
On TCP Simulation Fidelity in ns-2

Lingfeng Guo
Department of Information Engineering
The Chinese University of Hong Kong

Hong Kong
gl016@ie.cuhk.edu.hk

 Jack Y. B. Lee
Department of Information Engineering
The Chinese University of Hong Kong

Hong Kong
yblee@ie.cuhk.edu.hk

ABSTRACT
The Network Simulator version 2, also known as ns-2, is a widely
used platform for network and protocol performance evaluation.
Over the years it has benefited from numerous studies in
improving its simulation fidelity. Nevertheless, this study
discovered that ns-2’s TCP simulation accuracy could be impaired
substantially in cases where the first-hop link is the bottleneck.
This is common in many applications where the client host
uploads data to Internet servers as the uplink, e.g., wireless and
mobile networks, may have far lower bandwidth than the Internet
core. This work investigated this performance anomaly by
dissecting and comparing ns-2’s implementation against Linux
implementation; and by developing extensions to ns-2 to resolve
the anomaly as well as five additional updates to bring its
implementation to match recent Linux implementations.
Extensive verifications against experiments conducted in a
physical testbed confirmed the accuracy of the extended ns-2,
offering a renewed and accurate simulator for mobile and wireless
networking.

KEYWORDS
ns-2; TCP Congestion Control; Intra-Host-Back-Pressure (IHBP);
Buffer Overflow

ACM Reference format:

Lingfeng Guo, Jack Y. B. Lee. 2018. On TCP Simulation Fidelity in ns-2. In
14th ACM International Symposium on QoS and Security for Wireless and
Mobile Networks (Q2SWinet’18). October 28-November 2, 2018, Montréal,
Québec, Canada. ACM, NY, NY, USA. 8 pages.
https://doi.org/10.1145/3267129.3267132

1 INTRODUCTION
The Network Simulator version 2, also known as ns-2 [1], is one
of the most widely used network simulators in networking fields.
In particular, ns-2 can incorporate part of Linux’s TCP congestion
control modules into the simulator which enables direct
simulation of Linux TCP congestion modules. For this reason a
large number of previous works employed ns-2 in the design,
optimization, and evaluation of a wide range of TCP congestion
control algorithms (e.g., [2-6]). At the time of writing Google
scholar returned over ten thousand papers referencing ns-2 which
clearly demonstrates its wide impact.

Consequently, the simulation fidelity of ns-2 is of great
significance to the research community and a number of previous
works [7-8] have improved ns-2’s accuracy over the years.
Nevertheless, with continuous development and refinement of
TCP implementations in production operating systems it is critical
to assess ns-2’s accuracy against recent TCP implementations.

In this study we first conducted a systematic assessment of ns-
2 against the current TCP implementation in Linux. The latter
choice is motivated by the wide-spread deployment of Internet
services using Linux-based servers. Our investigations revealed
that there is a fundamental difference in behavior between the
TCP simulated by ns-2 and the one as implemented in Linux
despite the fact that ns-2 is already running the Linux TCP
congestion control codes directly. This difference, which we
termed Intra-Host-Back-Pressure (IHBP), can lead to significant
differences in simulated vs real TCP behaviors when the first-hop
is the bottleneck link. This is now very common as many mobile
applications such as social networks running in smartphones
upload data (e.g., photos, videos) to Internet servers.

In addition, a detailed analysis of the ns-2 codes against Linux
kernel sources further revealed new features in Linux that are
missing in ns-2 and differences in implementation of known
features. These differences further impair ns-2’s simulation
fidelity of TCP even when the bottleneck is not at the first hop.

To tackle these limitations we developed a solution to rectify
the IHBP problem and updated the current ns-2 codebase (version
2.35) to bring it in line with recent Linux implementations. We
validated the modifications by comparing ns-2 results to a
physical testbed with the same topology running Linux. The
source codes for the modifications are available online [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
Q2SWinet'18, October 28-November 2, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5963-4/18/10…$15.00
https://doi.org/10.1145/3267129.3267132

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

55

Figure 1: Topology for simulation and testbed.

Figure 2: Comparison of cwnd trajectories, showing how
current ns-2 deviates from Linux due to unexpected
congestion events.

