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Abstract—Fueled by the growth of 3G/4Gmobile networks, mobile video streaming has become one of themain applications in the

mobile Internet. Due tomobile networks’ inherent bandwidth fluctuations, the industry aswell as researchers have developedmany

adaptive streaming algorithms to compensate for such fluctuations to improve streaming performance.Given the wide range of network

settings, it is not surprising that existing algorithms can and do perform differently across different network and system conditions. This

work breaks away from the conventional one-size-fits-all approach to designing adaptive streaming systems by developing a new

framework called PSRAwhere past throughput trace data - captured as a by-product of streaming, are analyzed to construct a statistical

model to automatically tune the adaptation algorithm for future streaming sessions according to the underlying network and system

configurations. Compared to existing approaches, the PSRA-optimized streaming algorithm can achieve predictable, consistent, and

controllable streaming performance across awide-range of network and system configurations.Moreover, PSRAoffers to service provider

a new tool to precisely control the tradeoff between video quality and streaming performance. Results from extensive trace-driven

simulations as well as experiments verified PSRA’s performance under real-worldmobile network and system configurations.

Index Terms—Dynamic adaptive streaming over HTTP, mobile network, performance guarantee, video streaming

Ç

1 INTRODUCTION

MOBILE video streaming has grown tremendously in
recent years and it is now one of the main applications

in the mobile Internet [1]. Unlike fixed networks, bandwidth
availability in mobile data networks are known to exhibit
far more fluctuations, thereby posing significant challenges
to the provisioning of bandwidth-sensitive streaming
services. In response, the industry developed adaptive
streaming systems to dynamically adjust the video bitrate
to compensate for the network’s bandwidth variations.
Most notably is Apple’s HTTP Live Streaming (HLS) proto-
col [2] which has been widely deployed not only in Apple
devices, but are also supported by recent Android devices
as well. Similar solutions have also been developed by
Microsoft [3], Adobe [4], Netflix [5], and the research com-
munity [6], [7], [8], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28].

Nevertheless, while Apple’s HLS protocol was successful
in reducing video interruptions, also known as playback
rebuffering [7], [8], it is done at the expense of reduced
video quality-previous works have shown that the protocol
was designed to be conservative in its video bitrate selec-
tions [6]. Moreover, even with such conservative approach,
playback rebuffering is still unavoidable from time to
time—ultimately the actual network conditions still dictate
the resultant streaming performance.

This last point is the crux of the challenge—current adap-
tive streaming algorithms were designed to function in
mobile networks of all sizes and shapes, ranging from 3G net-
works with a few Mbps peak bandwidth all the way to LTE
networks with 100þ Mbps peak bandwidth; from lightly
loaded, well-covered mobile cells to crowded/congested
cells; and so on. In other words, current designs were all
intended to be one-size-fits-all.

While this approach to designing adaptive streaming
algorithms can still improve performance over non-adap-
tive streaming, we argue that it has two fundamental limita-
tions. First, most, if not all, adaptive streaming algorithms
have internal parameters which require tuning to achieve
the desired performance tradeoff (e.g., streaming perfor-
mance versus video quality). It is easy to see that a single set
of tuned parameters is unlikely to be optimal for the wide
range of networks across the world.

Second, it follows that an adaptive streaming algorithm
will likely perform differently in different networks/systems.
Indeed this is the norm today as it is almost an accepted
notion that streaming performance can and do vary with the
network conditions. In other words, streaming the same
video from the same mobile operator even in the same loca-
tion could still result in difference performances depending
on the specific network conditions at the time.

Thiswork investigates a radically-different approach to the
problem of adaptive video streaming. In addition to develop-
ing an adaptive streaming algorithm to compensate for real-
time bandwidth fluctuations, we propose to tune the adaptive
streaming algorithm itself for the specific network it operates
in to exploit the inherent characteristics of the underlying net-
work. This breaks way from the one-size-fits-all approach
and opens a new paradigm to network-optimized adaptive
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video streaming. We call this the Post-Streaming Rate Analy-
sis (PSRA) framework.

Through extensive trace-driven simulations and also
experiments conducted in production mobile networks, we
show that PSRA can overcome the two aforementioned lim-
itations. First, by exploiting knowledge of network charac-
teristics, PSRA-tuned adaptive streaming outperformed
existing protocols across a wide range of network condi-
tions. Second, PSRA enables the service provider to explicitly
control the streaming performance, e.g., by specifying the
target rebuffering probability directly, and it will then incor-
porate system-wide characteristics including the underlying
network’s bandwidth properties, the video bitrate choices
available, video duration, and so on, to automatically tune
the adaptive streaming algorithm to achieve the target
rebuffering probability consistently.

The rest of this paper is organized as follows. Section 2
reviews some previous related works; Section 3 investigates
performance variations of existing adaptation algorithms;
Section 4 presents the PSRA framework; Section 5 evaluates
PSRA using trace-driven simulations; Section 6 tackles the
challenge due to ultra-long streaming sessions; Section 7
reports experimental results from our prototype implemen-
tation of PSRA; and Section 8 summarizes the study and
outlines some future work.

2 BACKGROUND AND RELATED WORK

In recent years much work has been done in the area of
mobile video streaming. Beginning with non-adaptive
streaming [9], [10], [11] the industry soon realized that the
inherent bandwidth fluctuations in mobile networks posed
significant challenges to bandwidth-sensitive streaming
services. This led to intense research in recent years on the
design of adaptive streaming systems where the video
bitrate is dynamically adjusted to compensate for network
bandwidth variations.

A detailed review of existing adaptive streaming algo-
rithms is beyond the scope of this work. Interested readers
are referred to a recent survey by Seufert et al. [12]. In the
following we briefly summarize recent works in the litera-
ture and developments in the industry.

2.1 Literature Review
We can classify adaptive streaming algorithms into three
categories: bandwidth-based, buffer-based, and hybrid
bandwidth-buffer-based algorithms.

In bandwidth-based algorithms, video bitrate selection is
mainly driven by bandwidth measured at the application
layer (i.e., throughput) or by bandwidth estimated from
lower-layer methods. For example, Liu et al. [13] proposed
an adaptive streaming algorithm (henceforth called LBG)
using a smoothed HTTP throughput measured based on the
segment fetch time to detect available bandwidth and then
employ step-wise increase/aggressive decrease method for
bitrate switches to avoid video rebuffering. Jiang et al. [14]
(henceforth called FESTIVE) applied harmonic mean to past
segment downloading throughput to reduce the error intro-
duced by outliers. There are many other examples (e.g.,
[15], [16]). While the exact methods vary the general princi-
ple is to predict future bandwidth availability from past
throughput measurements.

Buffer-based algorithms make use of client video buffer
occupancy to drive the adaptation of video bitrate. For

example, De Cicco et al. [17] proposed an algorithm to track
a specified target buffer occupancy using a feedback con-
troller to prevent playback rebuffering. Huang et al. [18]
proposed an algorithm (henceforth called BBA2) to adapt
video bitrate using only client buffer occupancy, arguing
that sudden bandwidth changes can cause throughput-
based algorithms to overestimate/underestimate network
capacity [19], resulting in unnecessary video rebuffering.

Naturally, bandwidth and buffer information can also be
combined in bitrate adaptation. For example, besides
throughput estimate, Tian et al. [20] employed feedback con-
trol using buffer occupancy as signal to adjust video bitrate
selection, aiming to achieve agile and smooth video adapta-
tion. Yin et al. [21] (henceforth called FastMPC) used both
throughput estimate and buffer occupancy measurement in
their proposed predictive control algorithm to adapt video
bitrate to maximize users’ quality of experience. Spiteri et al.
[22] (henceforth called BOLA-U) employed Lyapunov opti-
mization technique to design adaptive video streaming algo-
rithm based onmeasured throughput and buffer occupancy.

