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Abstract—The current best-effort Internet does not guarantee 
the bandwidth availability between a receiver and a sender, and so 
renders any quality-of-service control difficult, if not impossible. 
This paper proposes a novel predictive buffering algorithm for 
streaming video not from one, but from multiple senders to a 
receiver over the best-effort Internet. In particular, the predictive 
buffering algorithm estimates the mean and variance of the 
aggregate throughput of multiple senders, and then use these 
estimated parameters to predict the future bandwidth availability. 
By appealing to the Central Limit Theorem, the future bandwidth 
availability will tend to be normally distributed, irrespective of the 
distribution of the measurement bandwidth availability. This 
insight enables the buffering algorithm to predict, at runtime, the 
buffering time required to ensure playback continuity. Extensive 
trace-driven simulations show that this predictive buffering 
algorithm can achieve buffer delays that are remarkably close to 
the optimal buffer time.  

I. INTRODUCTION 

The current Internet does not provide any end-to-end 
quality-of-service (QoS) control and thus presents a significant 
challenge to bandwidth-sensitive applications such as 
streaming video and TV contents over the Internet. The 
fluctuations in bandwidth availability can easily lead to 
frequent video playback interruptions that are extremely 
annoying to the end users. 

To tackle this challenge researchers have developed novel 
adaptation mechanisms [1-4] to dynamically adjust the video 
bit-rate to match the varying bandwidth availability. However, 
this often requires the use of special compression algorithms 
(e.g., FGS [1-2]) or real-time media transcoders [4] that may 
not be feasible or available in some applications. 

Without these advanced codecs or transcoders, today’s 
content providers typically prepare a few versions of the same 
content in different bit-rates to cater for users of different 
connection bandwidth. Given the complexity and the time 
required to encode multiple versions of the same video, it is not 
surprising that there will only be a small number of versions of 
the same video content provided. Thus the selected video is 
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often either of too low or too high a bit-rate for the client. The 
former case is trivial as streaming will likely be successful. The 
latter case will be far more complicated as the client now does 
not have sufficient bandwidth to stream the video in the 
conventional manner. Some existing video players will simply 
download the video and begin playback only after substantial 
portion of the video has been downloaded. However, due to the 
inherent variations in network bandwidth availability, even this 
conservative strategy may not be able to ensure continuous 
playback, especially for long video contents. 

This work tackles this problem by developing a novel 
predictive buffering algorithm that can predict, at runtime, the 
buffering time required to ensure playback continuity, 
especially for longer videos (e.g., over a few minutes) and 
when the video bit-rate exceeds the available network 
bandwidth. The proposed predictive buffering algorithm is 
designed around two principles.  

First, during the initial buffering period the client measures 
the mean and variance of the available bandwidth over a given 
interval (e.g., 1 s). Assuming that past and future available 
bandwidth is a stationary random process of unknown 
distribution, then the sum of future bandwidth availability over 
the next n intervals will approach normal as n→∞ due to the 
Central Limit Theorem. Thus knowing the distribution of the 
future bandwidth, the client can then determine the buffer time 
required to ensure playback continuity.  

Second, the bandwidth stationarity assumption obviously 
may not be true in practice, as the available bandwidth from a 
sender to a receiver is simply unpredictable. However, our 
investigation reveals that if there are sufficient numbers of 
senders transmitting data to the client simultaneously, then the 
aggregate available bandwidth will become far more stationary. 
Therefore, by employing sufficient number of senders, each 
transmitting a portion of the data, the stationarity assumption 
can then be satisfied and we can invoke the first principle to 
determine the required buffering time accordingly. 

The proposed predictive buffering algorithm is evaluated 
using extensive trace-driven simulations, with two sets of 
traffic traces obtained from different networks and different 
time frames. The results confirm the relation between the 
aggregate bandwidth stationarity and the number of senders in 
the aggregate data flow, and also show that the predictive 
buffering algorithm can achieve buffer delays that are 



remarkably close to the optimal buffer time. 
The rest of the paper is organized as follows: Section II 

reviews some previous related work; Section III presents 
details of the predictive buffering algorithm; Section IV 
discusses the practical issues of the algorithm; Section V 
investigates the bandwidth model and the predictive buffering 
algorithm using trace-driven simulations; and Section VI 
summarizes the paper and outlines some future work. 

