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Abstract—Mobile video streaming is now ubiquitous among mobile users. This work investigates a less studied and yet significant

problem in mobile video streaming – data wastage, i.e., some downloaded video data may not be played back but discarded by video

players due to early departure or video skip, thus the bandwidth consumed in transferring them is wasted. Our measurements show

that data wastage is significant in practice, e.g., 25.2 percent�51.7 percent of video data downloaded are in fact wasted. Moreover,

substantial data wastage exists not only in current commercial streaming platforms, but also in state-of-the-art adaptive streaming

systems proposed in the literature. This work develops a new post-streaming wastage analysis (PSWA) framework to tackle this

problem by converting existing adaptive streaming algorithms into data wastage aware versions. PSWA enables the streaming vendors

to explicitly control the tradeoff between data wastage and quality-of-experience (QoE). Extensive evaluations show that PSWA can

reduce data wastage significantly (e.g., 80 percent) without any adverse impact on QoE. Moreover, it has strong robustness to perform

consistently across a wide range of networks. PSWA can be readily implemented into current streaming platforms, and thus offers a

practical solution to data wastage for mobile streaming services.

Index Terms—Video streaming, mobile network, data wastage, quality-of-experience

Ç

1 INTRODUCTION

MOBILE video streaming has quickly become a key appli-
cation in the mobile Internet [1]. For many mobile

users, watching videos using their smartphone has become
a daily activity. With so many sources of videos, it is not
surprising that not all the videos are watched from start to
finish. In fact, due to common viewing behaviors such as
early departure and video skip (i.e., changing to a different
playback point), a significant portion of videos were not
watched completely by viewers [2], [3], [4]. For example,

Finamore et al. [2] measured the video access logs on You-
Tube and found that 60 percent of videos were watched for
no more than 20 percent of their whole duration. A side-
effect of early departure and video skip is that some of the
downloaded video data are discarded and the bandwidth
consumed in transferring them is thus wasted. We call this
data wastage in the rest of the paper.

At first glance, such data wastage may not appear to be a
significant issue.However, current on-demandvideo stream-
ing (VoD) has practically all migrated to some forms of
HTTP-based bitrate adaptive transfer protocol (e.g., DASH
[5]). Common to these protocols is the use of HTTP over TCP
to transfer the video data as fast as TCP allows. Therefore, if
the TCP throughput is higher than the selected video bitrate
then the client will fetch video data ahead of their playback
schedules and store them in the local buffer. This can
improve streaming performance significantly, as the buffered
data can be used to absorbmobile networks’ bandwidth fluc-
tuations to prevent playback rebuffering. However, the same
fetch-ahead buffering mechanism could also increase data
wastage significantly if the viewer terminates or skips the
video playback before all downloaded data are rendered.

Our measurements for existing adaptive streaming algo-
rithms showed that 25.2�51.7 percent of video data down-
loaded were wasted. This level of data wastage has two far-
reaching consequences. First, today’s mobile data services
purchased by users generally have a hard data cap, e.g., 10
GB per month [6]. If the data usage exceeds the given data
quota, mobile users have to purchase additional data quota
at a much higher price. Therefore, given the significant data
wastage, a substantial portion of the data quota would be
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wasted in transferring video data which are never watched.
Second, data wastage consumes precious bandwidth
resources from the streaming vendor’s network (e.g., CDN),
which are often charged by the volume of data transferred.
Given the immense cost of the infrastructure, even a tiny
percentage of wasted bandwidth can be financially signifi-
cant to streaming vendors. For example, Chen et al. [7] mea-
sured that the cost due to data wastage could be tens to
hundreds of millions of dollars each year.

One method to reduce data wastage is to limit the video
client buffer size. Taking it to the extreme, if the player buf-
fers no more than one video segment at any time then the
worst-case data wastage will only be one segment. How-
ever, the client buffer exists for an important reason – to
buffer data such that video playback can be sustained dur-
ing periods of low bandwidth so that playback rebuffering
can be avoided. Too small a buffer will likely lead to fre-
quent rebuffering and significant Quality-of-Experience
(QoE)1 degradation, which can be an even bigger problem
than data wastage. This is especially important in the
mobile network where rapid and substantial bandwidth
fluctuations are the norm rather than the exception.

Therefore, the fundamental question is whether a feasible
tradeoff between QoE and data wastage exists in today’s
mobile networks, and if so, how to achieve a desired wast-
age-QoE tradeoff in a streaming platform. This work pro-
vides an answer to these questions by developing a new
Post-Streaming Wastage Analysis (PSWA) framework to
allow the streaming vendor to explicitly control the tradeoff
between data wastage and QoE. Specifically, PSWA introdu-
ces two wastage-aware parameters that can be easily incor-
porated into existing adaptive streaming algorithms so that
fine-grained control of wastage-QoE tradeoffs can be
enabled. By analyzing the streaming trace data from past
video sessions, PSWA automatically optimizes the wastage-
aware parameters and then applies them to future video ses-
sions tominimize data wastagewhile maintaining highQoE.

Extensive evaluations showed that PSWA can reduce
data wastage by 31.6�79.9 percent even without any QoE
loss. In addition, it could reduce data wastage even further
by a small tradeoff in QoE (e.g., 4 percent drop in QoE
improves data wastage reduction to 44.4�90.2 percent).
Moreover, PSWA performs consistently across a wide range
of networks. Therefore, it offers an immediate and practical
solution to reduce data wastage in current and future
streaming platforms.

This work has three major contributions. First, since data
wastage and QoE are inherently conflicting objectives,
reducing wastage may result in QoE loss. However, QoE is
critical to streaming services and the tolerance for QoE loss
differs among different streaming vendors. PSWA addresses
this challenge by providing the streaming vendors with an
interface called acceptable QoE loss ratio to allow them to
specify their QoE preference. Specifically, they can set the

QoE loss ratio to any values within 0�100 percent where 0
percent means no QoE loss. PSWA then minimizes data
wastage while maintaining the actual QoE degradation
according to the ratio specified. To the best of our knowl-
edge, PSWA is the first system that can control data wastage
based on the streaming vendor’s QoE preference.

Second, PSWA breaks the one-size-fits-all approach com-
monly adopted by the existing data wastage solutions [7],
[8], [9], [10], [11] and optimizes wastage-aware parameters
according to the specific network condition a streaming ses-
sion operates in. This enables PSWA to not only outperform
the existing approaches significantly, but also have strong
robustness to achieve consistent performance across a wide
range of network environments.

Last but not least, PSWA is designed to complement (as
opposed to replacing) the existing adaptive streaming algo-
rithms by converting them into wastage-aware versions
while keeping their original adaptation logic intact. This
offers an immediate and ready solution for the streaming
platforms already in service. Although this work focuses on
adaptive on-demand streaming, PSWA is a generic frame-
work that can potentially be extended to other streaming
services, such as non-adaptive streaming, 360-degree video
streaming, live streaming, etc.