As opposed to passive throughput measurements, Mok
et al. [23] employed active probing using packet trains to
estimate the available bandwidth and use buffer occupancy
as a cushion to avoid sharp video quality drop. Xie et al.
[24] went further to develop an adaptive video streaming
framework that is integrated with the LTE infrastructure so
that information such as PHY-layer resource allocation can
be used in bandwidth estimation. In addition to using
recently measured bandwidth, Hao et al. [25], Riiser et al.
[26], Yao et al. [27] and Bokani et al. [28] investigated the
use of location-based/trip-based bandwidth information
for adaptive streaming under mobility (e.g., in a car).

2.2 Industry Developments
Adaptive video streaming has been implemented widely by
several companies, including Apple’s QuickTime Player
using HTTP Live Streaming (HLS) [2], Adobe’s OSMF
player [16] using HTTP Dynamic Streaming [4], Microsoft’s
Smooth Streaming [13], Akamai http-based adaptive video
streaming [29], and Netflix’s player [5]. Moreover, the
MPEG committee has recently ratified the Dynamic Adap-
tive Streaming over HTTP (MPEG-DASH) [30], [31] stan-
dard to enable interoperability between encoders, servers,
and players from different vendors.

Apart from adaptation algorithms implemented in
Adobe’s OSMF player [32] and in the Android OS Stagef-
right [33] (henceforth called Stagefright), which are available
as open source projects, the adaptation algorithms imple-
mented by other commercial players are proprietary. Inter-
ested readers are referred to the studies by Akhshabi et al.
[34], Riiser et al. [6], and De Cicco et al. [17], [35] for evalua-
tion of commercial implementations.

2.3 Discussions
Existing measurement studies by Akhshabi et al. [34], Riiser
et al. [6], andDeCicco et al. [17], [35] and also our own investi-
gations all show that existing adaptation algorithms have
widely different design tradeoffs, resulting in very different
streaming performance and video quality even under the
same network condition. Moreover, none of the existing
streaming algorithms were designed to maintain a given tar-
get streaming performance over different network conditions.
Consequently, as will be demonstrated in the next section,
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existing algorithms can and do perform very differently
under different network conditions, different video duration,
or even different video bitrate compositions. These are a
direct consequence of the one-size-fits-all design approach.

By contrast, the proposed PSRA framework is designed
to automatically tune itself to the underlying network and
system conditions so that it not only can achieve predictable
and consistent streaming performance over a wide range of
system and network parameters, but it also enables the ser-
vice provider to explicitly control the tradeoff between video
quality and streaming performance.

An early version of the PSRA framework was reported in
[35], [36], [37]. This study extends the previous works in three
significant aspects. First, we extended the original PSRA
framework which was directly coupled with the adaptation
algorithm using a single performance metric (i.e., rebuffering
probability), to a generalized version that can be used to opti-
mize different rate-adaptation algorithms according to a wide
range of performance metrics. In particular, we developed
two new generalized metrics called rebuffering ratio and
rebuffering numbers, both of which subsumes rebuffering
probability (as used in our previous studies) as a special case.

Second, this study investigated the challenge in streaming
ultra-long videos (e.g., 2 hours) with predictable and consis-
tent performance. The newly generated results revealed
that performance predictability could degrade in streaming
ultra-long videos. This problemwas addressed using a feed-
backmechanism presented in Section 6.

Third, in this study we set out to conduct a systematic
and thorough evaluation of PSRA’s performance and com-
pare it to leading streaming algorithms. To this end we first
enhanced the simulator’s fidelity by incorporating random
user arrivals, variable video duration, trace data concatena-
tion, etc., to capture real-world operational scenarios. Next
we implemented 7 existing streaming algorithms to com-
pare to PSRA quantitatively. Last but not least, we reported
experimental results from an implementation of the PSRA
framework streaming real video data using Apple’s HLS
protocol to smartphones over a production mobile network.
The experimental results are significant in that: (a) it verified
PSRA’s performance predictability in a real implementation
running in a production mobile network; and (b) it demon-
strated PSRA’s feasibility for use in today’s adaptive video
streaming platforms.

3 MOBILE VIDEO STREAMING RE-EXAMINED

In this section we demonstrate the limitations of the one-
size-fits-all approach to designing adaptive streaming algo-
rithms. We employed extensive trace-driven simulations
with real-world mobile network HTTP/TCP throughput
trace data to evaluate the performance of 7 state-of-the-art
adaptive streaming algorithms, two from the industry:
OSMF [32] and Stagefright [33]; and 5 from the research com-
munity: LBG [13], FESTIVE [14], BBA2 [18], FastMPC [21],
and BOLA-U [22]. Although we were not able to re-imple-
ment Apple’s proprietary adaptation algorithm in iOS, we
were able to compare to it experimentally via our prototype
implementation in Section 7.

All 7 streaming algorithms employed HTTP-based video
streaming where a video is encoded into multiple bitrate
versions and then delivered in fixed-duration segments. The
encoder generates a playlist listing the available bitrates
and their URLs for all video segments. A client fetches the

playlist and then begins the streaming session by sequen-
tially requesting video segments of available bitrates accord-
ing to its rate-adaptation algorithm.

3.1 Experiment Setup
Mobile network bandwidth characteristics can vary widely
in practice and so far no known existing model can accu-
rately capture their characteristics [38], [39]. Therefore in
this work we primarily employed trace-driven simulations
as a mean to evaluate different streaming algorithms in a
realistic, consistent, and repeatable manner.

We collaborated with a mobile operator to setup a plat-
form in a production 3G/HSPA network to collect TCP
throughput trace data. The server host runs Linux with the
Apache httpd [40] serving video data over TCP CUBIC [41].
The client is a notebook computer running Microsoft Win-
dows 7, equipped with a 3G/HSPA USB modem for con-
necting to the mobile network. We developed a custom
software to automatically initiate long TCP sessions to mea-
sure the actual throughput achievable over the mobile net-
work. The full packet traces were captured at the client side.
A total of 30 weeks’ trace data were captured in three loca-
tions (�3 months for each location) for the equivalent of
around 60,000 5-min streaming sessions. It is worth noting
that these captured throughput trace data were subject to
all kinds of interferences such as radio signal quality varia-
tions, competing users sharing the same mobile cell, radio
interferences, time-of-day and day-of-the-week traffic varia-
tions, and so on, thereby enabling realistic evaluation of
streaming algorithms under real-world network conditions.

The trace-driven simulator was developed in C. It repli-
cated the throughput between the server and the client
using the captured throughput trace data and simulated
HTTP-based video streaming with a prefetch-buffering of
20 seconds video after which playback begins (21 seconds
for BOLA-U as it employed 3-second segment duration). In
case the player’s buffer becomes empty then playback will
be suspended, i.e., rebuffering, until one complete video
segment is received. Unless stated otherwise video duration
was 5 minutes and the available video bitrates followed the
Apple profile listed in Table 1.

3.2 Performance in Real-World Mobile Networks
A key observation from the experiments is that a streaming
algorithm’s performance, despite being adaptive, can and do
vary substantially across different networks/system parame-
ters. Table 2 lists the rebuffering probability—defined as the
proportion of streaming sessions which suffered one or more
rebuffering events, for the 7 streaming algorithms in three net-
work locations. Not surprisingly, the performance varied sig-
nificantly across streaming algorithms, e.g., in location #3
Stagefright achieved rebuffering probability of zero versus
LBG’s 0.326.