The rest of this paper is arranged as follows: Section 2 reviews
the evolution of ns-2; Section 3 reports the performance anomalies
of current ns-2 and analyzes their root causes; Section 4 presents
the extended ns-2; Section 5 validates the extended ns-2 against
Linux; Section 6 summarizes the paper and outline future work.

2 RELATED WORK
Given ns-2’s wide-spread use in networking research a number of
researchers have investigated and improved its accuracy over the
years. An early work by Jansen and McGregor [8] proposed the
Network Simulation Cradle to incorporate codes from network
stacks as implemented in production operating system into the
ns-2 simulator. Their results demonstrated that NSC can
substantially improve ns-2’s accuracy against real-world TCP
implementations.

In another study Wei and Cao [7] developed an ns-2 TCP
implementation with congestion control algorithms taken directly
from the Linux kernel sources. Their work had been adopted into
the official ns-2 codebase since version 2.33 and has been the
recommended implementation.

More recently, the next-generation network simulator, also
known as ns-3, is being actively developed [10]. ns-3 is a complete
redesign and is gaining momentum in the research community.
Nevertheless for TCP-related research ns-3 still lacks support for
critical components including TCP Cubic [2] (Linux default), TCP
Compound [3] (Microsoft Windows default), and the capability to
import current TCP modules from Linux into the simulator. Most
importantly, a vast body of existing and on-going studies are
based on ns-2 and thus it is critical to reexamine ns-2’s simulation
fidelity. In addition, the findings in this work can also inform the
future development of ns-3.

Figure 3: Intra-host buffering between TCP and network
interface card (NIC) in Linux.

3 NS-2 TCP SIMULATION REVISITED
In this section we report our key findings on ns-2’s accuracy in
simulating TCP by comparing the simulated TCP behavior with a
physical testbed running Linux (Ubuntu 16 with kernel 4.12.1)
hosts connected by a Cisco switch. Both simulation and the
testbed employed the same two-hop topology as shown in Fig. 1.
The links’ bandwidth (B1, B2) are configurable between 10Mbps,
100Mbps, and 1Gbps. By configuring different bandwidth for B1
and B2 we can position the bottleneck at either the first-hop or the
second-hop.

3.1 First-Hop Bottleneck
First, we investigated the case where the first-hop is the
bottleneck by configuring the first- and second-hop link
bandwidth to B1=10Mbps and B2=1Gbps respectively. The round-
trip propagation delay (RTprop) is set to 10ms. Note that in ns-2
there is a queue associated with every link. For the first-hop link
the queue is interfacing to the sender and we adopted ns-2’s
default queue size of 50 packets. For the second-hop link we
matched its queue size to the buffer size of the testbed switch
(Cisco WS-C2960S).

We employed TCP Cubic as the congestion control algorithm
in both simulation and experiment. It is worth reiterating that ns-
2 directly imports the TCP Cubic module from Linux kernel so the
congestion control implementations are exactly the same.

For both simulation and experiment a TCP connection was
setup between the sender and receiver, and then the sender
continuously transmitted data as fast as TCP allowed. We plot in
Fig. 2 the trajectories of the congestion window (cwnd) from ns-2
(TCP parameters were recorded every 10ms) and testbed (via
tcpprobe) over time. Surprisingly, the two cwnd trajectories differ
significantly early on. In the case of ns-2 its cwnd kept on

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

56

increasing until it encountered the first packet loss at time 0.16s
and continued to encounter packet losses after that. By contrast,
shortly after an initial increase Ubuntu settled on a cwnd of 25 and
remained unchanged. Unlike ns-2 there was no packet loss during
the whole experiment.

Clearly there was something amiss in the ns-2 simulation. As
the Cubic congestion module was imported directly from Linux
kernel it is unlikely due to discrepancies in the congestion control
algorithm. Given that the first-hop link is the bottleneck at
10Mbps, there should not be any queuing, let alone packet drops
at the switch as the switch’s outgoing link is operating at 1Gbps.
Indeed, analysis of ns-2’s trace data confirmed the lost packets
were not dropped at the switch but at the sender due to buffer
overflow at the input of the first-hop link.

This can occur in ns-2 because there is no flow control between
the TCP sender inside the sending host and the first-hop link it
was directly connected to. Therefore as TCP ramped up its cwnd
during slow-start it eventually exceeded the bandwidth limit of
the first-hop link. In this case TCP segments will start to queue up
at the first-hop link until the queue becomes full and consequently
packets dropped.