The rest of the paper is organized as follows: Section 2
reviews the related work; Section 3 investigates the data
wastage problem in mobile video streaming; Section 4
presents the design of the PSWA framework; Section 5 eval-
uates the performance of PSWA using trace-driven simula-
tions and real experiments, and Section 6 summarizes the
study and outlines some future work.

2 RELATED WORK

Much work has been done in video streaming in recent
years. A comprehensive review of the area is beyond the
scope of this work. We refer interested readers to the studies
by Seufert et al. [12], Juluri et al. [13], Kua et al. [14] and Ben-
taleb et al. [15] for survey and comparison of existing
streaming algorithms.

Existing studies typically assumed that viewers watch
videos continuously from the beginning to the end. However,
this is often not the case in practice. For example, Finamore
et al. [2] analyzed YouTube and found that 60 percent of vid-
eos were watched for no more than 20 percent of their whole
duration. Chen et al. [17] reported that 62.5 percent of video
sessions were not played back continuously but have video
skips. Dobrian et al. [3] found that rebuffering and low bitrate
can significantly reduce the viewer engagement time. This
was echoed by Li et al. [4] who also found that video down-
load speed has a notable impact on viewer engagement time.
In another study, Lebreton et al. [39] found that the viewer
departure rate was significantly higher at points of rebuffer-
ing. These studies motivated researchers, e.g., Shafiq et al.
[40], to develop models to predict viewer engagement time
from network dynamics.

Since the existing studies on streaming algorithms typi-
cally did not consider these viewing behaviors, it is no sur-
prise that data wastage is often not considered in the design
of the streaming algorithms. However, with the almost ubiq-
uitous deployment of HTTP-based video streaming, data

1. Quality of Experience (QoE) quantifies and measures the goodness of the
experience as perceived by the user. Common components of QoE in video
streaming include video quality/bitrate, playback rebuffering, quality varia-
tions, and so on. In this work, we adopted existing QoE metrics designed for
streaming video, i.e., [26], [27], [33] and [34], in the performance evaluations.
We refer the interested readers to Section 3 and their original studies for more
details.
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wastage can no longer be an afterthought. For example, Fina-
more et al. [2] found that data wastage is significant, e.g., dur-
ing peak hours, 25�39 percent of bandwidth was wasted by
desktop users and 35�48 percent bymobile users.

In another work, Chen et al. [7] looked into the data wast-
age problem in Tencent Video [16] and found that over 20
percent of bandwidth was wasted due to video data deliv-
ered but unwatched. To reduce data wastage, they devel-
oped a server-side Behavior-Based (henceforth called BB)
streaming strategy. BB was designed for the scenario where
the network is already fully utilized. It reduced data wast-
age through limiting the transmission rate to 1.05 times of
the video bitrate (as opposed to as fast as TCP allows) dur-
ing the viewer browsing phase (this phase generally exists
at the beginning of videos with high departure rate [17]).
The bandwidth saved in this phase can then be reallocated
to other streaming clients to improve their QoE. However,
BB was designed only for non-adaptive streaming so it may
not be directly applicable to today’s adaptive streaming
platforms (e.g., DASH [5]).

In a recent study, Yarnagula et al. [8] proposed SARA to
reduce data wastage for adaptive video streaming. SARA
was deployed in the video clients and designed for reducing
data wastage through limiting the amount of data in the
buffer with a pre-defined buffer threshold (i.e., 20s). Specifi-
cally, when the client buffer occupancy reaches the buffer
threshold, the request for downloading the next segment
will be delayed until the buffer occupancy falls below the
threshold. In another study, Chen et al. [9] proposed an
energy-aware rate adaptation algorithm that controls data
wastage in the same way as SARA but sets the buffer thresh-
old to 30s. However, our empirical study (c.f. Section 3.2)
showed that merely limiting the buffer size could lead to
more rebuffering events, degrading the QoE performance.

In another direction, two studies by Li et al. [10] and
Huang et al. [11] proposed the use of Lyapunov optimization
theory to design bandwidth allocation strategies for the base
station with the goal to reduce the total data wastage for all
mobile users served by the base station. However, their pro-
posed strategies require mobile operators to modify the link-
layer implementation of the base stations which is far from
simple in today’s mobile infrastructures. In comparison, the
PSWA framework proposed in this study is designed to
work with the current streaming platforms and operate in
existing networks so that it can be readily deployed.

In an earlier work [18], we also investigated the challenge
of data-wastage. This study extends our earlier work in four
significant aspects. First, the earlier work only studied data
wastage caused by early departure. In this work, we
extended the scope to include data wastage due to both
early departure as well as video skip. In fact, our results
showed that video skip could cause even more data wastage
than early departure (c.f. Section 3). To our knowledge, this
is the first work tackling data wastage in both early depar-
ture and video skip.

Second, in contrast to our earlier work, PSWA no longer
adopts the one-size-fits-all approach. Specifically, our inves-
tigation in this work revealed a key insight that led to the
design of PSWA – the tradeoff between QoE and data-wast-
age is not fixed but differs across different network condi-
tions. Hence, a single optimized streaming algorithm such

as the one in our earlier work [18], would be sub-optimal.
This motivated the development of throughput-level-based
PSWA which enables the algorithm to be optimized for dif-
ferent network types/conditions (c.f. Section 4.2). As a
result, PSWA not only outperformed our earlier work, but
also exhibited significantly more robust performance across
a wide range of networks.

Third, the scope of the experiments and performance
evaluations has been expanded substantially in this work.
While our earlier work primarily employed 3G network
trace data for experiments and performance evaluation, this
work expanded the scope to include both 4G/LTE as well
as Wi-Fi, and trace dataset was captured by us [22] as well
as by other researchers [20], [21]. The far broader range of
networks enabled us to obtain a better understanding of the
behaviors of different algorithms under a wide range of net-
work conditions. Furthermore, we also included two new
state-of-the-art adaptive streaming algorithms, i.e., Pensieve
[27] and SARA [8], in the performance comparisons (c.f.
Section 5.2).

Last but not least, we implemented a prototype of the
PSWA framework into dash.js and reported experimental
results in Section 5.5. The results verified the feasibility of
PSWA for use in today’s video streaming platforms and its
potential performance gains in practical operational settings.

3 DATA WASTAGE IN MOBILE VIDEO STREAMING

In this section, we measure data wastage in current HTTP-
based on-demand streaming (VoD) platforms. We first
investigate the two common viewing behaviors (early
departure and video skip) and then employ trace-driven
simulation to measure data wastage in some state-of-the-art
adaptive streaming algorithms.

3.1 Early Departure and Video Skip

We first look into early departure through a real-world
empirical trace dataset [38]. The notion of data wastage is
that some downloaded video data are not watched but dis-
carded. Therefore, data wastage can be derived from the
proportion of a video watched as well as downloaded at the
time of early departure. In the dataset, for video session i,
0 � i < N , we can obtain the video physical duration,
denoted by Li, the amount/duration of video data down-
loaded, denoted by Di, and the viewing duration, denoted
by Vi.

