038s M 5.20 0.89
#6 3G TMobile 1859s M 2.23 0.69
#7 4G TMobile 948s M 13.84 0.8
#8 4G TMobile 279s S 16.86 0.64
#9 3G Verizon 2126s M 0.66 0.37
#10 4G Verizon 2728s M 9.85 0.92
#11 4G Verizon 280s S 4.98 0.68

lightly loaded, well-covered mobile cells to crowded/congested
cells), different network configurations (e.g., from shallow
buffered networks to deep buffered networks), and different
application behaviors (e.g., various flow durations). What’s
more, they do not allow users to directly and explicitly specify
the QoS objectives (e.g., in terms of delay) but an intricate
weight vector.

Our insight is that the QoS of existing TCP-like CCAs
can be improved, and even outperform learned ones if their
internal parameters are tuned appropriately. This implies that
it is possible for the parameters to capture the statistical
correlation between the QoS objectives, network conditions,
and configurations. Additionally, delay-based TCP-like CCAs
are less sensitive to the network environment changes than
learning-based ones (see §II-B), which makes specific training
for every environment much easier. Thus, one question to ask
is: can we make the internal parameters configuration of TCP-
like CCA network-aware, config-aware and QoS-objective-
aware, and automatically apply the optimal configuration
accordingly?

To this end, we first design a Generalized TCP-like Rate
controller (GR) that adopts the conventional delay-based CCA
design but generalizes it by exporting three QoS-affecting
key parameters. Second, as depicted in Figure 5, we propose
a unified framework called Post Quality-of-Service Analysis
(PQSA) with the design goal not only achieving consistent
QoS, but also controlling the QoS flexibly. Specifically, PQSA
allows users to specify application objectives directly in terms
of maximum tolerable delay – target delay. PQSA then begins
with the offline ensemble training phase that exploits simulated
GR sessions under different states – the combinations of
QoS objectives, network conditions and configurations, and
determines the optimal parameter-set ensemble offline, where
each one is optimized for a state, i.e., meet the target delay
while maximizing the throughput. The optimal parameter-set
ensemble is then applied to the online ensemble adaptation
phase where actual GR sessions are running. If the bandwidth
trace used in training covers most of network conditions,
the offline ensemble training phase does not need to be
done repeatedly unless significant network upgrade (e.g., 4G
upgrade to 5G), and the optimal parameter-set ensemble is
robust regardless of network operators (e.g., SMT, AT&T),
network types (e.g., 3G, 4G), user mobility, etc.(see §V).

TABLE II
Bandwidth fluctuation degree for different throughput levels

Throughput Levels 0-1 2-3 4-5 6-7 8-9
Throughput Range (Mbps) 0-2 2-4 4-6 6-8 ≥ 8

Coefficient of Variance (CoV) 0.84 0.59 0.42 0.32 0.25

Through extensive trace-driven emulations and real exper-
iments conducted in production mobile data networks, we
show that (a) PQSA-GR outperforms existing TCP-like CCAs
and learning-based CCAs across a wide range of network
conditions and configurations (e.g., bandwidth fluctuation
degree, propagation delay, buffer size, and flow duration);
(b) PQSA enables users (e.g., service/content provider) to
explicitly specify the application objective via target delay,
and incorporates the network conditions and configuration
to automatically meet the target delay consistently, while
maximizing the throughput.

II. MOTIVATIONS

In this section, we study the unique properties of mobile
networks, and then revisit the design and QoSs achieved
by existing CCAs, both of which raise some fundamental
questions on CCA designs and motivate our work.

A. Mobile Networks Properties

Observation 1: Mobile network conditions vary and fluc-
tuate drastically based on a number of factors, such as, time-
of-day, locations, mobility, service providers, etc. The end
result of this fluctuation is that CCA must effectively adapt to
these underlying network fluctuations. To illustrate, in Table I,
we characterize and summarize many productions mobile
networks. Dataset #1 to #4 were collected in 4 locations of
downtown respectively, using a laptop connecting to a local
network operator (SMT) [4], while the others are publicly
available [9], [33]. We observe that despite using similar
cellular technologies, the network characteristics can vary
widely, e.g., the mean bandwidth of SMT 3G in three locations
(i.e., #2, #3 and #4) varies by 224% at most.

Observation 2: The bandwidth fluctuates differently in
different throughput levels. We divided dataset #4 into seg-
ments of 30s, and classified every segment into one of 10
throughput levels if the segment’s average bandwidth is within
the throughput range of that level, where the throughput levels
are shown in Table II. By grouping segments in levels, we can
measure the bandwidth fluctuation degree of every level using
Coefficient-of-variation (CoV). We observe from Table II, that
bandwidth fluctuation degree differs across different levels:
lower levels have larger bandwidth fluctuations, while higher
levels have smaller fluctuations, e.g., 0.84 versus 0.25, which
is reasonable as a lower level means poor radio signal quality,
bad coverage, etc.. Motivated, our solution adjusts the send
rate with different aggressiveness for different levels, which is
governed by protocol parameters.

Observation 3: Unlike traditional home networks and
wireless networks where network queues are shared between
different users in a mobile network, the base station maintains
a separate large size queue for each user [21], [22], [33],
thus queueing delay can be a promising signal for congestion

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

48163264128256512
1024

2048
4096

8192
16384

95th percentile queueing delay (ms)

0

1

2

3

4

5
Av

er
ag

e
th

ro
ug

hp
ut

 (M
bp

s)

Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 1. QoS of existing CCAs in different locations. We show that the
QoS of existing CCAs can be very different in two different locations,
where filled symbols denote the results of location #2 and nonfilled
symbols denote results of location #3.

3264128256512
1024

95th percentile Queueing Delay(ms)

12

13

14

15

16

17

Av
er

ag
e

Th
ro

ug
hp

ut
(M

bp
s)

PQSA-GR
Orca
Indigo
Aurora
BBR
Vegas

Fig. 2. QoS of CCAs for different propagation delay. We show
that PQSA-GR is not sensitive to the change of propagation delay.
The circle represents the propagation delay of 20ms, the triangle
represents 50ms, and the square represents 100ms. Each color
represents a distinct learning-based CCA.

64128256512
1024

95th percentile Queueing Delay(ms)

13

14

15

16

Av
er

ag
e

Th
ro

ug
hp

ut
(M

bp
s)

PQSA-GR
Orca
Indigo
Aurora
BBR
Vegas

Fig. 3. Qos of CCAs under different buffer sizes. We show that
PQSA-GR is not sensitive to the change in buffer size. The circle,
triangle, and square indicate the QoS results under the buffer size
of 200 MTU, 500 MTU, and 1000 MTU, respectively, while each
color represents a distinct learning-based CCA.