TABLE 1
Bitrate Profiles Used in Simulations

Source Video Encoding Bitrates (kbps)

Apple [42]
(default)

200, 400, 600, 1,200, 3,500, 5,000, 6,500, 8,500

Adobe [43]
300, 600, 900, 1,200, 1,500, 2,000, 2,500, 3,000, 3,500,
4,000, 5,000, 6,000, 8,000

Stefan et al. [44]

50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 900, 1,200,
1,500, 2,000, 2,500, 3,000, 4,000, 5,000, 6,000, 8,000
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This does not necessarily imply LBG is inferior to Stagef-
right however. We list in Table 3 the average video bitrate
delivered. Clearly Stagefright’s perfect streaming perfor-
mance is achieved at the expense of low video bitrate (e.g.,
1.28 Mbps versus 2.78 Mbps for LBG in location #3). Similar
observations can also be drawn for the other algorithms.
This result demonstrates that different streaming algorithms
implicitly achieve a different set of tradeoffs between video
quality (as measured by delivered video bitrate) and stream-
ing performance (asmeasured by rebuffering probability).

More importantly, even the same algorithm’s performance
can also vary widely across different locations. For example,
FastMPC’s rebuffering probability varied from 0.051 in loca-
tion #3 to 0.696 in location #2. This shows that despite the
streaming algorithm’s efforts in adapting to the changing net-
work conditions, their streaming performance can still vary
significantly across different locations. Interested readers are
referred to Appendix I, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TMC.2017.2694418 formore details.

In addition to network locations, our experiments also
revealed some unexpected dependencies. First, we investi-
gated the impact of video duration on streaming perfor-
mance—an often neglected system parameter in existing
work. The results in Table 4 demonstrate one common
property for all five protocols—the rebuffering probability
increases with longer video duration. This is because longer
video duration generally offers more opportunities for
playback rebuffering. This reveals an inherent limitation
of existing algorithms, i.e., their streaming performances
can deteriorate substantially for longer videos. For example,
compared to 300-second video duration the rebuffering
probability increased from 0.068 to 0.217 for LBG and from
0.064 to 0.18 for BOLA-U when applied to 2-hour videos.

Second, we investigate in Table 5 the impact of available
bitrate choices – another often neglected system parameter.
In addition to the bitrate profile after Apple [42] we tested
two other bitrate profiles after Adobe [43] and Stefan et al.
[44]. Despite the fact that all three profiles offer a wide
range of bitrates, two of the algorithms, namely LBG and

Stagefright, exhibited significant (one order of magnitude)
variations across the three profiles. Thus even the available
bitrate choices can have significant impact to streaming
performance. Without an understanding of the interactions
between bitrate choices and the rate adaption algorithm,
it will be difficult, if not impossible, to optimize one for
the other.

The results in the previous section clearly demonstrated
that the performance of existing adaptive streaming algo-
rithms can and do vary widely in real-world network envi-
ronments. This presents a significant challenge to the service
provider as it is simply not possible to predict, let alone con-
trol, the streaming performance such that a consistent user
experience can be delivered. This may be acceptable to users
streaming user-generated videos but will become a signifi-
cant issue for the emerging premium higher-quality paid
mobile streaming services. We present the PSRA framework
in the next section to tackle this challenge.

4 POST-STREAMING RATE ANALYSIS (PSRA)

PSRA is built upon two principles. First, by simulating and
analyzing past streaming sessions PSRA constructs a statisti-
cal model to quantify the relation between streaming parame-
ters and streaming performance. This is known as the analysis
phase and is to be performed periodically (e.g., daily) using
a sliding window of past trace data (e.g., 28 days). Second,
equipped with the statistical model PSRA can then apply it
to the selection of streaming parameters for new streaming
sessions in the prediction phase to achieve the desired target
streaming performance.

In the following we first present the system model, using
an intuitive rate-adaptation algorithm to illustrate the rela-
tion between streaming parameters and streaming per-
formance. Next we present the operations and deployment
options of PSRA in Section 4.2 and 4.3, and discuss its
salient properties in Section 4.4.

4.1 System Model
Although PSRA makes use of throughput trace data in its
analysis phase, it does not require separate throughput

TABLE 2
Rebuffering Probabilities over Three Locations

Loc. ID #1 #2 #3

LBG 0.068 0.244 0.326
OSMF 0.077 0.248 0.001
Stagefright 0.003 0.012 0.000
FESTIVE 0.004 0.005 0.000
BBA2 0.003 0.002 0.000
BOLA-U 0.064 0.250 0.000
FastMPC 0.390 0.696 0.051

TABLE 4
Rebuffering Probabilities for Different Video Durations

Duration (sec) 300 1200 3600 7200

LBG 0.068 0.128 0.175 0.217
OSMF 0.077 0.099 0.113 0.122
Stagefright 0.002 0.014 0.033 0.038
FESTIVE 0.004 0.014 0.037 0.068
BBA2 0.003 0.006 0.012 0.023
BOLA-U 0.064 0.081 0.127 0.180
FastMPC 0.390 0.733 0.875 0.938

TABLE 3
Average Bitrate (Mbps) over Three Locations

Loc. ID #1 #2 #3

LBG 3.26 1.90 2.78
OSMF 4.46 2.32 2.38
Stagefright 2.49 1.19 1.28
FESTIVE 3.00 1.54 1.79
BBA2 2.24 1.30 1.70
BOLA-U 4.55 2.44 3.13
FastMPC 4.85 2.62 3.30

TABLE 5
Rebuffering Probabilities Using Different Bitrate Profiles

Bitrate Profile Apple [38] Adobe [39] Stefan [40]

LBG 0.068 0.016 0.001
OSMF 0.077 0.093 0.066
Stagefright 0.002 0.010 0.001
FESTIVE 0.004 0.006 0.003
BBA2 0.003 0.002 0.006
BOLA-U 0.064 0.069 0.048
FastMPC 0.390 0.485 0.469
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measurements. For example, in our prototype implementa-
tion (c.f. Section 7) we added a simple module to the HTTP
streaming server to record the amount of video data deliv-
ered over fixed intervals of D seconds (e.g., D ¼ 100 ms). In
this way the TCP throughput trace data can then be captured
as a by-product of actual streaming sessions, thereby elimi-
nating the need to carry out separate measurements. Note
that throughput capture can also be performed at the client
(i.e., playback software) or even independently via a network
monitoring device. The exact implementation is likely to be
dictated by practical considerations (c.f. Section 4.3).

We first introduce an intuitive rate-adaptation algorithm
to illustrate the PSRA framework. Let Ci;j denotes the aver-
age throughput of interval j in session i; and t ¼ 0 be the
time streaming begins. Then the cumulative amount of data
delivered to the client (ignoring packets inflight, etc.) at time
t, denoted byAiðtÞ, is given by

AiðtÞ ¼
Xt=Db c

j¼0

Ci;jD (1)

At the start of a video session there is no recent through-
put information available and so the rate-adaptation algo-
rithm selects a pre-configured video bitrate, denoted by V,
for the firstM segments during prefetch, i.e.,

r̂i:k ¼ V; k ¼ 0; 1; ::;M � 1 (2)

where r̂i;k denotes the selected video bitrate for the k-th seg-
ment in session i.

After delivering the firstM segments, it can then estimate
the future throughput in transferring segment k ðk � MÞ,
denoted by S�

i;k, from the arithmetic mean [38] of the
throughput in transferring the pastM video segments:

S�
i;k ¼

1

M

XM�1

m¼0

Si;k�m; where k � M (3)

where Si;k�m is the actual average throughput in transferring
video segment k � m in session i which can be measured
directly by the client or the server in receiving/sending the
video data.