To quantify early departure, we define viewing ratio fi as
the ratio of video played back (in duration) to the video
physical duration for video session i, i.e.,

fi ¼ Vi=Li: (1)

Similarly, we define download ratio ui as the ratio of
video downloaded (in duration) to the video physical dura-
tion, i.e.,

ui ¼ Di=Li: (2)

The left chart in Fig. 1 plots the cumulative distributions
of the two ratios from the empirical dataset. It is evident
that a significant proportion of video sessions ended early,
with an overall average viewing ratio of 42.6 percent. In
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comparison, the download ratio is substantially higher, with
an overall average of 63.1 percent. This suggests that a signif-
icant proportion of the video data was downloaded but not
played back. We further divided all the video sessions into
three subsets based on their video physical duration, i.e.,
short (<5 mins), medium (5�50 mins), and long (>50 mins),
and then plotted their viewing ratio distributions in the right
chart in Fig. 1. We observed that their viewing ratios differ
significantly. For example, viewers tend to leave relatively
early when watching long-length videos (i.e., >50 minutes),
whereas tend to watch completely when watching medium-
length videos (i.e., 5�50 minutes). More detailed analysis for
early departure can be found in Appendix A.1, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TMC.2021.3069764.

Next, we investigate video skip using another empirical
model from Chen et al. [17]. The left chart in Fig. 2 plots the
proportion of the mean skip number in each video session.
We can observe that 62.5 percent of video sessions have
video skips (i.e., except “ ¼ 0”) and the proportion of skip
number “> ¼ 4” is significantly higher than others. This is
intuitive because if a viewer is not interested in the current
video content, the viewer will naturally skip several times
to keep looking for the points of interest.

The right graph in Fig. 2 shows the proportion of skip
span. The key observation is that nearly 80 percent of the
skips are within 5 mins, and the proportion of long skip
span (>30 min) is very small. Overall, in addition to early
departure, video skip is also a very common viewer behav-
ior that can cause data wastage. Next we apply these viewer
behavior models to measure their impact on data wastage.

3.2 Data Wastage Measurement

We employed trace-driven simulations to measure data
wastage in realistic network settings where the simulator
replicates the bottleneck link by replaying TCP throughput
trace data obtained from real production mobile networks.

We used a total of 60 weeks of TCP throughput trace data
(�100000 video sessions) covering 3G, 4G/LTE and Wi-Fi
networks. The trace data are publicly available [20], [21],
[22] and we summarized their key statistics in Table 1.
Viewing behavior traces (e.g., early departure, video skip)
were derived from the empirical datasets introduced in Sec-
tion 3.1. The available video bitrates follow the Apple pro-
file [19] augmented by four additional bitrates at 10 Mbps,
12 Mbps, 16 Mbps, and 20 Mbps. The rest of the streaming
parameters are summarized in Table 2. Please refer to
Appendix A.2, available in the online supplemental mate-
rial, for more details of the simulation settings.

We implemented seven state-of-the-art streaming algo-
rithms which include two throughput-based bitrate adap-
tive algorithms – LBG [23] and Stagefright [24], two buffer-
based bitrate adaptive algorithms – BBA [25] and SARA [8],
two hybrid throughput-buffer-based bitrate adaptive algo-
rithms – RobustMPC (henceforth called MPC) [26] and Pen-
sieve [27], and one non-adaptive algorithm BB [7]. It’s
worth noting that SARA and BB were both originally
designed to control data wastage while all others were non-
wastage-aware algorithms.

To quantify data wastage, we define a metric to compute
the amount of data wastage in video session i, denoted by
Wi, from the difference between video data downloaded
and viewed:

Wi ¼
X

8di;j > 0

di;j �
X

8vi;j > 0

si;j
vi;j
li;j

; (3)

where di;j, si;j, li;j, vi;j are the downloaded data amount, seg-
ment size, full segment duration, segment duration viewed
for segment j respectively. Similarly, we can compute the
ratio of data wastage for session i, denoted by Ri, from

Fig. 1. Statistics for viewing ratio and download ratio.

Fig. 2. Statistics for video skip number and skip span.

TABLE 1
Statistics of Seven Throughput Trace Datasets

Dataset

Characteristics #1 #2 #3 #4 #5 #6 #7

Throughput (Mbps) 5.57 4.71 3.29 2.87 1.21 12.1 3.12
Coefficient of Variation 0.44 0.39 0.74 0.53 0.83 0.69 0.59
Network type 3G 3G 3G 3G 3G LTE WiFi
Collection location L1 L1 L2 L3 L4 L5 L6
Service provider S1 S2 S1 S1 S3 S2 S4

TABLE 2
Evaluation Settings

Parameters Values

Bitrate profile {0.2, 0.4, 0.8, 1.2, 2.2, 3.3, 5.0,
6.5, 8.6, 10, 12, 16, 20} Mbps [19]

Segment duration 2s

Video duration Empirical distribution (30s to 10800s)

Session number � 100000

Initial bitrate 0.2 Mbps
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Ri ¼ 1�
X

8vi;j > 0

si;j
vi;j
li;j

, X
8di;j > 0

di;j: (4)

In addition to data wastage, for video session i, we also
measured mean video bitrate – defined as the average
bitrate selected, mean buffer occupancy – defined as the
average buffer level, rebuffering duration – defined as the
total time at which playback is suspended due to client
buffer underflow, rebuffering frequency – defined as the
total number of rebuffering events, and QoE – calculated by
the QoE function proposed by Mao et al. [27]:

Qi ¼ 1

K

XK�1

k¼0

#i;k�
XK�1

k¼1

#i;k � #i;k�1

�� ��� 2:66� Zi

 !
; (5)

where Zi is the rebuffering duration, K is the total number
of segments in video session i and #i;k is the video quality
calculated by

#i;k ¼ log ðri;k
�
rminÞ; (6)

where ri;k is the bitrate selected for segment k and rmin is the
lowest available bitrate in the profile. Note that the coeffi-
cient of Zi (i.e., 2.66) follows Mao et al. [27].

Table 3 summarizes the simulation results. The first obser-
vation is that the overall data wastage ratio across the seven
algorithms ranges from 25.2 to 51.7 percent, implying that a
quarter to half of the downloadeddata is wasted. In addition,
daily data wastage on average amount is 1.17�6.17 Petabyte
each day. Using the pricing of Amazon CDN [28], such
amounts of data wastage could cost the streaming vendor
tens to hundreds of millions of dollars each year.