48163264128256512
1024

2048
4096

8192
95th percentile queueing delay (ms)

0

1

2

3

4

5

Av
er

ag
e

th
ro

ug
hp

ut
 (M

bp
s)

Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 4. QoS of existing CCAs with different flow durations. We
show that the QoS of existing CCAs can be very different with
different flow durations. where filled symbols denote the results of
flow duration 10s and nonfilled symbols denote the results of flow
duration 120s.

detection. Consequently, fair sharing of the radio link among
multiple users is already enforced by the base station, thus
fairness is not as crucial in mobile networks [22], [33].

B. QoS of Existing CCAs

We evaluated the QoSs of existing CCAs (TCP-like and
learned ones) under different scenarios including network
conditions (NC), Network conFigurations (NF), and Applica-
tion Behaviors (AB). To evaluate them in a consistent and
controlled way, we used trace-based emulation built with
Pantheon [34], a platform for researching and evaluating
end-to-end networked systems and transports, which replicates
the bandwidth trace from dataset #1 to #4 in Table I to emulate
a mobile radio link. We set the default propagation delay and
emulated link buffer size of the testbed to be 100ms, and 1K
MTU, respectively. A sender sends a dummy data flow to a
receiver via that mobile link. The default flow duration is 30s.
The detailed experiment setup can be found in §V-A.

(NC#1) Location. We observe that a CCA’s QoS does vary
substantially across different locations, each with different
bandwidth fluctuation degrees. Figure 1 shows the QoS com-
parisons across two locations, #2 and #3. The key observations
are: (1) very few CCAs consistently maintain a small delay
when moving between locations; (2) the learning-based CCAs

do not necessarily outperform traditional TCP-like CCA, e.g.,
LEDBAT achieves the best QoS in this case. This is presum-
ably because learning-based CCAs are not trained specialized
for every condition, thus experiencing serious performance
issues over unseen conditions. Second, their models might
converge slowly or converge to a wrong equilibrium [5], [23]
(e.g., PCC-Vivace [13] and PCC-Expr [3] underperform due
to slow convergence (see more in §V)).

(NC#2) Propagation Delay. To study the impact of prop-
agation delay on QoS, we used dataset #1 and evaluated
existing CCAs’ QoSs under network propagation delay of
20ms, 50ms, and 100ms, respectively. Figure 2 shows that,
although learning-based CCAs incorporate those delays into
their training (e.g., Orca sets the propagation delay to be
4ms to 400ms in its training), their QoSs vary with different
propagation delays, e.g., the queueing delay can be increased
by four-fold for the state-of-the-art learning-based CCA, Orca.
In contrast, the delay-based CCA obtains the consistent QoS.
This is because they keep estimating the propagation delay
(i.e., minimum RTT).

(NF#1) Buffer Size. Modern mobile networks commonly
employ a large radio link buffer to absorb large bandwidth
fluctuations [24], [33]. Thus, we also studied the impact of
the mobile link buffer size on QoS. We used dataset #1 and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

evaluated existing CCAs’ QoSs under the link buffer sizes
of 200 MTU, 500 MTU, and 1K MTU. Figure 3 shows that
learning-based CCAs’ QoSs are also sensitive to the change
in link buffer size, although they incorporate a large range of
buffer sizes into their training (e.g., 3KB to 96MB for Orca).
The Delay-based CCA (e.g., Vegas) is also robust to the buffer
size change. This is because it always controls the amount of
queueing data within a small range, regardless of buffer size.

(AB#1) Flow Duration. We also observe that flow duration,
an often neglected factor in existing works, impacts the QoSs
of CCAs. In Figure 4, we analyze a CCA’s QoS with two
flow durations, i.e., 10s and 120s, which are typical durations
for short-video [37] and video on demand respectively [36].
We observe that CCA’s QoS is often not consistent with
different flow durations, presumably because longer flows
mean more network condition variations need to adapt, and
some CCAs (e.g., Aurora, PCC-Expr, etc.) do not actively
reduce the transmission rate to empty the bottleneck buffer,
which leads to more and more packets queued in the buffer
when the flow duration is longer, significantly impairing the
resultant QoS. This issue becomes particularly problematic for
video streaming in mobile networks where the flows are often
significantly large, and the networks vary quite rapidly.

C. Multi-QoS objectives

Recent multi-objective leaned CCAs incorporate different
application objectives into model training [14], [23], [26].
Although users can express the application objective as a
weight vector over multiple network-level metrics (throughput,
delay, loss, etc.), users might have no clue to map weight
values to their application objectives. A user-friendly system
should allow users to specify the QoS objective explicitly and
directly (e.g., target delay 100ms), instead of adding an extra
layer to transform the QoS target into several weights.

D. Takeaways

The above results show that existing learning-based CCAs
are very sensitive to network environment changes (in terms
of network conditions, network configurations, and application
behaviors). Although they are trained in a wide range of
environments, they do not always perform better than TCP-
like schemes which have fixed heuristics. The root cause, we
conjecture, is that their training has incorporated a wide range
of network conditions and configurations, thereby the resultant
models are too general to be accurate/optimal for a specific
operating environment (e.g., Cov of bandwidth is 0.84, the
propagation delay is 100ms, and the buffer size is 1K MTU).

An intuitive approach is to divide all potential network envi-
ronments into states and train a unique model for each specific
state. However, the state space can be large as it includes
multiple dimensions from bandwidth fluctuation, propagation
delay, buffer size, etc. The insight from the above results is
that the delay-based CCA can outperform the learned ones if
their internal protocol parameters are appropriately tuned for
the current network state. Additionally, they are insensitive
to buffer size and propagation delay changes (e.g., BBR and

…

Optimal Parameter-set Ensemble
Input Input

…..
…......

....…..
…..

....

Throughput level (SD1)

D
el

ay
 c

oe
ffi

ci
en

t (
SD

2)

Simulated
Sessions

Bandwidth
Trace +GR

Time

Inter-epoch Parameter-set Selection
SlowStart phase

Epoch 1 Epoch 2 Epochs

Initial Parameter-set Selection

Epoch 0

Parameter-set
Candidates

Offline Ensemble Training Online Parameter-set Adaptation

Fig. 5. PQSA system overview. PQSA contains two phases: offline
ensemble training, and online ensemble adaptation.