Together with information on the current client buffer
occupancy, denoted by D(tk)—the amount of video data
(measured in playback time) buffered at the client at the
time of requesting segment k, i.e., tk, it can then select the
video bitrate for the future segment k, denoted by ri,k, from

ri;k ¼ gS�
i;k �

DðtkÞ þ U

U
(4)

whereU is the video segment duration; and g is a parameter
controlling the tradeoff between video quality and stream-
ing performance. Increasing g raises video bitrate at the
expense of higher playback rebuffering probability, and
vice versa. Intuitively, if g ¼ 1 and the predicted throughput
is exact then (4) will choose a video bitrate such that the
buffered video data are all consumed by the time the new
segment is downloaded, thereby maximizing video quality
without impacting streaming performance. In practice there
will likely be errors in throughput prediction and thus
PSRA through analyzing past trace data will select a smaller
g < 1 to achieve the target rebuffering probability.

Note that PSRA can also be applied to other adaptation
algorithms. For example, instead of applying a linear relation
between client buffer occupancy and selected bitrate, we can

also apply a second-ordermapping function as follows:

D�ðtkÞ ¼ ðDðtkÞÞ2=v (5)

where v is a configurable parameter to control the sensitiv-
ity of bitrate selection to the client buffer occupancy.

The intuition is that if the client buffer occupancy is low
then it is prone to rebuffering. Hence the adaptation algo-
rithm should be more conservative in bitrate selection. By
contrast, if client buffer occupancy is large then it is rela-
tively safe for the adaptation algorithm to be more aggres-
sive in its bitrate selection.

On the other hand, PSRA can also support additional
constraints on the rate adaptation algorithm. For example,
we can easily extend PSRA to support explicit control of
bitrate switching frequency to tradeoff between video qual-
ity and streaming performance. Intuitively, more frequent
bitrate switches allows the streaming algorithm to more eas-
ily adapt to the fluctuating bandwidth but at the expense of
degraded video quality due to more frequent video quality
changes and vice versa.

We introduce a new parameter called bitrate switching
period, denoted by t, to control theminimum time between bit-
rate changes in PSRA where t is chosen as positive integer
multiples of the segment duration U. The bitrate switching
period thus sets the upper bound for the bitrate switching fre-
quency. The extended rate adaptation algorithm becomes:

ri;k ¼ gS�
i;k

DðtkÞþt
t

; ifðk�MÞ mod m ¼ 0 & k � M

ri;k�1; otherwise;

(
(6)

where the modulus operator accounts for bitrate adjust-
ments once every m segments (except for the first M seg-
ments during prefetch).

The previous computed bitrate is from a continuous bitrate
spectrum. As there are only a finite number of discrete bitrate
versions available at the server, we need tomap the computed
bitrate to one of the available bitrates. The mapped video
bitrate selection for segment k, is computed from

r̂i;k ¼ vx; (7)

where

x ¼ maxfnjvn � ri;kg; (8)

i.e., mapping to the highest available video bitrate not
exceeding ri;k. The sequence of bitrate selections fr̂i;kg thus
captured the behavior of the rate-adaptation algorithm.

Nextwemodel the video data consumption process. As the
client commences playback after receivingM video segments
at say, time t0, the cumulative amount of video data consumed
by playback at time t (t> t0), denoted byBi(t), is given by

BiðtÞ ¼
Xðt�t0Þ=Ub c

k¼0

r̂i;k � U: (9)

Note that we assume the video player decode a video
segment only after it has been completely received. Finally,
playback will be continuous without rebuffering if the client
never runs into buffer underflow, i.e.,

AiðtÞ � BiðtÞ; 8t � 0: (10)

Otherwise the client will suspend playback until the next
video segment is completely received. Let ui,j and vi,j be the
duration and occurring time for rebuffering event j; j ¼ 0;
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1; . . . ; ni, in session i. Then we can extend the consumption
equation in (9) to incorporate rebuffering events from

B�
i ðtÞ ¼ Bi t�

X
8jjvi;j < t

u0
i;jðtÞ

0
@

1
A

where u0
i;jðtÞ ¼

ui;j; if vi;j þ ui;j < t

vi;j þ ui;j � t; otherwise;

� (11)

which accounts for playback time deferred by rebuffering
events.

Now we can measure streaming performance in terms of
rebuffering ratio—defined as the ratio of total rebuffering
time to video duration T, from

T�1
X
8j

ui;j: (12)

Given a target rebuffering ratio F, PSRA will then deter-
mine the maximum value of g, denoted by gmax

i , that can be
used from

gmax
i ¼ max g T�1

X
8j

ui;j � F

�����
( )

; (13)

which maximizes video quality subject to the rebuffering
ratio constraint. Note that (13) generalized the rebuffering
probability metric used in our previous studies [15], [36],
[37] where it reduces to rebuffering probability when
F ¼ 0. To solve (13) we note that given a value for g one
can then run the rate-adaptation formula in (4) to (8) to com-
pute AiðtÞ, B�

i ðtÞ, and the performance metric in (12). The
maximum g can then be obtained using standard techni-
ques such as binary search.

In addition to rebuffering ratio, another common metric
is in terms of number of rebuffering events which can also
be easily incorporated into the PSRA framework as follows:

gmax
i ¼ max g ni � Cjf g; (14)

where C is the target number of rebuffering events. Clearly
there are many other possible performance metrics and
they can be incorporated into PSRA in a similar fashion.

It is worth reiterating that the computed gmax
i incorpo-

rated the impact of all network and system parameters, e.g.,
throughput variations via Ci,j; the rate-adaptation algorithm
via r̂i;k; video duration via limit of t; and the set of available
video bitrates via {vx} and the target streaming performance
F orC.

4.2 System Operation
In the analysis phase PSRA computes a statistical model for
the control parameter gmax

i over a period of past throughput
trace data. The resultant statistical model is then used in the
prediction phase to directly control the rate adaptation algo-
rithm via its control parameter, i.e., g. These two phases are
then repeated periodically, e.g., daily, to update the statistical
model with new throughput trace data, thereby enabling it to
adapt to long-timescale evolution in the network’s properties.

Analysis Phase—The goal of the analysis phase is to char-
acterize the relation between streaming performance and
the adaptation algorithm’s control parameter, i.e., g. Our
analysis revealed that network characteristics are through-
put-dependent. To exploit this discovery we divide the past

H days’ throughput trace data into L throughput levels,
with level l, L > l � 0, comprising sessions where the aver-
age throughput in transferring the first M segments are
within ðlCmax=L; ðlþ 1ÞCmax=L	.

For each throughput level PSRA computes the resultant
gmax
i for all past streaming sessions using (13) or (14) by exe-

cuting the adaptive streaming algorithm using past
throughput trace data. Naturally the computed gmax

i will
vary from session to session due to throughput variations
but we can generate the empirical cumulative distribution
function (CDF) for gmax

i , denoted by Fl(�), for throughput
level l. The distribution Fl(�) thus captures the statistical rela-
tion between the control parameter g and the target stream-
ing performance.

Fig. 1 plots the throughput statistics across L ¼ 12
throughput levels, with Cmax ¼ 12 Mbps. We observe that
the median gmax

i varies substantially from 0.04 at level 0 to
0.41 at level 11. This demonstrates that to achieve the target
streaming performance consistently across all throughput
levels one will need to optimize the streaming parameter
for each throughput level. We conjecture that this is a reflec-
tion of different types of network conditions. For example,
a low average throughput is indicative of poor network con-
dition (e.g., poor coverage, peak hours, etc.) which tends
to exhibit higher coefficient-of-variation in throughput,
thereby lowering the resultant gmax

i . PSRA captures and
exploits this knowledge by generating the gmax

i distribution
separately for each throughput level.