II. BACKGROUND AND RELATED WORK 

Streaming video from multiple sources to a receiver has 
previously been investigated by a number of researchers [5-10]. 
Compared to single-source streaming, multi-source streaming 
has several potential advantages, such as increasing the 
throughput by combining the bandwidth of multiple senders 
[5-7], adapting to network bandwidth variations by shifting the 
workload among the multiple senders [8-9], and reducing 
bursty packet loss by splitting the data transmission among 
multiple senders [5-6].  

For example, Nguyen and Zakhor [5-6] developed rate 
allocation and packet partition algorithms with Forward Error 
Correction (FEC) to minimize the packet loss rate and the 
probability of late packet arrivals. Xu et al. [7] proposed an 
algorithm for media data assignment to reduce buffering delay. 
Kwon and Yeom [8] proposed a dynamic rate allocation and 
packet partition scheme to adapt to the senders’ varying 
throughput. Agarwal and Rejaie [9] proposed an adaptive 
layered streaming algorithm to compensate for variations in the 
measured available bandwidth from all congestion-controlled 
senders. 

The above studies exploited the availability of multiple 
sources and the diversity of multiple network paths to improve 
streaming performance. In another study, Reisslein and Ross 
proposed a novel call admission scheme [12] that can provide 
statistical QoS guarantee in streaming prerecorded 
variable-bit-rate (VBR) videos over ATM. In their study the 
network bandwidth is known but the video bit-rate can vary 
due to the VBR encoding and interactive playback controls. To 
guarantee QoS they proposed to multiplex multiple video 
streams over the network and then model the bit-rate of the 
multiplexed aggregate video flow as a stochastic process, and 
then apply the Central Limit Theorem and Large Deviation 
theory to obtain probabilistic bounds. 

In comparison, the intra-flow bandwidth aggregation model 
developed in this paper also appeals to the Central Limit 
Theorem (CLT) to obtain probabilistic bounds. However, there 
are two fundamental differences. First, Reisslein and Ross’s 
work [12] solved the problem of varying video bit-rate but with 
constant network bandwidth, while our work solved the 
problem of constant video bit-rate but with varying network 
bandwidth. Second, the varying video bit-rate in Reisslein and 
Ross’s work, although modeled as a random process, is known 
a priori as they are prerecorded. By contrast, our work does not 
assume a priori knowledge of the varying available bandwidth, 
and thus we need to develop an estimation algorithm to 
measure and estimate the parameters of the underlying 
stochastic process. 

In another related work, Hui and Lee [10-11] proposed to 
model the aggregate available bandwidth of multiple 
independent senders as a normal distribution by appealing to 
the CLT. Based on this model they developed download [10] as 
well as adaptive streaming algorithms [11] to provide 
probabilistic QoS guarantee in streaming video over best-effort 
networks. 

Comparing to this work, Hui and Lee’s study drew on the 
observation that if the senders are independent, then the sum of 
their available bandwidth at any given time will tend to be 
normally distributed when there are sufficient number of 
senders. By contrast, we argued in this work that even if the 
sum of the available bandwidth across multiple senders is not 
normally distributed, the sum of the future available bandwidth 
over a period of time will still tend to be normally distributed 
according to the CLT, provided that the aggregate available 
bandwidth is sufficiently independent temporally and is 
stationary. For clarity, we refer to the model in Hui and Lee’s 
work as the inter-flow bandwidth aggregation model (i.e., sum 
over multiple senders) and refer to the model proposed in this 
work the intra-flow bandwidth aggregation model (i.e., sum 
over time). 

III. PREDICTIVE BUFFERING ALGORITHM 

In the following we first formulate the system model and 
then present the predictive buffering algorithm. Note that we 
do not consider the issue of data assignment (i.e., how to split 
data across the senders) in this study and refer the readers to 
the related work (e.g., [5] and [7]) for examples. 

A. System Model 
To begin a new video session, a client will send requests to n 

senders to initiate data transfer. We assume that the video data 
are delivered from each sender to the receiver using a transport 
protocol with congestion control mechanisms such as TCP or 
TCP-friendly streaming protocols (e.g., TFRC [13]) such that 
the bandwidth available to the video session will vary 
according to the instantaneous load of the network path.  