Vegas) and can be insensitive to flow duration (see §III).
Thus, we only need to classify the bandwidth provision and
fluctuation, which minimizes the state space.

In the end, we propose PQSA that classifies network band-
width, Then, it takes a simulated approach, which simulates
delay-based TCP CCA offline and searches optimal parameter-
set satisfying the QoS objective for each class. This approach
allows users to define their objective directly via target delay.

III. POST QUALITY-OF-SERVICE ANALYSIS

As shown in Figure 5, PQSA runs on the server-side, and
it consists of two phases. The first phase is offline ensem-
ble training, where it employs a data-driven simulation ap-
proach to generate a complementary ensemble of tcp-governed
parameter-set that are optimized for distinct two-dimensional
states, defined by the target delay and network condition.
Each parameter-set includes the bandwidth estimation window,
queueing delay threshold, and rate adaptation interval, which
are trained to meet a target delay while maximizing the
throughput under a given network condition.

In the online ensemble adaptation phase, PQSA allows users
to specify target delay according to the application’s needs. By
incorporating the target delay prescribed, PQSA re-uses delay-
based TCP-like CCA (i.e., GR) and leverages the information
from the CCA to determine the network condition, in turn,
selects the appropriate parameter-set to tune its control logic
to adapt time-varying network conditions.

In this section, we first introduce our generalized view
of delayed-based TCP (i.e., GR) in §III-A and then discuss
PQSA’s two-phase control loop in §III-B. Finally, we discuss
its design choices in §III-C.

A. GR: Generalized Delay-based TCP CCA

We described the minimal requirements that PQSA makes
of the TCP implementation that it enhances. At its core, PQSA
retains the general delay-based CCA logic but only requires
that the implementation expose a predefined set of parameters
that significantly impact QoS. Note that re-using existing
TCP implementation enables incremental deployability and
ensures that the protocol works in all environments. while
learning-based CCA breaks away from TCP control loop, this
is difficult to implement in a kernel module (thus they were
implemented in user-space or required to modify the kernel),
and are not compatible with existing TCP sender and receiver
implementation, which hinders their deployments [5].

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

To understand the parameters that impact QoS we first
describe key aspects of TCP’s CCA: (1) time-window, many
delay-based TCP CCAs [10], [11], [22] calculate and estimate
the network bandwidth based on the number of AckNum
packets received during a predefined time window (e.g., BBR
uses a time window of six to ten RTTs to estimate the
bandwidth). This window’s size often enables the algorithm to
make a trade-off between different timescales on bandwidth
estimations: the longer the window, the more sensitive to
longer timescale bandwidth variations, but less sensitive to
short timescale bandwidth variations, and vice versa. (2) Rate-
adaptation-frequency, in response to bandwidth estimates, the
CCAs naturally adapt their sending rates. The frequency with
which these rates are updated has a significant impact on the
network. More frequent updates might lead to bursts and con-
gestion, while less frequent updates might lead to insufficient
bandwidth utilization. (3) Delay-bound, with delay-based TCP,
e.g., BBR [11] or Vegas [10], try to minimize the queueing
delay. However, in practice, it cannot effectively balance
the throughput and delay, and instead, result in bandwidth
underutilization and significant rate oscillations.

In principle, PQSA interoperates with any delay-based TCP
that can be modified to expose a parameter-set of these three
parameters: bandwidth estimation window W , queueing delay
threshold T , and rate adaptation interval ∆. We designed a
delayed-based TCP CCA we can be augmented to expose
the parameter-set easily, {W,∆, T} denoted by R – General
delayed-based Rate controller (GR). Given these three parame-
ters, PQSA can effectively control the CCA behavior to operate
in different network conditions effectively. Modifying existing
delay-based TCP CCAs, e.g., Vegas [10] and BBR [11], to
expose the three parameters and evaluate their performances
when cooperating with PQSA can be our future work.

Abstractly, a GR continuously measures the RTT when
receiving an AckNum, Moreover, it estimates the bandwidth
from AckNum returning rate within an estimation window W ,
which is denoted by B. At the end of every rate adaptation
interval ∆, GR checks the measured RTT and tracks the
minimum RTT measured, RTTmin: if RTT > RTTmin +
T , GR sends at the rate less than B, i.e., RTTmin+T

RTT B,
which tries to decrease the queueing delay back to T . If
RTT < RTTmin + T/2, GR sends at the rate higher than
B, i.e., (1 + RTTmin+T/2−RTT

RTT)B, which improves band-
width utilization by increasing the queueing delay to T/2.
If RTTmin + T/2 ≤ RTT ≤ RTTmin + T , GR remains the
sending rate intact, which becomes a safe cushion to minimize
rate oscillations.

B. PQSA Control Loop
In Figure 5, we present PQSA’s control loop.

Offline Ensemble Training. This phase simulates and an-
alyzes GR sessions or flows with different parameter-set
combinations over the past bandwidth trace. The goal is to
determine an optimal parameter-set ensemble, each of which
delivers the best QoS under a distinct state. PQSA tries to
decompose the space of all potential network bandwidth levels

and target delays into distinct states, each state has its own
optimized parameter-set. This divide and conquer approach
enables PQSA to consistently outperform other approaches but
introduces several key challenges: First, how do we divide
the space into a group of meaning states. Second, how do
we quickly and effectively determine the parameters for each
states. Third, as the network evolves, e.g., due to the introduc-
tion of new technology (4G upgrade to 5G), their parameters
need to evolve appropriately with new bandwidth traces.

Defining States: Our intuition for defining states builds
on the key observations: (1) the bandwidth fluctuation is
throughput-dependent (recall in §II), and (2) applications
impose different target delays [26], thus we naturally view all
states along two network dimensions (SD): throughput (SD1)
and delay coefficient (SD2). We divide the throughput into N
distinct levels and the target delay into M distinct classes.

Quantizing Throughput: One challenge for throughput
quantization is that, while the throughput can be calculated
as the bandwidth trace is given, it cannot be known at the
beginning of an actual GR session. Therefore, we need a way
to estimate the throughput level. Second, GR sessions may vary
in length from seconds to minutes or hours (e.g., live video
streaming). Recall in § II-A, network conditions vary over time
and a long session is unlikely to experience the same network
conditions, thus it is unlikely for the entire session to have
a single throughput level. We account them by subdividing
trace into epochs of length P , and training GR independently
for each epoch. Thus, each actual GR session can be viewed
as a set of epochs. To estimate the throughput of a new epoch
j, PQSA measures the throughput over the previous epoch,
denoted by Vj (i.e., the last γP second in epoch j − 1):

Vj =

∑
∀i{ai|tj − γP ≤ rj−1,i ≤ tj}

γP
(1)

where tj is the beginning time of epoch j, ai is the number
of bytes acknowledged by TCP ACK i, rj,i is the arrival time
of ACK i in epoch j, and γP is the time window estimating
the throughput, where γ ≤ 1.
PQSA uses a linear quantization policy (2) to map estimated

throughput from epoch j to discrete throughput level Lj :

Lj = min(⌊Vj

ω
⌋, N − 1) (2)

where ω is the quantization step size, and N is the number of
throughput levels.