Prediction Phase—In the prediction phase PSRA applies
the collected statistical model, i.e., {Fl(�) j l ¼ 0; 1; . . . ; L� 1},
in bitrate selection. As discussed earlier it is desirable to offer
a tool for the service provider to explicitly control the tradeoff
between video quality and streaming performance. PSRA
supports this by allowing the service provider to specify a
target streaming performance in terms of the probability to
exceed the rebuffering ratio F (c.f. (13)), denoted by a, for its
service. The challenge is in finding a way to relate a to the
rate adaptation algorithm’s control parameter g.

Specifically, the set of CDFs fFlð�Þjl ¼ 0; 1; . . . ; L� 1g
can be interpreted as the probability distribution of the
control parameter g which resulted in satisfying the rebuf-
fering ratio F over the past H days. If this statistical prop-
erty remains consistent for new streaming sessions, then we
can determine the desired g for throughput level l, denoted
by gl, to achieve the target streaming performance a, from

g l ¼ Fl
�1ðaÞ: (15)

Fig. 1. Comparison of gmax metric for different throughput levels. (The box
represents the middle two quartiles, with the band inside marking the
median. The whiskers at the top/bottom extremes mark the highest/lowest
data points within 1.5 inter-quartile ranges of the upper/lower quartiles [45].).
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Note that a needs not be fixed. A service provider can
dynamically select different targets for different services or
content types, e.g., lower for music videos. PSRA simply com-
putes a different set of gl for use in each service class using the
same statistical model obtained from the analysis phase.
Finally, for a new streaming session the system first deter-
mines its throughput level bymeasuring the average through-
put in downloading the firstM video segments during startup
and then applies the corresponding operating parameter gl to
its rate adaptation algorithm as described in Section 4.1.

4.3 Deployment Options
PSRA can be implemented at the server side, at the client
side, or a combination of the two. For example, it is common
for content providers to co-locate their servers inside service
provider’s network. In this case the server hosting the con-
tents can be easily extended to record throughput data
while it delivers the video data to the clients over HTTP/
TCP. One can then apply PSRA to generate the statistical
model from the throughput trace data to optimize the
parameter for the rate adaptation algorithm.

If the rate adaptation logic is implemented at the client
then it is simply a matter of sending the optimized parame-
ters (e.g., g’s for each throughput level) to the client’s video
playback software. This can be done by embedding the
parameters into the meta-data file (e.g., m3u8 playlist) in
existing streaming protocols. The client can then measure its
session’s throughput level during prefetch and select the cor-
responding parameter for use in the adaptation algorithm.

Alternatively, rate adaptation can also be implemented at
the server (or a proxy). In this case the client does not exe-
cute any adaptation and simply plays whatever video seg-
ments sent by the server. The server adapts video bitrate
simply by sending video segments with bitrates as deter-
mined by the rate-adaptation algorithm and parameters
optimized by PSRA. This was the approach employed in
our prototype implementation as it does not require modifi-
cation to the client or its video player.

Finally, we note that PSRA can also be applied to stream-
ing services delivering encrypted contents. Existing stream-
ing protocols such as Apple’s HLS has provisions for content
encryption. Such encryption will not affect PSRA as PSRA
does not need to decode the video data at all to function.

4.4 Discussions
The PSRA framework is designed for practical deployment.
This is reflected in three design choices. First, in applying the
framework to a rate-adaptation algorithm the computation
complexity should be low as bitrate decision needs to be per-
formed frequently. This is achieved by dividing PSRA into
two phases where most of the computations are performed in
the analysis phase which is only done, say, once a day. In con-
trast, in the prediction phase the only computations needed
are: (a) throughput measurement during prefetch; and (b)
computation of the control parametergl. Both are not compu-
tationally expensive and are performed only once at the
beginning of the streaming session.

Second, in determining the throughput level and the con-
trol parameter we choose to make use of the average
throughput in downloading the first M segments during
prefetch, as opposed to using the throughput of the previ-
ous streaming session [15], [36], [37]. This new approach
eliminates potential errors in cases where the previous

session was separated by a long time or was impacted by
conditions specific to that session.

Third, PSRA is designed to complement (rather than
replace) the underlying rate-adaptation algorithm to enable
predictable streaming performance. Therefore PSRA can be
applied to any rate-adaptation algorithm as long as the lat-
ter exports a control parameter (e.g., g) that tradeoffs
between streaming performance and other metrics (e.g., pic-
ture quality). This differs from an early version of PSRA
[15], [36], [37] where the adaptation algorithm was an inte-
gral part of the framework.

5 PERFORMANCE EVALUATION

In this section we evaluate performance of the proposed
PSRA framework and compare it to 7 existing adaptive
streaming algorithms. We first present an extended trace-
driven simulator developed for the performance evalua-
tions and then discuss the results obtained.

5.1 An Extended Trace-Driven Simulator
Asdiscussed in Section 3 the use of real throughput trace data
enables us to accurately recreate real mobile network condi-
tions in a repeatablemanner. Beyond thatwe extended the sim-
ulatorwith two new features to further improve its fidelity.

Video duration distribution—In the literature it is common to
evaluate streaming performance using fixed-duration video
sessions. Obviously fixed video duration is rarely the case in
real-world streaming services anddifferent serviceswill likely
have different video duration distributions. We attempt to
improve the fidelity of the simulator in two ways. First, moti-
vated by the study by Shafiq et al. [46] we modelled the video
duration by an exponential distribution to introduce video
duration variations into the simulator. Second, we collabo-
rated with a mobile operator to measure the empirical video
duration distribution (Fig. 2) in one of their mobile streaming
servers. This empirical dataset offers a data point on the
impact of real-world video duration on streaming algorithms.

PSRA incorporates the impact of video duration by com-
puting a separate statistical model (i.e., represented by the
set of distributions fFlð�Þjl ¼ 0; 1; . . . ; L� 1g and the choice
of g) for a given video duration. This poses a problem if the
video duration is not fixed. To address this issue we can
precompute distributions and determine the g for a small
number of fixed video durations and then apply log-linear
interpolation to compute the corresponding g for the exact
video duration in each streaming session.

User arrival process—In a real streaming service users will
not arrive in a back-to-back manner but are likely to be

Fig. 2. Video duration and streaming duration distributions.
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separated by some random time intervals. We modelled the
time between the end of a streaming session and the begin-
ning of the next session by an exponentially-distributed
interval of mean 1=�W seconds (default 300s).

PSRA operation—With 3 months’ trace data for each loca-
tion we ran PSRA’s analysis phase beginning at week 5,
using the past 4 weeks’ trace data to compute the Fl(�) distri-
butions. The distributions were then used to determine the
control parameter g according to the target streaming per-
formance (i.e., a and F) for use in the next 24 hours. The
analysis phase will be repeated in the next day using trace
data from the latest past 4 weeks.

The available video bitrates are listed in Table 1, with the
Apple bitrate profile being the default unless stated other-
wise. The initial video bitrate for the first M ¼ 10 segments
is set to 1,200 Kbps—a common bitrate for 480p video reso-
lution [47]. The client video player begins playback after
receiving the first ten 2-second segments.

5.2 Streaming Performance Predictability
We first investigate PSRA’s streaming performance predict-
ability across different system parameters. Results from
Section 3 demonstrated that the performance of existing
protocols can vary substantially across different locations,
video durations, and available bitrates. We repeated the
experiments in Section 3 using the enhanced simulator and
summarized the results in Table 6 to Table 8. The target
streaming performance is set at a ¼ 5% with F ¼ 0 which
is equivalent to the probability of experiencing at least one
playback rebuffering in a streaming session.