The client upon receiving the initial video data will begin the 
buffering period, and then start playback once sufficient 
amount of video data are buffered. Specifically, let Ci be the 
total amount of data received from all n senders in time interval 
i after the buffering process begins; R be the video bit-rate and 
w be the time to start playback. To ensure continuous playback 
we must ensure that the amount of data received at any time 
must not be less than the amount of data consumed, i.e., 
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or else buffer underflow will occur, causing playback 
interruptions. The challenge is to find, at run time, the smallest 
buffering period w that satisfies (1). 

B. Prediction Algorithm 
At each time interval, the client will check to see if sufficient 

data have been received to sustain continuous video playback 
for the rest of the video session. Let L be the total video length 



in number of time intervals and Bi be the amount of data 
received up to the time interval i. Then the client can guarantee 
continuous playback for the entire video session if the 
following constraint is satisfied: 
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where the L.H.S. is the amount of data already buffered plus 
the amount of data to receive in the future k time intervals, and 
the R.H.S. is the amount of data to be consumed in the future k 
time intervals if playback is to begin from time interval i. 

Otherwise the client will buffer for another time interval and 
then check (2) again, and repeat the process until (2) is satisfied. 
However the precise future bandwidth availabilities {Cj | j≥i+1} 
are obviously not known a priori and so we need to devise a 
way to estimate it. 

Specifically, let the aggregate bandwidth {Ci’s} be 
independent and arbitrarily distributed. The only assumption 
needed is that the future available bandwidth {Cj | j=i+1,i+2,…} 
maintains the same mean and variance as the past available 
bandwidth up to the current time interval i: {Cj | j=1,2,…,i}. In 
other words, the client assumes that the aggregate available 
bandwidth of the n senders is stationary with respect to their 
mean and variance. As the {Ci’s} are independent, the CDF of 
the summation term in the L.H.S. of (2) will be equal to the 
convolution of the CDFs of the k aggregate bandwidths {Cj | 
j=i+1,i+2,…,i+k}, denoted by Fk(⋅). Now as the {Ci’s} are 
independent with the same mean µ and variance σ2 the CDF 
Fk(⋅) will approach normal with mean kµ and variance kσ2 as 
k→∞ according to the Central Limit Theorem – intra-flow 
bandwidth aggregation. 

Thus the minimum buffering time needed to guarantee 
playback continuity with a given probability of ∆ can be 
computed from 
 { }LkBRkFw iki
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where the mean and variance of Fk(⋅) are estimated using the 
measured mean and variance of the aggregate bandwidth {Ci’s} 
during the initial buffering period. 

IV. PRACTICAL ISSUES 

There are two subtle issues in the predictive buffering 
algorithm presented in Section III. The first one is related to the 
two assumptions on the underlying stochastic process 
governing the aggregate available bandwidth and the second 
one is related to the estimation of the mean and variance of the 
aggregate bandwidth {Ci’s}. 

A. Stationarity and Independence 
In computing the CDF Fk(⋅) in (3) it was assumed that the k 

aggregate bandwidth {Ci’s} are independently and arbitrarily 
distributed, but with the same mean µ and variance σ2. 
Nevertheless, it is clearly very difficult, if not impossible, to 
predict the means and variances of future available bandwidth 
for individual senders, and so the key is to combine multiple 
independent senders such that the non-stationarity of individual 

senders will be partially cancelled out, thus leading to a more 
stationary stochastic process (with respect to the aggregate 
mean and variance) than that of a single sender. 

Specifically, consider n senders with the available bandwidth 
of sender j in time interval i denoted by ci,j. Then with a 
buffering period of w time intervals, the measured mean 
bandwidth of sender j in the interval [1,w] will be equal to 
 ],...,1|[),1( , wicEw jij ==µ  (4) 

The future bandwidths, say from time intervals w+1 to 2w, 
obviously may vary randomly and even the mean may also 
vary. In particular, if the stochastic process is non-stationary, 
e.g., with a decreasing mean bandwidth µj((x+1)w,(x+2)w) < 
µj(xw,(x+1)w), then the mean future bandwidth will drift 
further and further away from the initial measured mean, thus 
violating the stationarity assumption. 