Applying it to all epochs simulated, the next step is to
segregate trace of all epochs, i.e., Sj |∀j into N classes:

Cn = {Sj |Lj = ⟨n⟩,∀j}, n = 0, 1, ..., N − 1 (3)

where each class will emulate a particular throughput level for
the training.

Quantizing Delay Coefficient: Unlike throughput, for tar-
get delay the metric of interest is often the 95th or the 99th
percentile, e.g., the 95th percentile queueing delay 100ms,
which we characterize as ρ and Q, i.e., the ρth percentile
queueing delay Q. Training for large ρ or small Q will train

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

parameters with shorter delay at the expense of throughput,
and vice versa. PQSA employs M combinations of Q and ρ,
denoted by {Qm, ρm|m = 0, 1, ...,M − 1}, to generate M
target delay constraints for a epoch j , i.e., let qj,i denote
the ith queueing delay sample estimated when AckNum i is
received during epoch j, and {qj,i} denote the set of queueing
delay samples:

Dm = {Qm, ρm|
∑

∀i|qj,i<=Qm
1

|{qj,i}|
≥ ρm

100
},m = 0, 1, ...,M−1

(4)
which is used for evolving M distinct delay coefficient classes.

Consequently, we have a total of M ×N states.
Performing Offline Training: For each state, we apply

a separate training process, Divide, Diverge, and Simulated
annealing (DDS) (see § IV), to obtain the optimized parameter-
set, denoted by Rn,m, which makes all the epochs in through-
put level n, i.e., Cn, satisfy the target delay constraint Dm

constructed by one of M delay coefficients, while maximizing
the average throughput of Cn, i.e.,

max

∑
∀Sj∈Cn

bm,j

|Cn|
, s.t.Dm

n = 0, 1, ..., N − 1,m = 0, 1, ..., .M − 1

(5)

where bm,j is the resultant receiving throughput of Sj with
SD2 = m. We provide details on DDS training in § IV.

Online Ensemble Adaptation. Incorporating Application
Preferences: During the online phase, users optionally specify
a target delay, λ = {ρm∗ , Qm∗}, class from M SD2 classes.
Given the target delay, PQSA tries to maintain this target first,
then maximize throughput second.

Performing Online Parameter-set Adaptation: During the
online phase, PQSA initially lets GR use traditional TCP slow-
start to bootstrap then switches to using the parameters learned
during the offline training phase. For a new session, PQSA
begins with TCP’s default slow-start algorithm, hystart [16],
and waits until exiting the slow start phase before it starts
applying the optimized parameter-set. Recall, the goal of
TCP’s slow-start is to determine the current network capacity.
To keep the throughput estimation method consistent with
Equation 1, PQSA uses the network estimates (i.e., throughput
estimates, denoted by V1) collected during in epoch 0 – TCP
slow-start phase, to determine the initial parameters:

V1 =

∑
∀i{ai|t1 − γP ≤ ri ≤ t1}

γP
(6)

where t1 is the starting time of epoch 1, i.e., the exciting time
of the slow start phase of a GR session, V1 is then used to
estimate SD1 – throughput level for epoch 1 of an online GR
session, using Equation 2.

Parameter-set Re-optimization: As discussed earlier, to
compensate for long time scales bandwidth variations, an
online GR session can be viewed as a set of epochs. Afterward,
PQSA re-evaluates the parameters after the end of every epoch
of P seconds. At the beginning of the next epoch, PQSA
uses the knowledge from the last epoch to determine the

session’s current throughput level, and choose the appropriate
parameter-set for the new network condition. To align with
the offline training, PQSA uses the throughput estimates from
Equation 1, Vj is then used to estimate the throughput level
of epoch j, denoted by n∗. Thus, both m∗ and n∗ decide the
optimal parameter-set Rn∗,m∗ for epoch j.

Minimizing Re-optimization Frequency and Correcting
For Estimation Error: PQSA tries to determine if there are
potential errors by comparing the actual queueing delay to a
predefined threshold. In case of no error, PQSA can re-use
the previous epoch’s parameter-set without parameter-set re-
optimization – minimizing re-optimization frequency.

Specifically, if the actual queueing delay of epoch j, qj ,
measured using SD2 = m∗, is larger than Qm∗ beyond a
prescribed threshold ε, e.g., 25%, i.e., (qj −Qm∗)/ Qm∗ > ε,
the network bandwidth available decreases substantially, which
triggers PQSA to re-optimize the parameter-set by determining
SD1 for epoch j + 1 with Equation 1 and 2, and applies
the corresponding parameter-set for epoch j + 1 as shown
in Parameter-set Re-optimization. If qj is smaller than Qm∗

beyond a prescribed threshold ε, i.e., (Qm∗ − qj)/ Qm∗ < ε,
it implies the bandwidth is not utilized with the previous
parameter-set, and cannot determine the SD1 correctly via
throughput estimates (Equation 1) for epoch j + 1, so PQSA
simply increases the SD1 by one.

C. Discussions

We envision that PQSA is deployed at the servers, e.g.,
content/service provider’s servers [15] (e.g., Tencent, TikTok),
and our current reuse of TCP implementations ensures that
PQSA is compatible with any client implementation. Next, we
discuss the key design choices that ensure that it is practical
for today’s content provider deployments:

First, the two-phase design guarantees that, unlike most
learning-based CCAs, PQSA offloads all learning complexity
into the offline training phase. This choice minimizes ag-
gregates and amortizes the resources used by the learning
algorithm. During the online phase, each server needs only
to perform simple calculations, i.e., throughput calculation.
Second, to improve accuracy, during the online phase, we
reuse throughput estimates from slow-start instead of using
the throughput of the previous session [6], [31]. Our approach
eliminates potential errors that occur when sessions are sep-
arated by long periods (recall in § II, we show significant
network variability over long periods). Last, PQSA is designed
to interoperate with delay-based TCP CCAs, which allows
PQSA to benefit from existing kernel optimizations, which
other user-space ones are unable to do, e.g., learning-based
CCAs like Sprout, PCC.