Note that in the original FESTIVE [14] and BOLA-U [22]
designs the client buffer size was limited to 30 and 25 sec-
onds respectively. In the case of LBG [13] it was dyna-
mically determined according to the selected bitrate for
each video segment. As other algorithms did not impose a
client buffer size limit we also simulated modified versions
of LBG, FESTIVE and BOLA-U without client buffer size
constraints, denoted by LBG�, FESTIVE� and BOLA-U�, for
fair comparisons.

First, none of the existing algorithms supports explicit
control of streaming performance so not surprisingly
their performance varied substantially from one another,
e.g., from 0.005 (FESTIVE�) to 0.645 (FastMPC) in location
#2. More importantly, even the same algorithm can exhibit
varying performance across the three locations, e.g., 0.000
(location #3) to 0.274 (location #2) for BOLA-U.

In contrast, PSRA achieved actual rebuffering probability
of 0.048, 0.041, and 0.057 for the three locations respectively

which are consistent with the target of a ¼ 0:05. This was
accomplished by tuning the statistical model to the specific
location’s network characteristics as shown in Fig. 3a.

Second, results for four different video durations in Table 7
show that the rebuffering probabilities of existing algorithms
generally increase with video duration. By contrast, PSRA
was able to achieve consistent rebuffering probability for
video durations 300 s, 1,200 s, and 3,600 s, again via tuning of
the control parameter g as depicted in Fig. 3b. However for
the ultra-long video duration of 7,200 s the actual rebuffering
probability did deviate from the target of 0.05 more signifi-
cantly.Wewill address this problem in Section 6.

Third, results in Table 8 show that unlike existing algo-
rithms, PSRA is insensitive to the composition of available
bitrates and was able to achieve actual rebuffering probabil-
ities close to the target. The differences in the control param-
eter distribution are relatively small (c.f. Fig. 3c) but
nonetheless were sufficient to compensate for the bitrate
profile differences.

Finally, we note that FastMPC exhibited relatively high
rebuffering probabilities. Our analysis of the trace data sug-
gests that this is due to FastMPC’s use of a sophisticated
QoE metric which incorporated not only rebuffering, but
also video quality. In fact in its QoE metric video quality
appears to be weighted significantly more than rebuffering
and hence it tends to favor higher video bitrate at the
expense of more rebuffering. Interested readers are referred
to Appendix II, available in the online supplemental mate-
rial for a more detailed analysis.

All in all the above results verified one of PSRA’s key
design goals—to provide predictable and consistent streaming
performance across a wide range of system parameters.

TABLE 6
Comparison of Rebuffering Probability in
Three Locations (a ¼ 0.05 for PSRA)

Loc. ID #1 #2 #3

PSRA 0.048 0.041 0.057
LBG 0.080 0.294 0.289
LBG� 0.060 0.162 0.270
OSMF 0.074 0.222 0.001
Stagefright 0.012 0.012 0.000
FESTIVE 0.013 0.015 0.000
FESTIVE� 0.002 0.005 0.000
BBA2 0.005 0.011 0.000
BOLA-U 0.079 0.274 0.000
BOLA-U� 0.078 0.273 0.000
FastMPC 0.458 0.645 0.167

TABLE 7
Comparison of Rebuffering Probability for Different

Video Durations (a ¼ 0.05 for PSRA)

Duration (sec) 300 1200 3600 7200

PSRA 0.044 0.049 0.052 0.073
LBG 0.068 0.128 0.175 0.217
LBG� 0.064 0.107 0.120 0.130
OSMF 0.077 0.099 0.113 0.122
Stagefright 0.002 0.014 0.033 0.038
FESTIVE 0.004 0.014 0.037 0.068
FESTIVE� 0.002 0.003 0.004 0.004
BBA2 0.003 0.006 0.012 0.023
BOLA-U 0.064 0.081 0.127 0.180
BOLA-U� 0.062 0.081 0.127 0.179
FastMPC 0.390 0.733 0.875 0.938

TABLE 8
Comparison of Rebuffering Probability Using
Different Bitrate Profiles (a ¼ 0.05 for PSRA)

Bitrate Profile Apple Adobe Stefan

PSRA 0.048 0.053 0.050
LBG 0.080 0.029 0.002
LBG� 0.060 0.009 0.001
OSMF 0.074 0.091 0.063
Stagefright 0.012 0.033 0.021
FESTIVE 0.013 0.017 0.011
FESTIVE� 0.002 0.003 0.000
BBA2 0.005 0.014 0.007
BOLA-U 0.079 0.087 0.063
BOLA-U� 0.078 0.086 0.063
FastMPC 0.458 0.501 0.494
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As a side benefit it also enables the service provider to more
freely configure other system parameters such as available
video bitrates without impacting streaming performance in
an unpredictable manner.

5.3 Controlled Performance Tradeoff
In addition to streaming performance predictability and
consistency, PSRA also offers, for the first time, a tool for
service providers to explicitly control the tradeoff between
streaming performance and video quality. To evaluate this
capability we plot in Fig. 4 the actual versus target rebuffer-
ing probabilities over a range from 0 to 10 percent.

The results show that PSRA was able to achieve actual
rebuffering probabilities reasonably close to the target.
Results for the two different video duration distributions
are similar up to a ¼ 0:06, beyond which the actual rebuf-
fering probabilities for the empirical video distribution
deviated slightly more than the exponential counterpart.

The tradeoff to higher streaming performance will be
lower average video quality. The latter can be measured via
bandwidth utilization—the ratio of actual throughput uti-
lized over the amount available. A streaming session may
not utilize all available bandwidth if it completely delivered
all video data before playback ends, e.g., by selecting video
bitrates too conservatively.

Fig. 5 plots the controlled tradeoff between actual rebuf-
fering probability and bandwidth utilization. Existing algo-
rithms were not designed to allow controlled tradeoff
between the two metrics and hence each achieved one spe-
cific point of tradeoff. This is a significant limitation in prac-
tice as difference services and even different contents can
have very different performance requirements. The results
also revealed the very different design priorities of existing

algorithms, with some such as Stagefright trading off video
quality for low rebuffering probability while others such as
FastMPC achieving the opposite.

In comparison, PSRA generally achieved better tradeoffs,
i.e., higher bandwidth utilization at the same rebuffering
probability and vice versa, than existing algorithms. More
importantly, bandwidth utilization levels off for actual
rebuffering probabilities over 0.03—suggesting that it is not
necessary to significantly sacrifice streaming performance
to achieve good video quality—a target of 0.03�0.05 for
example, would provide a good tradeoff between the two
conflicting performance metrics.

5.4 Variation Across Network Conditions
As discussed in Section 4.2 the average throughput of a
streaming session is a good indicator of the underlying net-
work conditions, and this is why PSRA generates a separate
statistical model for each throughput levels. To validate this
we plot in Fig. 6 the actual rebuffering probabilities for each of
the 10 throughput levels, with level x ¼ 1; 2; . . . ; 8 collecting
sessions with average throughput within (x, x þ 1] Mbps,
plus level 9with average throughput� 9Mbps.

We observe thatmost existing algorithms exhibited signif-
icantly higher rebuffering probability at lower throughput
levels. In contrast, PSRA achieved substantially more consis-
tent streaming performance across all throughput levels. To
see why, consider the bandwidth utilization in Fig. 7 which
shows that only PSRA lowered the bandwidth utilization at
lower throughput levels, i.e., it becomes more conservative
in its bitrate selections, so that the target streaming perfor-
mance can be maintained under the poorer network condi-
tions. This unique and desirable property is a result of
PSRA’s statistical model in which a separate Fl(�) distribution

Fig. 3. Distribution of g generated by PSRA for different (a) locations,
(b) video durations, and (c) video bitrate profiles.