Second, the “Skip v.s. Departure” column of Table 3 com-
pares the percentage of data wastage caused by video skip
versus early departure. We can see that video skip incurs
about twice as much data wastage as early departure in
almost all the algorithms (except for BB due to its band-
width-limiting strategy at the beginning of each video ses-
sion [7]). This is intuitive as viewers can only quit at most
once in each video session while on average skip 2 � 3 times
in a single session (c.f. Fig. 2).

Third, LBG and BBA both exhibited substantial data
wastage (51.7 and 50.5 percent) which is a result of their
large buffer size and conservative bitrate adaptation logic
(reflected by video bitrate). Consequently, their rebuffering
duration and rebuffering frequency are much lower than

others, as their higher buffer occupancy can absorb larger
throughput fluctuations to prevent playback rebuffering.

In comparison, although Stagefright also has a conserva-
tive bitrate adaptation logic, its data wastage (39.8 percent)
is much lower than LBG and BBA due to its smaller buffer
size (20MB or approximately 90s of video data). SARA has
the smallest buffer size (i.e., 20s) among all the evaluated
streaming algorithms thus achieved lower data wastage
(30.3 percent) than Stagefright. However, such a small
buffer led to much more rebuffering events for SARA,
thereby decreasing its QoE performance.

Interestingly, althoughMPC and Pensieve are non-wastage-
aware, they can also achieve comparatively lower datawastage
(28.3 percent for MPC and 25.2 percent for Pensieve). This is
due to their aggressive bitrate adaptation logics, which resulted
in relatively low buffer level. In comparison, while BB’s strat-
egy (i.e., restricting bandwidth) is also effective in reducing
data wastage, it significantly increased the number of rebuffer-
ing events (the average rebuffering duration is 9.08, which is
the largest among the seven algorithms) and thus lowered the
QoE achieved.

Table 4 compares the data wastage ratio/amount for
MPC across the throughput trace dataset #1�#7 (results for
other streaming algorithms are similar, see Appendix A.3,
available in the online supplemental material, for the full
set of results). Interestingly, we found that dataset #1, #2,
and #6 exhibited far more data wastage than others. Given
the trace data statistics in Table 1, it appears that data wast-
age is more severe in networks with higher mean through-
put. To further investigate this, we divided all video
sessions into 10 throughput levels, with level l ¼ 01,. . .,8 col-
lecting sessions with mean throughput within (l, l þ 1]
Mbps, plus level 9 with mean throughput �9Mbps, and
then summarized their wastage ratio/amount in Table 5
(the full results are in available Appendix A.3, available in
the online supplemental material).

The results strongly suggest that data wastage increases
as the throughput level increases. The higher throughput

TABLE 3
Evaluation Results of Existing Streaming Algorithms

Streaming
algorithm

Buffersize Wastage
ratio (%)

Daily mean wastage
amount (Petabyte)

Skip v.s.
Departure

Bitrate
(Mbps)

Buffer
occupancy (s)

Rebuffering
duration (s)

Rebuffering
frequency

QoE

LBG 184s 51.7 5.75 69% v.s. 31% 1.77 35.9 1.23 1.18 0.92
BBA 240s 50.5 6.17 63% v.s. 37% 1.31 40.7 0.80 1.29 0.94
MPC 30s 28.3 1.19 69% v.s. 31% 2.99 6.70 6.33 7.21 1.55
Stagefright 20MB 39.8 3.01 66% v.s. 34% 1.71 16.7 1.07 1.44 1.11
Pensieve 60s 25.2 1.17 67% v.s. 33% 3.22 5.73 8.94 9.9 1.73
BB 30s 38.5 1.24 51% v.s. 49% 1.32 6.79 9.08 4.54 0.71
SARA 20s 30.3 1.21 65% v.s. 35% 1.23 10.9 3.10 3.41 0.80

TABLE 4
Data Wastage of MPC Across Seven Trace Datasets

Metrics

Dataset

#1 #2 #3 #4 #5 #6 #7

Wastage Ratio (%) 33.2 32.7 26.3 25.6 22.9 39.5 24.3
Wastage Amount (PB) 2.01 1.95 1.04 1.14 0.78 4.10 1.07
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not only allows the player to select higher video bitrate, but
also to accumulate more video data in the local buffer await-
ing playback. As a result, more data will be wasted in case
the viewer quits or skips the playback.

3.3 Discussions

We gained two insights from the above results. First, data
wastage is directly attributed to the buffered video data, as
all the data in the buffer will be discarded upon early depar-
ture or video skip. However, video buffering is essential for
preventing rebuffering and maintaining high QoE. There-
fore, the need for reducing data wastage inherently conflicts
with QoE. One potential solution is to investigate whether a
feasible tradeoff exists between data wastage and QoE, and
if so, how to achieve the desired tradeoff. From Table 3, we
found two factors that can impact both data wastage and
QoE, namely buffer size and bitrate adaptation aggressiveness,
so exploiting these two factors could offer a solution to
achieve the desired wastage-QoE tradeoffs.

Second, Tables 4 and 5 revealed another interesting prop-
erty – data wastage is not uniform but throughput-depen-
dent. However, existing streaming algorithms were almost
all designed to be one-size-fits-all, i.e., using fixed streaming
parameter values (e.g., buffer size) irrespective of the net-
work environments (e.g., ranging from 3G networks with a
few Mbps mean bandwidth to 4G networks with 100þ
Mbps peak bandwidth). Therefore, in this work we propose
to optimize the streaming parameters according to the spe-
cific network conditions so that the desired wastage-QoE
tradeoff can be maintained consistently across a wide range
of networks. In next section, we present a new PSWA frame-
work to tackle the above-mentioned challenges.

4 WASTAGE-AWARE VIDEO STREAMING

In this section, we present the Post-Streaming Wastage
Analysis (PSWA) framework. We first develop wastage-
aware parameters to convert existing adaptive streaming
algorithms into wastage-aware and then apply post-stream-
ing analysis [31] to optimize the wastage-aware algorithms.

4.1 Data Wastage Awareness

Most of the existing streaming algorithms were not
designed to incorporate the impact of data wastage. To this
end, we design two generic wastage-aware parameters,
namely buffer limit b and adaptation multiplier g, to convert
them to wastage-aware versions.

Buffer limit b. From Section 3, we found that data wastage
is highly correlated with the amount of buffered video data.
This suggests that limiting the buffer can control wastage.
Most existing streaming algorithm has an internal buffer
size setting (c.f. Table 3), denoted by B. As this size is

typically fixed for a given algorithm, it cannot adapt to the
network conditions, thereby resulting in suboptimal perfor-
mance (c.f. Section 3.2). Therefore, we propose a dynamic
buffering mechanism to address this limitation.

Specifically, ignoring network latency, let ti and fi be the
starting and completion time for transferring video segment
i to the client. Let bi be the buffer occupancy at time fi. We
schedule the starting time to transmit the next video seg-
ment at tiþ1 to limit the buffer occupancy within b:

tiþ1 ¼ fi; ifbi < b

fi þ bi � b; otherwise

�
(7)

where the value of b is no longer fixed, but is to be dynami-
cally tuned within the original buffer size B, i.e., 0<b�B,
according to the network conditions (c.f. Section 4.2).