Quic [20], a user-space transport framework on top of UDP
that can implement any application-specific CCA. If GR or a
delay-based TCP CCA is realized in Quic with the parameter-
set exported, it also can be optimized by PQSA. As such, our
work is orthogonal to Quic.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. An example of running DDS in two-dimensional space.
IV. IMPLEMENTATION

In this section, we present our experience with the imple-
mentation of GR and PQSA in practice.
GR kernel module: We implemented GR in a Linux kernel

in the same manner as the existing TCP CCA, which leverages
the pluggable TCP congestion control module handler inter-
faces, except that we expose the three parameters outside with
proc interfaces, where PQSA process can access and over-
write parameters. To support online parameter-set adaptation,
we leverage the existing cong_avoid interface that monitors
the timestamps of received ACKs, and checks whether the
elapsed time from the last parameter-set adaptation exceeds
the epoch period.
PQSA trace-driven simulation: Mobile network bandwidth

can vary widely in practice (see § II) and so far no known
existing model can accurately capture their characteristics [24],
[25]. Therefore, we primarily employ trace-driven simulations
as a mean to evaluate GR (or different CCAs) in a realistic,
consistent, and repeatable manner, where the mobile link
varies based on bandwidth trace, and simulates GR sessions.
We validated the fidelity of the simulator by showing that the
simulated results are consistent with the emulated ones.

Offline ensemble training: To find Rn,m for a given state,
where n = 0, 1, .., N − 1,m = 0, 1, ...M − 1, PQSA needs to
simulate GR sessions with all possible parameter-set candidates
from the three-dimensional parameter space, i.e., {W,∆, T},
– brute-force approach. Although it is good for accuracy, its
time complexity can be significant. To achieve an efficient
tradeoff between accuracy and time complexity, we propose
Divide, Diverge and Simulated annealing (DDS) to address
this challenge: to reduce the parameter sample space, after
dividing every parameter into k0 intervals, DDS does not make
a full combination of all samples, but takes a permutation of
intervals for every parameter. DDS then aligns the permutation
for each parameter dimension, to obtain a sample set K0

with size k0. From K0, DDS finds parameter-set R0 that
satisfies target delay, while maximizing the throughput. DDS
then searches a bounded space around R0 using simulated
annealing, as there is a higher possibility that DDS will find a
“better” point R1 around R0, e.g., point (xj , yj) in Figure 6.
This bounded space, i.e., the one bounded by the lower
and upper initial value of parameters needed for simulated
annealing, should not include any other samples in K0 except
for R0. As shown in Figure 6, for parameter x in R0 we find

TABLE III
PQSA System Parameters.

Notations System Parameters Default Values
N SD1 40

M SD2 3

γP throughput estimation window 250ms

ω Quantization step size 1Mbps

ρ,Q Delay coefficients ρ = 95
Q = 50, 100, 200ms

ε
Threshold to parameter-set

re-optimization 0.25

P Epoch period 30s

xj−1 and xj+1 along the parameter dimension x of K0, where
xj−1 is the largest point in K0 but smaller than that of R0,
and xj+1 is the smallest point in K0 but larger than that of
R0. Thus, (xj−1, xj+1) bounds the parameter dimension x.
Above also applies to the other parameters.

Computation overhead: We showed the brute-force ap-
proach has the highest accuracy in finding the global optimal
parameter-set at the expense of extremely high time complex-
ity, i.e., 4845 hours for training with dataset #1, while DDS
has 6.1 hours for training the same dataset, without sacrificing
the accuracy significantly.

V. PERFORMANCE EVALUATION

Besides running simulations for the offline training phase, in
this section, we leverage emulated experiments for the online
adaptation phase to validate the performance of PQSA and
compare against cutting edge learning and TCP-like CCAs.

A. Experiment Setup

For our emulations, we used a local trace-driven emulator
based on Pantheon codebase [34], which allows us to
dynamically load different CCA implementations and explore
behavior under emulated network bandwidth captured in pre-
defined datasets. We used 11 datasets that were captured from
different mobile operators and scenarios as summarized in
Table I, which efficiently covers most potential mobile network
bandwidth. We note that these datasets were used to evaluate
the prior works like [9], [22], [33], [34]. Datasets #1 to #4
were collected in a stationary position; thus, we repeated the
experiments using datasets from #5 to #11, part of which were
collected during driving.
PQSA Training: We only feed 33% of datasets #1 to #4 into

PQSA’s offline training phase. Then, we used 67% of datasets
#1 to #4, and all the datasets #5 to #11 from other operators
for the online adaptation phase. This is used to demonstrate the
robustness of PQSA regardless of network operators, network
types, etc..
PQSA system parameters: PQSA includes several parame-

ters, we empirically analyzed several parameters and settled
on the best-performing ones. For epoch size, we use 30s,
and evaluate its sensitivity in § V-D. To quantize throughput
dimension(SD1), we used N = 40 with quantization step size
of 1Mbps. For delay coefficients, SD2, we adopted M = 3
with ρ = 0.95 and Q = 100, 150, 200ms. We note that these
parameters can vary by the content operators based on offline

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

48163264128256512
1024

2048
4096

95th percentile queueing delay (ms)

0

1

2

3

4

5
Av

er
ag

e
th

ro
ug

hp
ut

 (M
bp

s)

PQSA-GR
Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 7. QoS of CCAs in 3G/HSPA. We tested all CCAs with unseen
datasets from #2 to #4, and showed that PQSA-GR achieves the
best QoS in 3G/HSPA.

48163264128256512
1024

2048
4096

95th percentile queueing delay (ms)

0

5

10

15

Av
er

ag
e

th
ro

ug
hp

ut
 (M

bp
s)

PQSA-GR
Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 8. QoS of CCAs in 4G/LTE. We tested PQSA-GR with unseen
dataset #1 and showed that PQSA-GR achieves the best QoS in
4G/LTE,

512
1024

2048
4096

8192
16384

95th percentile queueing delay (ms)

0

1

2

3

4

5

Av
er

ag
e

th
ro

ug
hp

ut
 (M

bp
s)

PQSA-GR
Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 9. QoS of CCAs in mobile scenarios. We tested all schemes with
mobile traces from datasets from #5 to #11 and showed PQSA-GR
achieves the best QoS in mobile scenarios.