Linux’s implementation [11] as depicted in Fig. 3 does not
suffer from the same problem as there is implicit flow control
between the TCP sender and the lower layers. Briefly speaking,
whenever the lower layers’ (i.e., IP, network card driver) buffers
are full Linux will block TCP from submitting additional segments
to IP for transmission. This intra-host-back-pressure forces TCP to
buffer data internally (e.g., via sockets buffer) and in case the
internal buffer is full the application itself will be blocked from
sending more data (e.g., via blocking the send() function in the
sockets API).

A commonly-employed remedy to the above problem is to
configure a very large queue size for the first-hop link to reduce
the likelihood of buffer overflow. However this creates another
problem – increased delay. Specifically, a TCP sender in both ns-
2 and Linux treats a segment submitted to the lower layer as
transmitted and as such, marks the packet’s transmission
timestamp at that instant. Thus any queueing time experienced by
the TCP segment inside the host will count towards the packet’s
RTT when the corresponding ACK returns. As TCP relies on
packet RTT measurements for timeout/retransmission this could
lead to inaccurate TCP behavior.

To demonstrate this problem we conducted another ns-2
experiment by configuring the first-hop link buffer to a very large
value (100M packets) so that sender buffer overflow was
eliminated. Fig. 4 plots the cwnd evolution and the RTT for each
packet under ns-2 and Linux respectively. The large first-hop
buffer resulted in even larger differences in the cwnd trajectory
and the extra queueing resulted in increased RTT as measured by
the TCP sender. These are clearly inaccurate simulation of actual
TCP behavior.

First-hop bottleneck exists in many real-world networks, most
notably client-side data upload scenarios. In these cases, e.g.,
ADSL, mobile network, etc., the first-hop uplink is often the
bottleneck link. Therefore ns-2’s simulation fidelity in these
network scenarios is of critical importance.

Figure 4: Configuring a large buffer for the first-hop link
can prevent buffer overflow but will result in significantly
increased packet delay.

3.2 Recent Linux TCP Developments
The TCP module in ns-2 was last updated in 2011. Since then the
TCP implementation in Linux has undergone several updates
which affected TCP’s behavior under certain conditions. Through
analyzing and comparing the source codes of ns-2.35 and Linux
kernel 4.12.1 we discovered five key updates which can result in
different TCP behavior between the two platforms. We
summarize our findings below.

Hystart – During slow-start TCP begins with a small cwnd and
then increases it rapidly in an exponential manner. In some cases
(e.g., large buffer size at the bottleneck [12]) this may result in a
sufficiently large cwnd that can exceed the bottleneck bandwidth,
leading to packet losses. To tackle this problem Ha and Rhee
proposed Hystart [12] to dynamically adapt the exit point for the
slow-start phase. Since kernel 2.6.29 Hystart has been adopted in
Linux but has not yet been incorporated into ns-2.

Cwnd deduction – [2] suggested to deduct Cubic’s cwnd by (1-
819/1024) or ~20% upon detecting a congestion event. This has
been adopted in ns-2. However, in recent Linux kernel the amount
of deduction has been changed to (1-717/1024) or ~30%.

Delayed-ACK – Related to Hystart our study also revealed
another subtle issue – delayed ACK [13], which is supported in
both current ns-2 and Linux. However, while ns-2 performs
delayed-ACK from the beginning of a TCP connection, Linux’s
implementation is more complicated. Specifically, Linux
suppresses delayed-ACK at the beginning of a TCP connection
until a certain number (e.g., 70) of ACK packets have been
generated. We discovered that this difference could lead to
differences in the cwnd trajectories under certain network
conditions (c.f. Section 5.2).

Cwnd vs packets-inflight – According to RFC2861 [14] TCP’s
cwnd should not be raised unless it has been fully utilized, i.e.,
when TCP receives an ACK packet, it first checks whether the
number of packets inflight is equal to the current cwnd. If so then
TCP will increase cwnd according to the specific congestion
control algorithm employed. Otherwise TCP will leave cwnd

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

57

unchanged as the latter has not yet been exhausted. By contrast,
Linux adopts a slightly different mechanism where the threshold
is only half of the current cwnd, i.e., as long as half or more of the
cwnd is in use TCP will increase cwnd as determined by its
congestion control algorithm.