Adaptation Multiplier g. Section 3 shows that bitrate selec-
tion aggressiveness also has significant impacts on data
wastage. The intuition is that the increase in the video
bitrate will increase segment download time, thereby
reduce buffer occupancy and consequently data wastage as
well. To exploit this, we develop a mechanism to regulate
the adaptation algorithm’s bitrate selection aggressiveness.
Specifically, most of the algorithms originally have one or
more internal metrics [29], [30] which are the key criterion
for them to determine the video bitrate for future video seg-
ments (refer to [29] for the notion of “internal metric”). To
control it, we introduce an adaptation multiplier g to multi-
ply the internal metric to indirectly tune its bitrate selection
aggressiveness.

It’s worth noting that the definition of the internal metric
in the existing streaming algorithms depends on the specific
design of their adaptation logic, so the definition differs
across different algorithms. Table 6 summarizes the descrip-
tion for the internal metric of five existing adaptive stream-
ing algorithms, and we refer the interested readers to their
original studies [23], [24], [25], [26], [27] for the detailed
definitions.

To illustrate how the adaptation multiplier g works, we
take MPC [26] as an example, of which the definition of the
internal metric is reproduced below:

Dk ¼ Hk=ð1þ ekÞ; (8)

where Dk is the estimated throughput for determining
the bitrate of segment k, Hk is the harmonic mean through-
put for downloading the past 5 segments (i.e., segment k–6

TABLE 5
Data Wastage of MPC Across Ten Throughput Levels

Metrics

Throughput Level

0�1 2�3 4�5 6�7 8�9

Wastage Ratio (%) 21.0 26.9 29.9 34.1 41.4
Wastage Amount (PB) 0.71 1.12 2.08 3.02 4.54

TABLE 6
Internal Metric and Adaptation Multiplier g

of the Existing Streaming Algorithms

Algorithm Internal metric Range of g

LBG [23] Video segment duration over
segment download time

0�3

Stagefright [24] The sliding window of
throughput measurement

0�5

BBA [25] Mapping slope between buffer
occupancy and video bitrate

0�12

MPC [26] The harmonic mean of past throughput
divided by previous estimation error

0�5

Pensieve [27] Throughput measurement vector
including past 8 video segments

0�3
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� k–1) and ek is the previous maximum absolute estimation
error. MPC mainly relies on the estimated throughput Dk to
determine video bitrate [26], so we can apply the multiplier
g toDk to control the bitrate selection aggressiveness:

D0
k ¼ g �Dk; (9)

where the value of g can be tuned to change the final output,
denoted byD0

k.
Naturally, different streaming algorithms may use differ-

ent internal metrics (e.g., the throughput measurement vec-
tor in Pensieve [27] as opposed to harmonic mean in MPC)
but one can apply g in a similar fashion (see Table 6) to con-
trol their bitrate selection aggressiveness.

4.2 Post-Streaming Wastage Analysis (PSWA)

With the two wastage-aware parameters (i.e., b and g)
defined in Section 4.1, the next challenge is to find a way to
determine their optimal values to achieve the desired trade-
off between data wastage and QoE.

Although mobile networks are known to have rapid
bandwidth fluctuations, they also exhibit consistent proper-
ties over longer timescales (e.g., days) so that analysis of the
network conditions in past video sessions (e.g., in the past a
few days) could inform the optimization of future streaming
sessions [31]. Exploiting this, Liu et al. [31] proposed Post-
Streaming Analysis that can provide predictable streaming
performance in adaptive video streaming. The idea is to
exploit past streaming trace data captured as a by-product
of video sessions to automatically tune streaming parame-
ters in the adaptation logic to achieve the desired streaming
performance, e.g., target rebuffering probability, in future
video sessions.

Drawing on the Post-Streaming Analysis principle, we
developed a novel Post-StreamingWastageAnalysis (PSWA)
framework to control data wastage through optimizing the
wastage-aware parameters, i.e., buffer limit b, and adaptation
multiplier g. Specifically, PSWA comprises repeating cycles
of two phases, namely offline analysis and online streaming, as
depicted in Fig. 3. PSWA executes offline analysis periodi-
cally, e.g., daily, to compute the optimal value of b and g for
use in online streaming, e.g., the next 24 hours.

Offline Analysis. One key insight from Section 3 is that the
wastage-QoE tradeoff is throughput-dependent. This sug-
gests that a single set of parameters optimized for all kinds
of network conditions is likely to be sub-optimal. To tackle
this challenge, we segregate network conditions into differ-
ent classes according to the throughput level (c.f. Section 3)
so that the wastage-aware parameters can be optimized

separately to match the characteristics of different network
classes. However, while the throughput level can be calcu-
lated directly in offline analysis, as the throughput trace
data are given, it cannot be known before streaming the
actual video session in online streaming. Therefore, we
need a way to estimate the throughput level for the new
video sessions.

Video players typically prefetch a number of video seg-
ments before commencing playback. The throughput in
downloading the prefetch segments reflects the current net-
work condition and thus can be used to estimate the
throughput level for the new video session. Specifically, let
a be the pre-configured bitrate for the first m segments dur-
ing prefetch, i.e.,

rj;k ¼ a; k ¼ 0; 1; . . .m� 1; (10)

where rj;k denotes the selected video bitrate for the kth seg-
ment in session j. After segment m-1 is received, the system
can then calculate the mean throughput from

Vj ¼ 1

m

Xm�1

k¼0

sj;k
dj;k

; (11)

where sj;k, and dj;k are size and download time for segment
k in the prefetch phase of session j. We then employ a linear
quantization policy to map the throughput level Tj from the
mean throughput Vj:

Tj ¼ min
Vj

D

� �
;M � 1

� �
; (12)

where D is the quantization step size andM is the maximum
number of the throughput level. Based on the throughput
level Tj, the next step is to divide all video sessions trace
data Sj; j ¼ 01; . . . ; N , intoM network classes:

Cp ¼ Sj

��Tj ¼ ph i; 8j	 

; p ¼ 0; 1; . . . ;M � 1; (13)

where Tj is the throughput level for video session j.
PSWA then conducts parametric optimization to calculate

the optimal wastage-aware parameters for each network
class separately. Specifically, for throughput level p, PSWA
executes trace-driven simulation with streaming trace data
Cp to test the effectiveness of different values of wastage-
aware parameter, i.e., bp and gp. Note that the trace data has
two types, namely TCP throughput trace (replicating network
condition) and viewing behavior trace (replicating early
departure and video skip), both of which are captured as a
by-product of past video sessions so no extra measurements
are needed.