48163264128256512
1024

2048
4096

8192
16384

95th percentile queueing delay (ms)

0

1

2

3

4

5

Av
er

ag
e

th
ro

ug
hp

ut
 (M

bp
s)

PQSA-GR
Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 10. QoS of CCAs in three locations. We showed that PQSA-GR is
spatial robust as it achieves the consistent QoS in different locations.

analysis of the collected traces and application objectives. The
rest of the parameters are summarized in Table III. Unless
specified, we set PQSA-GR’s target delay to 95th percentile
queueing delay 100ms (i.e., ρ = 0.95, Q = 100ms), which is
the benchmarks used in prior works [9], [22], [33]–[35].

Experiment summary: We evaluated PQSA from the fol-
lowing directions: (1) We demonstrate the QoS performance
gain of PQSA-GR compared to prior CCAs [2], [3], [5], [7],
[10]–[13], [17]–[19], [29], [30], [33]–[35] under different sce-
narios with emulated experiments; (2) We validate PQSA-GR’s
robustness and flexible target delay control, and compare it to
prior works. (3) We deep-dive into PQSA-GR design from
different aspects, such as rate adaptation, parameter/algorithm
sensitivity, and fairness.

B. Overall Performance Comparisons

In Figures 7 and 8, we compared the overall QoS perfor-
mance of PQSA-GR to prior CCAs in 3G/HSPA+ (trace data
from #2 to #4) and 4G/LTE (dataset #1) networks, respectively.
We present the 95th percentile packet queueing delay against
the average throughput of different CCAs.

We observe that PQSA-GR consistently outperforms all
CCAs across mobile network types (from 3G to 4G), while
the competing CCA’s performance varies across network types
illustrating that they do not perform consistently. Unsurpris-
ingly, TCP-like CCAs do not necessarily perform worse than
learned ones, e.g., BBR versus PCC and Tao [30]. Moreover,

learned CCAs, e.g., Sprout, achieve low delay by sacrificing
throughput. PQSA provides both, and provides predictable
performance by delivering the actual 95th percentile queueing
delay close to the target delay 100ms. This is because PQSA
creates a unique parameter-set that overfits each state.

Figure 9 plots the QoS results obtained by running emulated
experiments with dataset #5 to #11 (from different network
operators), which contain traces with mobility. PQSA-GR also
performs consistently, and outperforms the other CCAs in
mobile scenarios. As PQSA uses dataset #1 to #4 for the offline
training phase, and applies the trained parameter-set ensemble
in online testing with different datasets from other operators,
PQSA is robust for different network operators and types.

C. Robustness

In this section, we evaluate the robustness of PQSA-GR
under the following network environments.

(NC#1) Network Operators. We observed from Figure 7
and 8 PQSA-GR performs superiorly and consistently across
different operators and types, despite being trained using the
same set of datasets (dataset #1 to #4). This strongly suggests
that PQSA-GR is spatially robust in the sense that algorithms
trained using a dataset with a sufficiently wide spectrum of
network bandwidth, can perform consistently over wide range
of network environments regardless of operator, type, etc..

(NC#2) Locations. To complement the result in Figure 1 we
evaluated the QoS achieved by PQSA-GR in three locations

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20
0
2
4
6
8

Th
ro

ug
hp

ut
 (M

bp
s)

PQSA-GR
FillP
FillP-Sheep
Copa
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
Tao
LEDBAT

0 5 10 15 20
Time (h)

10
100

1000
10000

95
th

 p
er

ce
nt

ile
qu

eu
ei

ng
 d

el
ay

 (m
s)

Fig. 11. The hourly mean QoS of CCAs. We showed that PQSA-GR
is temporal robust, as it tracks the target delay and bandwidth
variations closely.

48163264128256512
1024

2048
4096

8192
16384

95th percentile queueing delay (ms)

0

1

2

3

4

5

Av
er

ag
e

th
ro

ug
hp

ut
 (M

bp
s)

PQSA-GR
Fillp-Sheep
Indigo
TCP Cubic
Sprout
PCC-Vivace
SCReAM
TCP Vegas
Verus
TCP BBR
PCC-Allegro
PCC-Expr
WebRTC media
Tao
LEDBAT
Aurora
Orca

Fig. 12. QoS of CCAs for three session durations. We showed that
PQSA-GR achieves the consistent QoS for session duration 30s,
60s, and 120s.

0 5 10 15 20 25 30
Time (s)

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

bi
t/s

)

0

2000

4000

De
la

y
(m

s)

bbr send rate
pqsa send rate
verus send rate

bbr queue delay
pqsa queue delay
verus queue delay

Fig. 13. Comparison of rate adaptation behaviors in low throughput
level 0

0 5 10 15 20 25 30
Time (s)

0

50

100

150

Th
ro

ug
hp

ut
 (M

bi
t/s

)

0

500

1000

1500

De
la

y
(m

s)

bbr send rate
pqsa send rate
verus send rate

bbr queue delay
pqsa queue delay
verus queue delay

Fig. 14. Comparison of rate adaptation behaviors in high throughput
level 35

using datasets from #2 to #4, respectively. Figure 10 shows that
PQSA-GR performs consistently in three locations compared
to the others, i.e., PQSA-GR tracks the target delay across
locations while maintaining comparable throughput, which
further validates its spatial robustness.

(NC#3) Propagation delay and (NF#1) Buffer size. As
shown in Figure 2 and 3, PQSA-GR is insensitive to propa-
gation delay and link buffer size changes because PQSA-GR
adopts a delay-based CCA approach. Parameter T (i.e., queue-
ing delay threshold) controls the length of the queue, which
has no connection with buffer size and propagation delay.

(NC#4) Time of Day. We consider temporal robustness –
QoS variations over time (i.e., hours). We classified datasets
of #2 to #4 by the hour of occurrence and ran emulated
experiments in the online adaptation phase with trace data
from each hour respectively to obtain the hourly QoS result.
Figure 11 plots the hourly delay and throughput achieved by
all CCAs. Again, we found that PQSA-GR exhibits consistent
delay hourly, which is close to the target delay. In comparison,
the delays achieved by the other CCAs vary far more sub-
stantially over time. To appreciate the variations in network
conditions, we also plot the hourly mean bandwidth in Fig-
ure 11 (shadow color) along with the hourly mean throughput
achieved. Despite the fact that the bandwidth trace data were
captured in the same physical location by a stationary client
using the same mobile network, the hourly bandwidth can still
vary significantly from a low of 0.1Mbps to a high of over
9.1Mbps. The throughput achieved by PQSA-GR also tracks

the bandwidth variations closely. Overall, PQSA-GR’s spatial
and temporal robustness is significant because it substantially
reduces the need to train algorithms for specific locations or to
retrain algorithms periodically over time, as long as the dataset
for offline training covers wide enough bandwidth variations.