Application-limited TCP sender – In TCP Cubic its cwnd is a
cubic function of time since the last congestion event. This
mechanism plays an important role in maintaining fairness
among flows with different RTTs. However, this may also result
in unexpected side-effect in case the application suspends data
transmission for a period of time. Without application data for
transmission TCP obviously will not run into any congestion
event. However the cubic function will continue to grow during
the idle period. If the idle time is sufficiently long then cwnd could
grow to a large value so that a large burst of transmission will
result when transmission resumes, potentially overflowing the
bottleneck link buffer leading to packet losses.

Google recently developed a remedy for this issue [15] by
modifying TCP Cubic to detect application-limited phase so that
the idle time is deducted from the non-congestion period used in
computing the cubic function, thereby preventing large data
bursts once transmission resumes. We note that ns-2 normally
will not trigger this issue as its TCP sender always has data for
transmission so there is no application idle time. However if one
modifies the sender, e.g., to simulate explicit application
transmission rate control, then the anomaly may still occur.

4 PROPOSED NS-2 EXTENSIONS
In this section we tackle the limitations reported in Section 3 by
extending the ns-2 implementation to support implicit intra-host-
back-pressure and by updating the ns-2 implementation to match
Linux. We first analyze intra-host buffering in current ns-2 and
then present our extensions.

4.1 Current ns-2 Implementation
Current ns-2 uses a node to represent both an end-host and a
switch (or router). However, buffer in ns-2 is associated with a
link instead of a node. This is a suitable abstraction for network
switches and routers as buffers are typically associated with
switch/router ports which are abstracted as links. Inside the
sending node the first-hop link’s buffer then effectively becomes
the intra-host buffer as packets generated by TCP all pass through
it before reaching the first-hop link.

We analyzed ns-2’s implementation and summarized the logic
of two main functions related to packet transmission, namely
Send_much() and Recv(), using pseudocode in Fig. 5. First, an ACK
reception event results in a call to Recv() which in turn calls
Send_much(). The latter continuously sends packets in a loop
until cwnd is exhausted. The root cause of the issue here is that
Send_much() does not consider if the link has buffer space to
accommodate the incoming packets and thus may lead to the
intra-host packet drops as reported in Section 3. We present an
extension to correct this behavior in the next section.

Send and Receive functions in current ns-2
Send_much() /*sends out packet(s) */
Begin:
 Load parameters, including cwnd, sequence number.
 While (packet_in_fligt < cwnd)
 Send a packet
End

Recv(ACK) /*called upon each ACK reception */
Begin:
 If (ACK is duplicated):
 Do retransmission if necessary
 Else:
 Calculate time-related parameters, e.g., RTT.
 Call congestion modules, e.g., Cubic, Reno.
 Call Send_much()
End

Figure 5: Pseudocode for TCP implementation in current
ns-2.

Send and Receive functions in extended ns-2
Send_much() /*sends out packet(s) */
Begin:
 interval = transmission delay
 Load parameters, including cwnd, sequence number.
 While (packet_in_fligt < cwnd)
 If (link buffer is full):

 Schedule(recv(Empty-ACK), “now + interval”)
 break

 Else:
 Send a packet
End

Recv(ACK) /*called on each ACK reception */
Begin:
 If (ACK is Empty-ACK):
 Send_much()
 Return
 If (ACK is duplicated):
 Do retransmission if necessary
 Else:
 Calculate time-related parameters, e.g., RTT.
 Call congestion modules, like Cubic, Reno.
 Call Send_much()
End

Figure 6: Pseudocode for TCP implementation in extended
ns-2.

4.2 Intra-Host-Back-Pressure (IHBP)
A naïve approach to simulate IHBP would be to check against
buffer availability at the link and exit the packet transmission loop
in the Send_much() function in case the link buffer is full.
However this approach is also inaccurate.

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

58

Table 1: Summary of modifications in extended ns-2.

File name Modified/added Purpose
Agent.h Recv() Update parameters
Classifier.cc Recv() Update parameters
Connector.h Recv() Update parameters
Delay.cc Recv() Update parameters
Object.h New class NIC Add new parameters
Object.cc Recv() Update parameters
Queue.cc Recv() Update parameters
Tcp-linux.cc Send_much()

Recv()
Fix intra-host buffer
overflow

Tcp_cubic.cc Hystart_reset()
Hystart_update()
Bic_acked()
Bictcp_cwnd_event()

Implement Hystart
and fix application-
limited bug

Table 2: Summary of testbed and simulation settings.