After the simulation, PSWA records the resultant stream-
ing performance metrics including selected bitrates, play-
back rebuffering, etc., to compute the overall QoE achieved
in each network class, denoted by fQðbp; gpÞ j p ¼ 01; . . . ;
M � 1g, where Q(.) is the QoE function adopted, e.g., (5).
Concurrently, PSWA also records the data wastage amount,
i.e., W(.), in each network class, denoted by fWðbp; gpÞ j p ¼
01; . . . ;M � 1g. With these two wastage-aware parameters,
PSWA quantifies the relationship between QoE and data
wastage (see Appendix A.2, available in the online

Fig. 3. The architecture of PSWA framework.
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supplemental material, for more details on the trace-driven
simulation).

QoE and data wastage are inherently conflicting metrics
so reducing data wastage may impair QoE. However, QoE
is critical to streaming services and it is likely application,
service, and even user dependent so we need a mechanism
for the streaming vendor to control data wastage based on
their QoE preference. One possibility is to combine QoE and
data wastage into a unified utility function such that the
problem becomes a utility-maximization problem. How-
ever, such a utility function does not exist in the literature
and it is unclear how the utility can be normalized between
QoE and data wastage.

Therefore, we adopted a different approach in that the
system offers an interface (e.g., a configurable server or
video player option) for the streaming vendors to specify an
acceptable QoE loss ratio, denoted by d. The purpose of d is
to allow the streaming vendors to specify their QoE prefer-
ence, e.g., they can set d to any values within 0 percent�100
percent. Note that setting d to 0 percent indicates no QoE
loss, in which case PSWA will maintain the actual QoE at
the same level as that achieved by the original streaming
algorithms (i.e., the algorithm without wastage-aware
parameters).

In the following, we denote the QoE achieved by the
original streaming algorithms in throughput level p as Up,
p ¼ 01; . . .M � 1. PSWA aims at minimizing the amount of
data wastage and at the same time maintaining the QoE loss
to within d, through tuning the two wastage-aware parame-
ters bp and gp, i.e.,

min
bp;gp

Wðbp; gpÞ

s:t: 1� Qðbp;gpÞ
Up

� d:

p ¼ 0; 1; . . . ;M � 1

(14)

After solving the optimization problem, PSWA obtains
the optimal wastage-aware parameters for each throughput
level, denoted by fb�p; g�pjp ¼ 0; 1; . . .M � 1g.

Online Streaming. After offline analysis, the optimized
wastage-aware parameters will be loaded into the video
player as part of the streaming metadata (e.g., MPD playlist
in DASH [5]). To begin a new video session, the video
player first estimates the throughput level from the prefetch
process, i.e., (10)�(12), and then applies the optimal wast-
age-aware parameters according to the throughput level to
the current video session. The rest of the streaming process
is unchanged. Overall, the modification needed is very sim-
ple so that PSWA can be readily deployed into existing
streaming platforms.

4.3 Takeaway and Deployment

Takeaway. PSWA is designed to complement (rather than
replace) the underlying streaming algorithms by converting
them into wastage-aware versions. Thus it can be applied to
the streaming platforms already in service and is compati-
ble with the existing video streaming protocols such as
DASH. The insight behind PSWA is that mobile networks
exhibit consistent properties over a timescale of days so that
one can analyze past video sessions’ trace data to achieve
predictable performance (data wastage and QoE) for future

sessions [31]. Therefore, to capture the properties of the
mobile network and keep detecting whether they have
evolved, PSWA employs the repeated cycle of the two-
phase design (c.f. Section 4.2). This guarantees that 1) the
value of the wastage-aware parameters can be continuously
updated, thus maintaining consistent wastage-QoE tradeoff
performance as the network infrastructure evolves, and 2)
the deployed PSWA can automatically adapt to new net-
work developments (e.g., 5G).

Deployment. In applying PSWA to rate-adaptation algo-
rithms, the computation complexity should be low as bitrate
decision needs to be performed frequently online. This can
be easily achieved by PSWA as most of the computations are
consolidated into the offline analysis that is executed on the
server-side. For example, the CDN server of the streaming
vendors can be easily extended to record the video session’s
trace data for offline analysis when it delivers the video data
to the players over HTTP/TCP. Moreover, the optimal wast-
age-aware parameters can be embedded into the meta-data
file of the streaming protocols (e.g., MPD in DASH) for deliv-
ery to the video player. For online streaming, the only com-
putation requirement is the throughput level measurement
during prefetch, which is not computationally expensive
and is performed only once at the beginning of each video
session. To demonstrate PSWA’s feasibility, we imple-
mented PSWA into an open-source video player (dash.js
[32]) and evaluated its performance in Section 5.5.

5 PERFORMANCE EVALUATION

In this section, we evaluate PSWA’s effectiveness in reduc-
ing data wastage and analyze the tradeoff between data
wastage and QoE.

5.1 Experiment Setup

We employed trace-driven simulations with the same setup
as described in Section 3.2. PSWA was applied to optimiz-
ing the five non-wastage-aware streaming algorithms,
namely LBG [23], Stagefright [24], BBA [25], MPC [26], and
Pensieve [27], to turn them into wastage-aware versions. In
addition, the two existing wastage-aware algorithms, BB [7]
and SARA [8], were evaluated to compare to the perfor-
mance of PSWA.

We used a total of 60 weeks’ trace data (�100000 video
sessions) in the evaluation. PSWAwas configured to use the
past one day’s trace data in offline analysis phase to opti-
mize the two wastage-aware parameters fb; gg, which were
then applied to online streaming phase in the next 24 hours.
b is tuned within the streaming algorithm’s buffer size (c.f.
Table 3), and the tuning range of g is listed in Table 6. For
the throughput level, we adopted the linear mapping policy
in (12) with quantization step size of D ¼ 1 Mbps and M ¼
10. Unless stated otherwise we adopted (5) as the default
QoE function. The rest of the parameters are summarized in
Table 2.

5.2 Performance Tradeoff

PSWA offers a tool for streaming vendors to explicitly con-
trol the tradeoff between data wastage and QoE through
specifying QoE loss ratio d. To evaluate the tradeoff trajec-
tory, we varied d from 0 percent to 4 percent to evaluate the
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tradeoff between QoE and data wastage in Fig. 4, which
plots the tradeoff trajectories for all seven streaming algo-
rithms evaluated. The performance of the original algo-
rithms (without applying PSWA) are indicated by the “-o”
suffix (e.g., “LBG-o”) while PSWA-optimized versions are
indicated by the “-p” suffix (e.g., “LBG-p”).

We observed that all five non-wastage-aware algorithms
optimized by PSWA show a significant reduction in data
wastage with little or even no loss of QoE. In all cases, PSWA
enables them to achieve a continuous tradeoff trajectory
between data wastage and QoE. In comparison, since BB and
SARA are wastage-aware algorithms, they did achieve rela-
tively low data wastage. However, due to their one-size-fits-
all model, both of them can only achieve one specific point of
tradeoff and the resultant QoE is relatively low.