Fig. 4. Target versus actual rebuffering probability (weekly-average)
achieved by PSRA over two video duration distributions (error bars
show 90 percent confidence interval).

Fig. 5. Tradeoff between video quality (i.e.,bandwidth utilization) and
streaming performance (i.e., rebuffering probability).

Fig. 6. Variations in rebuffering probability across different throughput
levels (level x is from x Mbps to (xþ1) Mbps, except level 9 which
includes throughput� 9 Mbps).
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is generated for each throughput level, thereby enabling it to
capture and compensate for the different degrees of band-
width variations under different network conditions.

5.5 Application to Different Adaptation Algorithms
As discussed in Section 4.1 PSRA can be easily extended to
support different types of bitrate adaptation algorithms. To
illustrate we simulated PSRAwith the modified second-order
mapping function for client buffer occupancy in (5) and plot
the results in Fig. 8. Interestingly the modified second-order
buffer mapping function did achieve slightly higher band-
width utilization. In this case the slightly more aggressive
adaptation algorithm enables one to achieve better video qual-
itywhilemaintaining the same target streaming performance.

In a second experiment we investigated the impact of
bitrate switching frequency on the performance tradeoffs
between video quality and streaming performance. We
first investigate in Fig. 9 the impact of bitrate switching
period on rebuffering probability consistency. Interest-
ingly, varying the bit-rate switching period appeared to
have little impact. Even setting the bitrate switching inter-
val to equal to the video duration, i.e., only one bitrate
selection at the beginning after prefetch and then fixed
afterwards, did not cause PSRA to fail achieving the tar-
get rebuffering probability.

Further analysis revealed that the real impact is else-
where. Fig. 10 plots the bandwidth utilization and the results
reveal that lengthening the bitrate switching period did
degrade bandwidth utilization, i.e., average video quality.
Intuitively, the longer the delay for a streaming algorithm to
react to bandwidth variations, the more conservative it will
becomewhen trained in the analysis phase of PSRA.

In other words, with longer interval between bitrate
switches PSRA automatically tuned the rate-adaptation
algorithm to become more conservative in video bitrate

selection to compensate for the increased likelihood of play-
back rebuffering.

More interestingly, we observe that the bandwidth utili-
zation levels off rather quickly with shorter bitrate switch-
ing intervals. For example, PSRA’s bandwidth utilization
reached around 0.8 even with an interval of 60 seconds.
This is in contrast to the current industry practice where the
bitrate switching period is typically 10 s or even shorter.
This result suggests that with PSRA one can adopt a much
longer bitrate switching interval to improve the user experi-
ence while still achieving the target streaming performance.

In comparison, the impact of bitrate switching interval on
the existing algorithms is far less consistent. In fact, few of
the existing algorithms exhibited consistent increase in
bandwidth utilization with shorter bitrate switching inter-
vals. For example, shortening the bitrate switching interval
from 60 s to 10 s degraded the bandwidth utilization for LBG,
OSMF and BBA2. This likely reflects the fact that these exist-
ing algorithms were not designed to support configurable
bitrate switching interval and thus directly tuning the latter
may not necessary lead to the expected tradeoffs.

Overall with the same bitrate switching interval PSRA
outperforms existing algorithms across a wide range of
actual rebuffering probabilities. For example, with a bitrate
switching interval of 60 s PSRA can achieve bandwidth uti-
lization 174.2, 166.9, 62.3, 6.3, 54.8, 0.5, 14.0 percent higher
than that of LBG�, OSMF, Stagefright, FESTIVE�, and BBA2,
FastMPC, BOLA-U� respectively, while at the same time
achieving equal or lower actual rebuffering probability.

5.6 Application to Different Performance Metrics
Section 4.2 defines three streaming performance metrics:
(a) rebuffering probability—the probability for a streaming

Fig. 7. Comparison of bandwidth utilization versus throughput levels.

Fig. 8. Tradeoff between rebuffering probabilty and bandwidth
utiltization.

Fig. 9. Impact of bitrate-switching interval on streaming performance
predictability.

Fig. 10. Performance comparison over bitrate switching intervals of 2 s,
10 s, 60 s, and T (i.e., video duration) of different algorithms.
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session to encounter one or more rebuffering events;
(b) rebuffering ratio—the probability for a streaming session
to encounter rebuffering ratio equal to or larger than F (cf.
(13)); and (c) rebuffering number—the probability for a
streaming session to encounter number of rebuffering
events equal to or larger thanC (cf. (14)).

Clearly these three different metrics measure different
aspects of degradation in streaming quality. Our goal here
is not to determine the optimal metric which is likely to be
dependent on the services and contents being provisioned.
Instead we want to demonstrate that the PSRA framework
can be applied to systems with different streaming perfor-
mance metrics and can consistently achieve the streaming
performance target.

We first investigate the second metric—rebuffering
ratio for F ¼ f0:00; 0:03; 0:05g. Note that F ¼ 0:00
implies no rebuffering and thus the probability is equiva-
lent to the special case of rebuffering probability. If the
video duration is 5 minutes (i.e., 300 s) then F ¼ 0:03 rep-
resents a total of 9 seconds of rebuffering time (i.e., sus-
pended playback) which can occur in one or more
rebuffering events.

The results (not shown) confirmed that PSRA can achieve
actual streaming performance close to the target for all three
cases. Now the bandwidth utilization plot in Fig. 11 reveals
the impact of the target rebuffering ratio F - allowing some
rebuffering (i.e., when F ¼ 0:03; 0:05) resulted in slightly
higher bandwidth utilization. This is expected as it allows a
slightly more aggressive choice of higher video bitrates
which PSRA exploited automatically.

Next we consider the third metric—number of rebuffer-
ing events encountered in a streaming session. Again the
observations are similar, i.e., good streaming performance
predictability across rebuffering numbers of 0, 3, and 5 (not
shown); and slight gains in bandwidth utilization for larger
rebuffering numbers as shown in Fig. 12.

5.7 Computation Complexity
In PSRA, the primary processing task is in generating the
cumulative distribution for gmax

i in the analysis phase. The
amount of computation required is primarily determined
by the number and length of video durations, and bitrate
switching frequency. Note that the size of the past window
(i.e., H days) where PSRA computes its statistical model
does not impact its complexity (except for the first iteration)
as the statistical model can be updated incrementally, e.g., if
the analysis phase is executed daily then computations are
required only for the new trace data obtained in the previ-
ous day.

For example, in our experiments it took an Intel Core-i7
2600 3.4 Ghz Linux machine a total of 408 seconds to gener-
ate the distributions of gmax

i for 21 video durations ranging
from 50 s to 10,800 s using just one of the CPU cores. For a
mobile network with 2,000 locations PSRA can update its
statistical model in around 18 hours using just a single PC
with 12 CPU cores. Note that the computation can also be
done as trace data are captured so the computations can be
spread over time. In practice, one can simply run the analy-
sis within the same servers operating the streaming service
as the latter’s I/O-bound nature nicely complements
PSRA’s compute-bound analysis.

6 LONG STREAMING SESSIONS

Results from Section 5.1 revealed one limitation of PSRA,
i.e., its performance consistency degraded for ultra-long
video sessions (e.g., 0.073 versus a target of 0.05 for 2-hour
video). While such long video sessions are uncommon
in today’s mobile streaming services we are interested in its
cause and to explore possible solutions.

We conjecture that the deviation is due to theway through-
put trace data were collected for use in the analysis phase.
Specifically, as throughput trace data were captured as a by-
product of actual streaming sessions, they are not necessarily
of the required duration. Therefore in determining gmax

i for a
given video duration in the analysis phase we may need to
concatenate multiple sessions’ throughput trace data to accu-
mulate the required duration. However, when applied to the
prediction phase the new streaming session is obviously a
whole session rather than one concatenated from multiple
shorter sessions. This difference will increase with longer
video durations, thereby explaining why the deviation only
occurs at the ultra-long video duration of 7,200 s.