(AB#1) Flow Duration. To complement the result in
Figure 4 we show in Figure 12 that, for the same dataset,
PQSA-GR achieves the best QoS with consistent delays for
three online flow durations, i.e., 30s, 60s and 120s. As the flow
duration for the offline training phase is always 30s while the
online adaptation phase can test different session durations,
the result shows the benefit of parameter-set re-optimization
in the online adaptation phase, while the others either cannot
achieve consistent QoS, or perform worse than PQSA-GR.

D. Deep Dive

Microscopic view of PQSA-GR: To shed light on the supe-
rior results achieved by PQSA-GR, we compare its rate adap-
tation behaviors to BBR and Verus, which are a typical TCP-
like CCA and learning-based CCA respectively. Figure 13
and 14 show the send rates and resultant packet queueing
delays along with the bandwidth variations (shadow color),
for both low (0) and high (35) throughput levels respectively.
BBR has the same rate of adaptation aggressiveness for the
two levels. Although this works well in high throughput
levels with stable bandwidth, it causes disastrous queueing
in low levels with extremely low bandwidth and substantial
bandwidth variations. In contrast, PQSA-GR has different

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

20 40 60
Time (s)

0

20

40

60
Th

ro
ug

hp
ut

(M
bp

s) PQSA-GR Flow 1
Flow 2

20 40 60
Time (s)

TCP BBR Flow 1
Flow 2

20 40 60
Time (s)

Orca Flow 1
Flow 2

Fig. 15. Convergence property of different CCAs

TABLE IV
Flexible target delay control. We show that PQSA-GR’s actual

delays do not deviate from the target ones.
Target Delay (ms) 50 100 200
Actual delay (ms) 68.2 101.4 212.1

Throughput (Mbps) 12.1 14.52 15.0

TABLE V
Epoch and throughput quantization. We show the performance

impact of epoch and throughput quantization.
Epoch (s) 30 60 120 240 30 (wo-SD1)

Actual Delay (ms) 100.1 71.9 52.5 57.5 45.6
Throughput (Mbps) 4.9 4.1 3.5 3.6 3.8

aggressiveness for different levels: for low levels, it adapts to
the bandwidth by always having a lower-than-bandwidth send
rate, increasing it more gently and decreasing it rapidly, thus
it has a smaller send rate than the other two and results in a
lower delay most of time; for high levels, it changes to increase
send rate more aggressively by learning that the bandwidth
would remain stable for a longer time. Due to unpredictable
network conditions in mobile networks, Verus cannot learn a
stable RTT-to-send-rate profile, thus resulting in unexpected
rate adaption behaviors.

Flexible QoS objective control: PQSA also offers, for the
first time, a tool for content/service providers to explicitly and
flexibly control QoS objective via target delay. To evaluate this
capability we show in Table IV that, for the three target delays
(i.e., ρ = 95, Q = 50, 100, 200ms), PQSA-GR achieves the
actual delays reasonably close to the target ones. By having a
stringent target delay, e.g., 50ms, PQSA-GR tradeoffs a lower
bandwidth efficiency.

Epochs: Another interesting direction is to investigate the
relative performance contributions by key components or
techniques of PQSA. We evaluate the performance impact of
parameter-set re-optimization with different epochs. Specifi-
cally, we run a 240s PQSA-GR flow over dataset #2 to #4
and apply parameter-set re-optimization every 30s (default),
60s, 120s, and 240s (which represent no parameter-set re-
optimization). Table V shows that, with longer epoch, queue-
ing delay is reduced at the sacrifice of bandwidth efficiency,
and PQSA-GR with default epoch can achieve the best QoS.
Due to long timescale bandwidth variations, the parameter-
set trained from PQSA cannot be effective for longer session
duration, which tends to result in bandwidth underutilization.

Throughput quantization: We study the impact of remov-
ing throughput quantization in offline training phase, indicated
by wo-SD1 in Table V. i.e., PQSA takes all traces as a single
throughput level. It is clear that the throughput quantization is
essential to PQSA: PQSA-GR without throughput quantization
(30s wo-SD1 in Table V) has the worse QoS than the others
with it, as a single parameter-set cannot capture the correlation
between bandwidth fluctuations and QoS.

Fairness: PQSA-GR intrinsically is one of the delay-based
TCP, thus it inherits similar fairness as the others like BBR.
We validate it by running two flows together using PQSA-GR,
BBR and Orca at a constant bandwidth of 48Mbps, where flow
1 starts first and lasts for 60s, and flow 2 starts after 5s and lasts
for 55s. As shown in Figure 15, it takes a shorter convergence
time for PQSA-GR and BBR to reach the fair share, compare
to Orca, when the second flow enters the network.

CPU Overhead: Since PQSA-GR is a TCP-like CCA, it re-
sults in little CPU overhead as the other TCP-like CCAs [14],
[32]. In contrast, the CPU overhead of learning-based CCAs
is significantly greater than that of TCP-like, as we measured,
the CPU overhead of Indigo is 11.76%, Orca is 3.37%, and
PCC-Expr is 97.78%.

VI. CONCLUSION

In this work, we argue that current approaches to redesign-
ing the transport layer to include learning-based CCAs are
significantly disruptive and result in suboptimal transport pro-
tocols. Instead of redesigning the transport layer, we argue for
(1) modifying the transport layer to externalize key parameters
and (2) then determining optimal parameters for network
states with a data-driven framework PQSA. Our design choices
ensure that PQSA-optimized GR, is immediately deployable,
and provides optimal and flexible QoS performance to users
like content/service providers.

VII. ACKNOWLEDGMENT

This work was supported by Beijing Municipal Natural
Science Foundation (No. 4212028), National Natural Sci-
ence Foundation of China (No. 62072439 and 62090020),
National Key Research and Development Plan of China
(No. 2022YFB4500400), Strategic Priority Research Program
of the Chinese Academy of Sciences (No. XDA0320300),
Shandong Excellent Young Scientists Fund Program (Over-
seas)(No. 2023HWYQ-045), Shandong Provincial Natural Sci-
ence Foundation (No. ZR2019LZH004), and HKSAR RGC
General Research Fund (GRF/14206521). Corresponding au-
thor: Ke Liu (liuke@ict.ac.cn).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Fillip. https://github.com/fillthepipe/fill-the-pipe.
[2] Fillip-sheep. https://github.com/fillthepipe/fillp-sheep.
[3] PCC-Expr. https://github.com/PCCproject/PCC-Uspace.git.
[4] SMT Bandwidth Trace. https://github.com/ACS-DNET/PQSA-GR-

Traces.git.
[5] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. Classic meets

modern: A pragmatic learning-based congestion control for the internet.
SIGCOMM 20, page 632–647, 2020.