Configurations Testbed Extended ns-2 simulator
OS Ubuntu 16 N/A
TCP variant Cubic Cubic
Queue discipline N/A DropTail (1st hop link)
Host buffer size at first-
hop link bandwidth

10Mbps: 6 packets
100Mbps: 12 packets
1Gbps: 20 packets

10Mbps: 6 packets
100Mbps: 12 packets
1Gbps: 20 packets

SACK [17] Enabled Enabled
Delayed ACK [13] Enabled Enabled
TCP Control Block [18] Disabled Not supported
Initial ssthresh 2147483647 packets 2147483647 packets
Initial cwnd [19] 10 packets 10 packets
Switch Cisco WS-C2960S N/A
Queue discipline DropTail DropTail
Link buffer size 40 packets 40 packets

Recall that packet transmission via Send_much() is triggered

only by the reception of an ACK packet. Consequently, if
transmission is suspended due to full buffer then no packet will be
transmitted until a new ACK is received, even if link buffer
becomes available again before then. In contrast, Linux will be able
to resume transmission once link buffer space is available again,
without needing to wait for a new ACK to be received.

There are several ways to implement the correct behavior in
ns-2. We chose an approach that minimizes code changes so as to
avoid any potential side-effects. This is illustrated in Fig. 6 where
the new codes are in italic. Specifically, whenever Send_much() is
terminated due to link buffer full we insert a special ACK packet
reception event, called Empty-ACK, into the ns-2 scheduler. This
special event has a schedule calculated to be the exact time at
which the head-of-line packet in the connected link will be
completely transmitted, i.e., same time for buffer space to become
available again.

The Recv() function is modified to handle this special Empty-
ACK packet by calling the Send_much() function to resume
submitting TCP packets to the link buffer for transmission. Once
Send_much() returns, presumably due to link buffer full again, the
Recv() function will then return, bypassing the rest of the codes
for actual congestion control. Handling of normal ACK packets
are not affected.

4.3 Additional Updates
In addition to intra-host-back-pressure we also implemented the
five missing/differing mechanisms in ns-2 as discussed in Section
3.3. We summarize the updates below:

Hystart – Hystart was absent from current ns-2 so we
implemented it in accordance to the Linux implementation.

Cwnd Deduction – We updated Cubic’s cwnd deduction in ns-
2 from 20% to 30% to match Linux’s implementation.

Delayed-ACK – We added a new option in ns-2 to configure
when delayed-ACK should be activated to match Linux’s
behavior. For example, in our experiments Linux activated
delayed-ACK at the 70th ACK. We note that although this option
is an approximation of Linux’s delayed-ACK behavior, it was
shown to be reasonably accurate (c.f. Section 5.2).

cwnd vs packets-inflight – We updated ns-2’s slow-start phase
behavior such that cwnd is allowed to grow as long as half of the
cwnd has been utilized.

Application-limited TCP sender – We updated the TCP Cubic
implementation in ns-2 to exclude application idle time from the
non-congestion period used in computing the cubic function.

Together with the IHBP mechanism these were implemented
in ns-2 version 2.35 using approximately 200 lines of new codes
distributed in nine source files. Table 1 lists the source files
updated and summarizes the affected functions.

5 SIMULATOR VERIFICATION
In this section we validate the accuracy of the extended ns-2
simulator by comparing simulated results to experimental results
obtained from a physical testbed running Linux hosts connected
by an Ethernet switch with equivalent topology and
configurations.

5.1 Simulation and Experiment Setup
Both simulation and experiment employed the same network
topology as depicted in Fig. 1. Table 2 lists the configurations
adopted in ns-2 and testbed. Many of the ns-2 default parameters
do not match the testbed so we explicitly configured them to
match the testbed parameters

For the host buffer, i.e., the buffer between TCP sender and
the network interface card, Linux implements buffering via a
mechanism known as TCP Small Queue (TSQ) [16]. This was
introduced to improve fairness among competing flows within the
same host. We added codes to the Linux kernel to determine the
runtime buffer size allocated by TSQ which was shown to be
primarily link-bandwidth dependent. We adopted the observed
intra-host buffer size in our extended ns-2 simulator.