Unless one perform continuous throughput measure-
ment to generate the trace data for PSRA’s analysis phase,
concatenating trace data from multiple separate streaming
sessions is unavoidable. Therefore we explore the use of
feedback as a way to mitigate the problem.

6.1 PSRA with Feedback
Feedback is a common technique for reducing errors in a
system with one or more control parameters. We investi-
gate the use of Proportional Integral (PI) controller [48]
for use in PSRA. A PI controller has a process variable
and a setpoint. The process variable represents the cur-
rent state of the system, i.e., actual rebuffering probability,
while the setpoint is the target for the system state, i.e.,
target rebuffering probability. The purpose of the PI

Fig. 11. Tradeoff between rebuffering ratio probabilty and bandwidth
utiltization.

Fig. 12. Tradeoff between rebuffering number probabilty and bandwidth
utiltization.
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controller is to reduce the error between process variable
and setpoint by adjusting system inputs. The controller
output u(t) is defined as follows:

uðtÞ ¼ KpeðtÞ þKi

Z t

0

eðtÞdt; (16)

where e(t) represents the error between process variable and
setpoint at time t. Kp and Ki are tuning parameters repre-
senting the proportional gain and integral gain respectively.
Interested readers are referred to [48] for more details.

To apply a PI controller to PSRA we adjust the daily tar-
get rebuffering probability, denoted by ak for day k, at the
beginning of each day based on the difference (i.e., error)
between the actual probability realized and the target a.

To avoid potential error due to insufficient number of
testing sessions, we initialize ak ¼ a for day 0 to day 6.
From day 7 onwards, i.e., k � 7, we compute the new daily
target probability by subtracting the PI controller’s output
from the daily target of the previous day:

ak ¼ ak�1 � uk�1: (17)

The PI controller output uk�1 is computed from a discrete
version of (16):

uk�1 ¼ Kpek�1 þKi

Xk�1

x¼0

ex; (18)

where ek is the difference between the average actual proba-
bility of the previous 7 days, denoted by âk, and the target, i.e.,

ek ¼ âk � a: (19)

The parameters Kp and Ki are tuned according to the
Ziegler–Nichols method [49] to obtain Kp ¼ 0:45 and
Ki ¼ 0:54. Interested readers are referred to Appendix III,
available in the online supplemental material for more
details.

6.2 Evaluation
We first compare the actual rebuffering probabilities for
7,200-s video in Table 9. Evidently the PI controller is very
effective in bringing the actual rebuffering probability close
to the target, e.g., from 0.073 to 0.048 at a target of 0.05 for
location #1. The impacts to the other two locations are negli-
gible as they have little deviation to begin with. Next we
evaluate in Fig. 13 the time needed for the feedback-assisted
PSRA to converge to the streaming performance target.

In the first week there is no feedback applied and hence
location #1 and #3 exhibited larger deviation from the target.
From week 2 onwards the streaming performance quickly
approached the target of 0.05 and remained so afterwards.
As the convergence process is needed only once at the begin-
ning of deploying PSRA the impact of the initial deviations
(only for ultra-long videos) is limited. Moreover, the compu-
tation overheads incurred by the feedback processing is neg-
ligible and hence can be easily implemented in practice.

7 IMPLEMENTATION

We implemented the PSRA framework into a server-based
adaptive streaming system employing Apple’s HLS proto-
col and iOS’s QuickTime Video Player. Specifically, the
server can operate in two modes—HLS and PSRA. In HLS
mode the server just operates as a standard HTTP server
configured to support Apple’s HLS adaptive streaming pro-
tocol. This allows a direct performance comparison to
Apple’s proprietary implementation.

In PSRA mode the server implements PSRA’s analysis
phase and prediction phase as described in Section 4. To
keep the rest of the system the same we adopted the same
HLS protocol and used the same video player at the client
(an iPhone 5c running iOS 9.1). As we cannot modify the
client’s adaptation algorithm we implemented bitrate
adaptation entirely at the server side by always sending to
the client a m3u8 playlist [50] with only one video bitrate
available, effectively disabling the client’s rate adaptation.
At the server there are 10 bitrate versions available and
the server will select the bitrate version to send based
on the rate adaptation algorithm as described in Section 4.
Table 10 summarizes the experimental parameters
adopted.

We completed a total of 6,362 streaming sessions in a
production 3G/HSPA network. Table 11 summarizes the
results for PSRA with three different target rebuffering
probabilities and compares that to Apple’s HLS implemen-
tation. The results for Apple’s HLS is consistent with previ-
ous studies [6], showing its conservativeness in bitrate
selection, achieving only 1,196 kbps with a low rebuffering
probability.

For PSRA, the experimental results verified its design
goal to achieve predictable and consistent streaming perfor-
mance. The actual rebuffering probabilities are all within
0.004 of the target in all three cases. Unlike Apple’s HLS,
PSRA enables controlled tradeoff between video bitrate

TABLE 9
Comparison of Weekly-Averaged Rebuffering Probability
(90% CI in Brackets) for PSRA and Feedback-PSRA

Streaming 7200-s Videos (a ¼ 0.05)

Location PSRA Feedback-PSRA

#1 0.073 (
0.035) 0.055 (
0.022)
#2 0.051 (
0.012) 0.049 (
0.012)
#3 0.048 (
0.023) 0.053 (
0.021)

Fig. 13. Illustration of convergence for feedback-assisted PSRA.

TABLE 10
System Parameters Used in Experiments

System Variable System Parameter

Video prefetch size 2 segments
Segment size 10 seconds
Initial video bitrate 1,200 kbps
Max buffer size 60 seconds
Min bitrate switching period 60 seconds

Bitrate versions Apple’s [38] profile plus
10 Mbps and 12 Mbps

Video Duration 300 seconds
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and streaming performance. This eliminates the need to be
overly conservative as in Apple’s HLS such that signifi-
cantly higher video quality can be achieved. For example, at
an actual rebuffering probability of only 0.009, PSRA can
achieve an average video bitrate of 6,253 kbps which is sig-
nificantly higher than Apple’s HLS at 1,196 kbps. Therefore
with PSRA service providers will be able to take advantage
of the higher bandwidth available in current and future
mobile networks to offer high-quality streaming services to
their subscribers.

8 SUMMARY AND FUTURE WORK

The PSRA framework investigated in this work offers a new
approach to the design and optimization of mobile video
streaming algorithms. Instead of designing and optimizing an
adaptive streaming algorithm for all mobile networks, PSRA
tunes the adaptation algorithm specifically for the network it
operates in so that streaming performance can be improved,
controlled, and predicted. The results demonstrated that
mobile networks, despite their well-known bandwidth fluctu-
ations, do exhibit sufficiently consistent properties that enable
PSRA to automatically optimize the adaptation algorithm
based on past traffic traces.

This work is only a first step in this direction. There are
many opportunities for future research. For example, as the
rate-adaptation algorithm is decoupled from the PSRA
framework it means one can replace the former to achieve
different design goals and to support the tradeoff between
different performance metrics. On the other hand, as PSRA
optimizes the system’s operating parameters for the net-
work it operates in, it enables one to more precisely charac-
terize the performance impact of different design choices
(e.g., choice of input metrics such as bandwidth, buffer
occupancy, etc.) and system constraints (e.g., number of
video bitrate levels, bitrate switching interval, maximum
bitrate changes, client buffer size, etc.). These insights will
offer guides to the design of a new generation of adaptation
algorithms.
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