[6] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica
Chen, Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang.
Oboe: Auto-tuning video abr algorithms to network conditions. In
SIGCOMM 18, 2018.

[7] H. T. Alvestrand. Overview: Real time protocols for browser- based
applications, November 2016.

[8] Jeffrey G. Andrews, Stefano Buzzi, Wan Choi, Stephen V. Hanly, Angel
Lozano, Anthony C. K. Soong, and Jianzhong Charlie Zhang. What will
5g be? In JSAC 14, volume 32, pages 1065–1082, 2014.

[9] Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based
congestion control for the internet. In NSDI 18, 2018.

[10] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp
vegas: New techniques for congestion detection and avoidance. In
SIGCOMM 94, page 24–35, 1994.

[11] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. Bbr: Congestion-based congestion control.
Queue, 14(5):20–53, October 2016.

[12] Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael
Schapira. Pcc: Re-architecting congestion control for consistent high
performance. In NSDI 15, 2015.

[13] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad,
Brighten Godfrey, and Michael Schapira. PCC vivace: Online-learning
congestion control. In NSDI 18, Renton, WA, 2018.

[14] Zhuoxuan Du, Jiaqi Zheng, Hebin Yu, Lingtao Kong, and Guihai
Chen. A unified congestion control framework for diverse application
preferences and network conditions. In CoNEXT 21, 2021.

[15] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja
Feldmann, Bruce Maggs, Jannis Rake, Steve Uhlig, and Rick Weber.
Pushing cdn-isp collaboration to the limit. SIGCOMM Comput. Com-
mun. Rev., 43(3):34–44, July 2013.

[16] Sangtae Ha and Injong Rhee. Taming the elephants: New tcp slow start.
Comput. Netw., page 2092–2110, June 2011.

[17] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly
high-speed tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, 2008.

[18] Nathan Jay, Noga Rotman, Brighten Godfrey, Michael Schapira, and
Aviv Tamar. A deep reinforcement learning perspective on internet
congestion control. In ICML 19.

[19] Ingemar Johansson. Self-clocked rate adaptation for conversational
video in lte. In Proceedings of the 2014 ACM SIGCOMM Workshop on
Capacity Sharing Workshop, CSWS ’14, page 51–56, 2014.

[20] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles
Krasic, Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan
Iyengar, Jeff Bailey, Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik
Westin, Raman Tenneti, Robbie Shade, Ryan Hamilton, Victor Vasiliev,
Wan-Teh Chang, and Zhongyi Shi. The quic transport protocol: Design
and internet-scale deployment. In SIGCOMM 17, 2017.

[21] W. K. Leong, Y. Xu, B. Leong, and Zixiao Wang. Mitigating egregious
ack delays in cellular data networks by eliminating tcp ack clocking. In
ICNP 13, 2013.

[22] Wai Kay Leong, Zixiao Wang, and Ben Leong. Tcp congestion control
beyond bandwidth-delay product for mobile cellular networks. In
CoNEXT 17, 2017.

[23] Xu Li, Feilong Tang, Jiacheng Liu, Laurence T. Yang, Luoyi Fu, and
Long Chen. Auto: Adaptive congestion control based on multi-objective
reinforcement learning for the Satellite-Ground integrated network. In
ATC 21, pages 611–624, 2021.

[24] K. Liu and J. Y. B. Lee. On improving tcp performance over mobile
data networks. IEEE Transactions on Mobile Computing, 2016.

[25] Y. Liu and J. Y. B. Lee. An empirical study of throughput prediction in
mobile data networks. In GLOBECOM 15, 2015.

[26] Yiqing Ma, Han Tian, Xudong Liao, Junxue Zhang, Weiyan Wang, Kai
Chen, and Xin Jin. Multi-objective congestion control. In EuroSys 22,
2022.

[27] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang. Tcp westwood: Bandwidth estimation for enhanced transport over
wireless links. In MobiCom 01, 2001.

[28] Tong Meng, Neta Rozen Schiff, P. Brighten Godfrey, and Michael
Schapira. Pcc proteus: Scavenger transport and beyond. In SIGCOMM
20, 2020.

[29] D. Rossi, C. Testa, S. Valenti, and L. Muscariello. Ledbat: The new
bittorrent congestion control protocol. In ICCN 10, 2010.

[30] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Balakr-
ishnan. An experimental study of the learnability of congestion control.
In SIGCOMM 14, 2014.

[31] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu
Wang, Tao Liu, and Bruno Sinopoli. Cs2p: Improving video bitrate
selection and adaptation with data-driven throughput prediction. In
SIGCOMM 16, 2016.

[32] Han Tian, Xudong Liao, Chaoliang Zeng, Junxue Zhang, and Kai
Chen. Spine: An efficient drl-based congestion control with ultra-
low overhead. In Proceedings of the 18th International Conference
on Emerging Networking EXperiments and Technologies, CoNEXT ’22,
page 261–275, 2022.

[33] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic
forecasts achieve high throughput and low delay over cellular networks.
In NSDI 13, pages 459–471, Lombard, IL, April 2013.

[34] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S.
Wahby, Philip Levis, and Keith Winstein. Pantheon: the training ground
for internet congestion-control research. In ATC, 2018.

[35] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian,
and Carmelita Görg. Adaptive congestion control for unpredictable
cellular networks. In SIGCOMM 15, 2015.

[36] Guanghui Zhang and Jack Y. B. Lee. Ensemble adaptive streaming –
a new paradigm to generate streaming algorithms via specializations.
IEEE Transactions on Mobile Computing, 19(6):1346–1358, 2020.

[37] Guanghui Zhang, Ke Liu, Haibo Hu, and Jing Guo. Short video
streaming with data wastage awareness. In 2021 IEEE International
Conference on Multimedia and Expo (ICME), pages 1–6, 2021.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 13,2023 at 03:56:44 UTC from IEEE Xplore. Restrictions apply.

		2023-07-25T08:51:15-0400
	Preflight Ticket Signature