However, if there are multiple independent senders, their 
deviations in the future mean bandwidth will also be 
independent. Consequently some of the senders will exhibit 
increases in their mean bandwidth and the others decreases in 
their mean bandwidth, thereby partially cancelling out the 
deviations. The case for variance is similar and thus is not 
repeated here. 

In addition to stationarity, we also assumed that the {Ci’s} 
are independent in devising the predictive buffering algorithm. 
Our investigation of real-world traffic traces show that the 
aggregate available bandwidth does exhibit some temporal 
correlations within a short time scale but the correlations 
diminish rapidly over longer time scales. We will return to the 
stationarity and independence issues in Section V and 
investigate their properties using trace-driven simulations. 

B. Parameter Estimation 
During the initial buffering period the client measures the 

mean and variance of the aggregate available bandwidth. Being 
measurements of a stochastic process the measurement 
accuracy will depend on the number of samples used, i.e., the 
length of the measurement period. This latter point leads to 
another subtle issue as the length of the measurement period is 
simply equal to the buffering period, which can vary 
significantly depending on the ratio of the video bit-rate to the 
mean aggregate available bandwidth as well as the variances of 
the available bandwidth. 

For example, if the available bandwidth is substantially 
lower than the video bit-rate then the buffering period will 
likely be longer, thus allowing more accurate measurement of 
the required parameters. On the other hand, if the available 
bandwidth is comparable to the video bit-rate then the 
buffering period as computed from (3) can be very short. In 
this case if the measured parameters are inaccurate then the 
computation of (3) will become inaccurate as well, possibly 
resulting in subsequent playback interruptions. 

To guard against this problem, we employ the method of 
confidence interval [14] in estimating the mean and variance 
during the buffering period. Specifically, when the sample size 
w is more than 30, we can assume that the sample mean 
distribution of µ is normally distributed. The (1−α) confidence 
interval of sample mean is given by 
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where σ is the samples’ standard deviation and zα/2 is equal to 
2.5 for α = 0.1 (i.e., 99% confidence). Thus the client can use 
the lower limit of the confidence interval as the sample mean. 
In extreme cases with sample size w < 30, the sample mean 
distribution is replaced by the Student’s t-distribution. 

V. PERFORMANCE EVALUATION 

In this section we evaluate the performance of the predictive 
buffering algorithm using trace-driven simulations.† There are 
two sets of trace data in the simulations. The first set from the 
NLANR PMA archive [15], which captured the packet-level 
trace data at an Internet gateway at Bell Labs in 2002. The 
second set of trace data is obtained from our measurements 
conducted in the PlanetLab [17]. These traffic traces are then 
used as cross traffic in the simulation topology in Fig. 1. 

The simulator is implemented using NS2 [16], with up to N 
senders {S1, S2, …, SN} transmitting data simultaneously to 
the receiver R using TCP as the transport. The senders do not 
perform additional rate control and simply transmit data as fast 
as TCP allows. We choose TCP for its ability to automatically 
adapt to the network load (i.e., the cross traffic) to obtain a fair 
share of the available bandwidth for transporting video data. 
Other transport protocols such as TFRC [13] can also be used. 
The predictive buffering algorithm operates independently 
from the actual transport protocol used. 

A. Bandwidth Stationarity 
As discussed in Section IV-A the number of senders in the 

aggregate data flow is expected to exert a significant impact on 
the stationarity of the aggregate available bandwidth. To test 
this intuition we ran trace-driven simulations using the two 
trace data sets and then study how far the mean available 
bandwidth will deviate from the initial estimations. Specifically, 
we consider periods of duration of w time intervals, i.e., [1,w], 
[w+1,2w], …, with the mean bandwidth of the initial period, 
i.e., 
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as the estimated mean of the aggregate available bandwidth of 
the data flow. We then compute the mean bandwidth of the 
subsequent periods to see how far they deviate from the 
estimated mean: 
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where v is the total number of w-time-interval periods. Similar 
calculations are also performed for the standard deviation of 
the aggregate available bandwidth. 