To evaluate PSWA’s control on QoE loss, we defined a
newmetric ’ to quantify the actual QoE loss proportion, i.e.,

’ ¼
X
8i

ðUi �QiÞ
,X

8i
Ui; (15)

where Ui is the QoE achieved by the original algorithm for
video session i, Qi denotes the QoE achieved by the PSWA-
optimized algorithms. We then compare ’ against the speci-
fied QoE loss ratio d in Table 7. We observe that the five
algorithms performed similarly, all of which achieved
actual QoE loss proportion lower than but close to d.

Next, we quantify data wastage reduction using a new
metric called data wastage reduction proportion:

& ¼
X
8i

ðPi �WiÞ
,X

8i
Pi; (16)

where Pi is data wastage amount produced by the original
algorithm for video session i,Wi is the data wastage amount
of the PSWA optimized algorithm.

Table 8 summarizes the data wastage reduction propor-
tion versus the specified QoE loss ratio d. We observed that
through PSWA, all five streaming algorithms’ data wastage
was reduced significantly, i.e., up to 44.4 percent�90.2 per-
cent wastage reduction within 4 percent QoE loss, where
LBG achieved the most substantial result.

Remarkably, PSWA could reduce data wastage even
without any QoE loss. From the column with d ¼ 0% in
Table 8, PSWA enabled the five algorithms to achieve 31.6
percent to 79.9 percent wastage reduction with no degrada-
tion in QoE. This counter-intuitive result is due to PSWA’s
ability to lift the limitation of the one-size-fits-all model
adopted by the existing streaming algorithms.

In particular, the optimal value of a streaming algo-
rithm’s internal metric (c.f. Section 4.1) in fact can and does
vary with the network condition [29]. However, these exist-
ing streaming algorithms were only equipped with a fixed
set of internal metrics so were inevitably suboptimal when
applied to a wider range of network conditions. By contrast,
PSWA tunes g to optimize the streaming algorithms’ inter-
nal metrics based on the specific network conditions and
thus also improves their QoE performance beyond their
original version.

The increased QoE thus provides the QoE margin for
PSWA to reduce data wastage such that the overall QoE
performance is not degraded (see Appendix A.4, available
in the online supplemental material, for more details).

To see if the above observations are consistent across dif-
ferent QoE metrics, we repeated the experiments using
three other QoE functions, i.e., QoE2 � QoE4 [26], [33], [34]
(QoE1 is defined by (5)). We set QoE loss ratio d to 0 percent
and summarized the resultant data wastage reduction
under the four QoE functions in Table 9. We observed very
similar patterns across the four QoE functions, where
PSWA enables the five streaming algorithms to achieve sub-
stantial data wastage reduction without any QoE loss.

Fig. 4. Comparison of data wastage amount and QoE performance.

TABLE 7
Actual QoE Loss Proportion ’ (%) Versus

Specified QoE Loss Ratio d

Algorithm

QoE Loss Ratio d (%)

0 1 2 3 4

LBG -0.15 0.96 1.75 2.86 3.93
BBA -0.09 0.90 1.81 2.77 3.78
MPC -0.06 0.87 1.79 2.98 3.69
Stagefright -0.21 0.99 1.89 2.57 3.90
Pensive -0.10 0.79 1.92 2.49 3.71

TABLE 8
Data Wastage Reduction Proportion & (%)

Versus Specified QoE Loss Ratio d

Algorithm

QoE Loss Ratio d (%)

0 1 2 3 4

LBG 79.9 83.2 85.4 87.2 90.2
BBA 31.6 35.7 38.2 41.8 44.4
MPC 40.3 45.1 48.7 50.4 52.3
Stagefright 64.2 68.6 71.0 74.3 74.8
Pensive 44.0 48.3 54.2 57.1 61.2

TABLE 9
Data Wastage Reduction Proportion & (%) Across

Four QoE Functions (d ¼ 0%)

Algorithm QoE1 QoE2 QoE3 QoE4

LBG 79.9 73.5 83.3 90.1
BBA 31.6 27.0 39.5 30.5
MPC 40.3 51.7 49.7 41.7
Stagefright 64.2 50.1 66.4 56.6
Pensive 44.0 58.2 66.1 51.2
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5.3 Variation Across Network Conditions

In this section, we investigate PSWA’s performance across
different network conditions. Specifically, we evaluated
PSWA’s performance over seven throughput trace dataset
#1 � #7, which were collected from multiple mobile opera-
tors and locations (c.f. Table 2). In this experiment, PSWA
made use of the past one day’s trace data for offline analysis
where the trace data are a combination of training data
from the dataset #1 � #7. The rest of the unseen trace data
were then used for performance evaluation. Note that in
this section we only show the results of MPC with a setting
d to 2 percent. Results for other streaming algorithms and
settings of d are similar.

Table 10 summarizes PSWA’s wastage reduction perfor-
mance when applied to MPC across the seven trace data-
sets. It is clear that PSWA consistently enabled MPC to
achieve substantial data wastage reduction across all seven
datasets, ranging from 32.3 to 77.1 percent.

Moreover, compared to the original MPC (MPC-o), the
PSWA-optimized version (MPC-p) achieved more consis-
tent wastage ratio and wastage amount across the datasets.
These results suggest that using trace data from a suffi-
ciently wide spectrum of network conditions in the offline
analysis phase, PSWA can enable one algorithm to effec-
tively control the data wastage over a broad range of net-
work environments.

To further analyze the results across different levels of
throughput, we divided all video sessions into 10 through-
put levels, with level l ¼ 01,. . .,8 collecting sessions with
average throughput within (l, l þ 1] Mbps, plus level 9 with
average throughput �9Mbps, and then summarized their
respective data wastage performance in Table 11.

We observed that through PSWA’s optimization, MPC-p
can now consistently control data wastage throughout the

throughput levels. The higher data wastage at the high
throughput levels is now compensated by PSWA with
higher wastage reduction. Consequently, MPC-p’s wastage
ratio is far more consistent across the 10 levels although its
wastage amount still increases with the throughput level.
This increase is inevitable as adaptive streaming algorithms
will select higher video bitrate at higher throughput levels
and hence the larger video segment size would naturally
lead to more data wastage. Nevertheless, with PSWA, the
rate of increase in the wastage amount of MPC-p is substan-
tially lower than that of MPC-o.

To further investigate the dynamics of PSWAwith respect
to throughput levels, we calculated in Table 12 the mean val-
ues of the wastage-aware parameters (i.e., b and g) of MPC-p
across different throughput levels. There are two observa-
tions. First, the results clearly show that the optimal wastage-
aware parameters vary substantially across throughput
levels. This validates PSWA’s throughput-level differentia-
tion approach to optimize the parameters. Second, as through-
put level increases, the buffer limit b decreases while the
adaptationmultiplier g increases.

This indicates that PSWA is able to exploit the (better)
network condition at higher throughput levels to increase
the algorithm’s bitrate selection aggressiveness (via increas-
ing g) and to reduce the amount of buffered data (via
decreasing b) so that data wastage is reduced in case the
viewer quits or skips.

Next we study PWSA’s behavior over time in Fig. 5,
which plots the daily mean values of b and g in throughput
level 5 over a period of 70 days (similar patterns can be
observed in other throughput levels). Since the mean throu-
ghput at a certain throughput level is limited to a specific
range (e.g., 5 Mbps � 6 Mbps in throughput level 5), we
could ignore the impact of mean throughput and focus on
the impact of throughput variations (quantified by through-
put Coefficient of Variation (CoV) in Fig. 5). The key obser-
vation here is that the two parameters were constantly
changing over time as one would expect. More importantly,

TABLE 10
Data Wastage of MPC Across Seven Throughput

Trace Datasets (d ¼ 2%)

Metrics Wastage
Ratio (%)

Wastage
Amount (PB)

Data Wastage
Reduction & (%)

Version MPC-o MPC-p MPC-o MPC-p

Dataset #1 33.2 13.9 2.01 0.90 55.1
#2 32.7 13.6 1.95 0.91 53.2
#3 26.3 13.4 1.04 0.61 41.3
#4 25.6 13.1 1.14 0.67 40.7
#5 22.9 12.9 0.87 0.59 32.3
#6 39.5 13.1 4.10 0.96 76.9
#7 24.3 14.0 1.07 0.63 41.1

TABLE 11
Data Wastage of MPC Across Ten Throughput Levels (d ¼ 2%)

TABLE 12
Wastage-aware Parameters of MPC-p Across

Ten Throughput Levels (d ¼ 2%)

Fig. 5. The evolution of wastage-aware parameters (in throughput level
5) over a period of 70 days.
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their trajectories clearly correlate with the variations in the
throughput CoV over the 70 days.

Intuitively, higher throughput CoVs is more likely to
cause rebuffering events so the results suggest that PSWA is
able to adapt to the long-term (i.e., day) variations in
the network behavior (i.e., throughput variations) to opti-
mize the wastage-aware parameter to consistently achieve
the desired tradeoff between data wastage and QoE. Inter-
ested readers are referred to Appendix A.4, available in the
online supplemental material, for a deeper analysis of the
two wastage-aware parameters.

5.4 Sensitivity Analysis

In this section, we dissected PSWA by investigating the rela-
tive performance contributions by its key components. Spe-
cifically, we investigate the significance of: (a) tuning the
buffer limit b only while keeping g to 1; (b) tuning the adap-
tation multiplier g only while keeping b to the algorithm’s
original buffer size; (c) removing the throughput level
differentiation.

We compared the performance of the full version PSWA
(indicated by the “-p” suffix) to the three handicapped ver-
sions, indicated by “-p-w/o-b” (without tuning b), “-p-w/
o-g” (without tuning g) and “-p-w/o-TL” (without differen-
tiating throughput levels) suffixes respectively. Fig. 6 com-
pares their performances in terms of QoE loss and data
wastage reduction. We only showed the results for MPC as
the results for other algorithms are similar. It is clear that
both the throughput level differentiation and the two wast-
age-aware parameters are essential to PSWA as the effec-
tiveness of reducing data wastage drops significantly
without any one of them. In particular, the performance
drops the most without tuning g (i.e., MPC-p-w/o-g) where
the curve exhibits a more linear pattern passing through the
origin.

5.5 Implementation and Real Experiments

In this section, we report results from a prototype imple-
mentation of PSWA into the well-known dash.js video
player (version 3.11) [32] to validate PSWA’s practicality
and to verify its performance in real-world streaming set-
ups. Specifically, we first modified dash.js to support the
five non-wastage-aware streaming algorithms. For Pen-
sieve, dash.js was configured to fetch bitrate selection deci-
sions from a specialized bitrate decision server where
Pensieve’s neural network is deployed. All other algorithms
were embedded into “AbrController.js” of dash.js and exe-
cuted directly. Next, we specified a 2 percent QoE loss ratio

for PSWA’s offline analysis and then applied the optimal
wastage-aware parameters into the streaming algorithms in
dash.js.

In our setup, the video server host ran Linux with the
Apache httpd [35] serving video data over TCP CUBIC [36]
and the video client was a Google Chrome browser running
in a smartphone with the Android operating system. We
used an improved version of DummyNet [37] to emulate
the network conditions between the client and server based
on our collected TCP throughput trace data [22], along with
80 ms minimal RTT to model propagation delay. Other
streaming settings (e.g., video duration, bitrate profile, etc.)
were consistent with those in Section 3.2.

We ran each streaming algorithm twice, each streaming
1000 video sessions (the throughput trace data was the
same for both runs). Specifically, we ran streaming algo-
rithms with their original settings (i.e., without PSWA) for
the first time, and then applied the wastage-aware parame-
ters into the algorithms to run a second time (i.e., with
PSWA).

Table 13 summarizes the proportion of actual QoE loss
and data wastage reduction for each algorithm. We
observed that the actual QoE losses of the five algorithms
were all within the specified QoE loss ratio of 2 percent.
Meanwhile, the data wastage reduction is significant in all
cases, ranging from 40.2 to 78.3 percent. Overall, the experi-
mental results verified PSWA’s design goal to achieve the
desired tradeoff performance between QoE and data wast-
age in a real-world streaming implementation. Therefore,
PSWA offers an immediate and practical solution to signifi-
cantly reduce data wastage in current as well as future
streaming platforms.

6 SUMMARY AND FUTURE WORK

This work reveals that current video streaming systems can
result in substantial data wastage due to viewer’s early
departure and video skip behaviors. To tackle this problem,
we proposed a novel PSWA framework which can reduce
data wastage significantly (e.g., up to 80 percent) with little
to no degradation of QoE. PSWA not only can convert exist-
ing on-demand adaptive streaming algorithms into wast-
age-aware versions, but it can also be incorporated into the
design of new streaming algorithms so that data wastage
becomes an integrated performance metric rather than an
afterthought.

This work is only the first step in this direction. There are
many opportunities for future research. For example, data
wastage is not limited to on-demand streaming. There is a
rapid increase in live streaming services in recent years.
Although viewers cannot skip ahead in a live stream, their

Fig. 6. Performance contributions of PSWA’s key components.

TABLE 13
Real Experimental Results (d ¼ 2%)

Actual QoE Loss (%) Wastage Reduction (%)

LBG 1.74 78.3
BBA 1.91 40.2
MPC 1.87 53.9
Stagefright 1.62 71.5
Pensieve 1.88 56.1
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early departure would certainly result in data wastage. Sim-
ilarly, the emerging 360-degree video streaming poses an
even bigger challenge on data wastage due to its viewport-
based streaming approach. More work is thus warranted to
investigate these research challenges.
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