                                                        
† Due to space limitation some of the simulation results and performance 
comparisons are omitted. Interested readers are referred to 
http://www.mclab.info/publications.htm for an extended version of this paper. 
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Figure 1. Simulation topology 
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Figure 2. Deviation of mean and standard deviation from initial estimations 

 
If the aggregate available bandwidth is a stationary 

stochastic process we would expect Davg to be small, and vice 
versa. Fig. 2 plots the values of Davg with w=100 for 1 to 8 
senders. For both sets of trace data we can clearly observe the 
consistent decrease in Davg when the number of senders is 
increased from 1 to 8. This suggests that by aggregating the 
bandwidth of more senders, the resultant combined data flow 
does exhibit higher level of stationarity. The results also show 
that the PlanetLab traces are generally more stationary then 
that of the NLANR PMA traces. 

B. Temporal Correlations 
Another issue is the independence of the aggregate available 

bandwidth across different time intervals. To investigate this 
issue we compute the correlations between the aggregate 
available bandwidth of different time lag τ, where lag is the 
temporal distance between them, i.e., between Cj and Cj+τ. 

Fig. 3 shows the CDF of the absolute value of the temporal 
correlations of the PlanetLab trace data, using a time interval of 
1 second. A correlation value of 0.2 and lower is considered to 
be independent. Not surprisingly there are a fair amount of 
temporal correlations between adjacent samples (e.g., lag of 1) 
but then the correlations diminish rapidly for larger lags. 
Considering that a typical video session often last for hundreds, 
if not thousands, of seconds only a small portion of the Cj’s 
will be correlated and so the impact should be small. 
Nevertheless we are conducting additional measurements and 
calculations to more thoroughly quantify the impact of partial 
temporal correlation to the buffering algorithm’s performance. 

C. The Predictive Buffering Algorithm 
In this section we evaluate the performance of the proposed 

predictive buffering algorithm using trace-driven simulations. 
The video length is 1800 seconds and the video bit-rate varies 
from 1 to 1.3 times the mean aggregate available bandwidth 
(i.e., R/µ = 1, 1.1, 1.2 and 1.3). Thus other than the case of 



R/µ=1 all other cases suffer from insufficient bandwidth and so 
rely on the predictive buffering algorithm to determine the 
minimum buffer time needed to ensure continuous video 
playback. In case the client runs into buffer underflow due to 
data not arriving in time for playback, it will suspend playback 
and then rerun the predictive buffering algorithm to buffer 
sufficient video data before resuming playback. An alternative 
approach (not used in this work) would be to continue playback 
despite the missing data and then attempt to conceal the visual 
degradation through error concealment techniques. In this latter 
approach playback performance will then be measured by the 
visual quality (e.g., PSNR) instead. 

Fig. 4 plots the successful playback ratio using the PlanetLab 
traces with video bit-rate ratio equals to 1.1 (i.e., R/µ = 1.1). 
Successful playback ratio is the proportion of simulation runs 
with no playback interruption (i.e., buffer underflow) during 
the entire video playback session. There are three curves in the 
figure: the Sample Mean curve is plotted with the mean 
aggregate available bandwidth (i.e., µ(1,w)) of the initial 
buffering period as input to computing the minimum buffering 
time using (3); the 99% CI Mean curve is plotted with the 
lower limit of the 99% confident interval mean (c.f. (5)) as 
input to (3); and the Accurate Mean curve is plotted with the 
real actual mean of the aggregate flow as input to (3). This last 
case is not realizable as it requires a priori knowledge of future 
available bandwidth. 

The first observation is that the performance when using the 
sample mean is significantly lower than the case when the 99% 
CI mean is used. This is because in this simulation the video 
bit-rate is only 1.1 times the mean available bandwidth and so 
the resultant buffering time is relatively short, thereby leading 
to inaccurate measurement of the bandwidth parameters. In our 
other simulations with higher video bit-rate ratios the 
difference will become substantially smaller as the buffering 
period lengthens. 

The second observation is that the performance increases as 
the number of senders in the aggregate flow increases. With 8 
senders the performance of the predictive buffering algorithm 
using the 99% CI mean already approaches the case when the 
accurate mean is known. This is a direct result of the improved 
stationarity of the aggregate available bandwidth when there 
are many senders. 

Using the 99% CI mean we investigate further the 
performance of the predictive buffering algorithm at video 
bit-rate ratios ranging from 1 to 1.3 using the NLANR PMA 
traces in Fig 5 to Fig. 7. To provide a finer scale for 
performance comparison we plot in Fig. 6 the average pause 
count − the average number of buffer-underflow-induced 
playback interruptions per streaming session, and in Fig. 7 the 
average underflow time – the average total duration of 
playback suspension per streaming session. 

The results show that increasing the number of senders 
generally results in better performance, i.e., higher successful 
playback ratios, fewer playback pauses, and shorter underflow 
time for all 4 cases of video bit-rate ratios in both traces. In fact 
the algorithm achieves a successful playback ratio of 100% 
when there are 7 or more senders for the NLANR PMA traces. 
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Figure 3. The CDF of temporal correlation with different lag values 
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Figure 4. Comparison of successful playback ratio when using Sample Mean, 

99% CI Mean, and Accurate Mean (PlanetLab traces) 
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Figure 5. Successful playback ratio for NLANR PMA traces 
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Figure 6. Average pause count for NLANR PMA traces 
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Figure 7. Average underflow time for NLANR PMA traces 
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Figure 8. Average buffering time for different simulation runs 

 
Fig. 8 compares the average buffering time for 8 different 

sets of simulation configurations. Runs 1 to 4 are from the 
PlanetLab traces with R/µ = 1, 1.1, 1.2 and 1.3 respectively, 
and runs 5 to 8 are from the NLANR PMA traces with R/µ = 1, 
1.1, 1.2 and 1.3 respectively. We also plot the upper bound – 
which is the time to download the entire video, and the lower 
bound – which is the minimum buffering time required for 
continuous video playback assuming all the future bandwidth 
availabilities are known a priori. The lower bound is not 
realizable in practice but provides a useful benchmark to 
evaluate the performance of the predictive buffering algorithm. 

There are four observations. First, there is an increasing 
trend from sets 1 to 4, and from sets 5 to 8. This is due to the 
increasing video bit-rate ratios (R/µ) used, which longer 
buffering times are needed to compensate for the higher video 
bit-rate ratios. Second, the computed buffering time is 
remarkably close to the lower bound, meaning that the 
predictive buffering algorithm can achieve near-optimal 
buffering time and maintain a high successful playback ratio. 
Third, the differences between the Sample Mean values and the 
99% CI mean values are negligible. This shows that by using 
the confidence interval mean we can achieve substantially 
better successful playback ratio (c.f. Fig. 4) and yet with only 
negligible increase in the buffering time. Finally, the average 
buffering time for PlanetLab traces (runs 1 to 4) is generally 
closer to the lower bound than the one for the NLANR PMA 
traces (runs 5 to 8). This is because the NLANR PMA traces 
generally exhibit significantly more and larger variations in the 
available bandwidth. Thus to compensate for the larger 
bandwidth variations the predictive buffering algorithm must 
extend the buffering time longer to ensure continuous 
playback. 

VI. SUMMARY AND FUTURE WORK 

In this work we developed a new predictive buffering 
algorithm for streaming video from multiple senders to a 
receiver. The proposed algorithm incorporates the impact of 
variations in the available bandwidth and uses that knowledge 
to inform the buffering operation. The trace-driven simulation 
results show that the predictive buffering algorithm can achieve 
very high successful playback ratio while keeping the buffering 
time close to the optimal. 

Beyond this work there are still a number of open problems 
that warrant further study. First, due to resource constraints our 
current measurements conducted in the PlanetLab are limited 
to durations of approximately 2 hours. Although the current 

results show that the aggregate available bandwidth in this time 
scale is relatively stationary, whether it is still true for even 
longer durations or for non-PlanetLab hosts remains an open 
question. This will impact applications where very long video 
sessions are streamed, such as video conference proceedings. 
On the other hand, the predictive buffering algorithm can also 
be integrated with content adaptation [1-4] and playback rate 
adaptation algorithms [11, 18] to further increase the system’s 
resilience to bandwidth fluctuations and to support the 
streaming of live videos. Second, in practical applications some 
of the senders may be highly correlated, e.g., if they share the 
same network bottleneck, and in such cases one will either 
need a way to identify and eliminate such senders, or to extend 
the algorithm to compensate for the correlations. Other related 
open problems include sender-limited rather than 
network-limited bandwidth variations, the discovery and 
selection of senders, the interference between multiple video 
sessions with overlapping senders, and so on. 
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