Current Linux also implements TCP Control Block (TCB) [18]
which caches certain TCP parameters such as ssthresh from
previous connection for use in new ones. This only affects
scenarios with repeated connections from the same peer. TCB is
not currently supported by ns-2 and so we disabled the same in
the testbed. We are currently investigating the feasibility of
implementing TCB in our extended ns-2 simulator.

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

59

Figure 7: Comparison of cwnd trajectories with first-hop
bottleneck of 10Mbps for round-trip propagation delays of
10ms, 50ms, and 100ms.

Figure 8: Comparison of cwnd trajectories with first-hop
bottleneck of 100Mbps for round-trip propagation delays
of 10ms, 50ms, and 100ms.

For the testbed, link bandwidth was controlled by
configuring the Ethernet network interface to operate in 10Mbps,
100Mbps, or 1Gbps mode using ethtool [20]. Link delays of {10ms,
50ms, 100ms} were emulated using netem [21]. We employed iperf
[22] to generate TCP traffic. Access to internal TCP parameters
such as cwnd and ssthresh were obtained via tcpprobe [23]. In all
experiments full packet traces were captured using tcpdump [24]
for subsequent analysis.

5.2 First-Hop Bottleneck
We first revisit the network topology with the first-hop link being
the bottleneck. Fig. 7 and Fig. 8 compare the TCP cwnd trajectories
over time for the first-hop link bandwidth of 10Mbps and 100Mbps
respectively (the second-hop link bandwidth was fixed to 1Gbps
for both cases). Each figure comprises three sub-figures for round-
trip propagation delays of 10ms, 50ms, and 100ms respectively.
Comparing to the Linux testbed the current ns-2 clearly exhibited
very substantial deviations in its cwnd trajectories in all six tested
cases.

In the ns-2 simulations there were packet losses caused by
buffer overflow at the first-hop link, resulting in TCP’s cwnd
deduction. As discussed in Section 3 this will never occur in Linux
as its intra-host-back-pressure mechanism will prevent TCP from
sending more packets than can be buffered. This is verified by
Linux’s cwnd trajectories which have no packet loss. Most
importantly, the cwnd trajectories of the extended ns-2 tracked
the Linux ones remarkably closely, exhibited no packet loss as
expected.

We note that in addition to implementing the IHBP
mechanism the five updates in Section 4.3 also made contribution
to the accurate simulation results in the extended ns-2. Due to
space limitation these additional verification results were omitted
here.

Next we turn our attention to throughput performance in Fig.
9 and Fig. 10. In Fig. 9 where the first-hop link bandwidth was 10
Mbps, the long-term throughputs in the stable region of current
ns-2, extended ns-2, and Linux are similar. However current ns-2
exhibited throughput drops as if it encountered congestions. This
is clearly not congestion-related as the first-hop was the
bottleneck and is a direct consequence of intra-host buffer
overflow when the cwnd grew beyond the first-hop link’s
capacity.

Finally we compare the packet-level delays in Table 3. For
each configuration the packet delay was computed from
averaging the RTTs of all packets. In the testbed this was done by
analyzing the packet trace captured by tcpdump in the sender.

Comparing the first set of results for the 10Mbps bottleneck
link case it is clear that current ns-2 exhibited significantly longer
delays. This is due to queueing inside the intra-host buffer which,
as discussed in Section 3.1, was counted by TCP as part of the RTT.
By contrast, the extended ns-2 exhibited similar delays to the
testbed. The minor differences are likely due to processing delays
in the testbed.

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

60

Figure 9: Comparison of throughput trajectories with
first-hop bottleneck of 10Mbps for round-trip propagation
delays of 10ms, 50ms, and 100ms.

Figure 10: Comparison of throughput trajectories with
first-hop bottleneck of 100Mbps for round-trip
propagation delays of 10ms, 50ms, and 100ms.

Table 3: Comparison of average packet delay (in ms).

RTprop Extended
ns-2

Current ns-2
(Default buffer)

Current ns-2
(Large buffer)

Linux
Testbed

First-hop bottleneck link at 10Mbps
10ms 17 59 485 18
50ms 57 92 595 58
100ms 107 134 636 108

First-hop bottleneck link at 100Mbps
10ms 11 14 746 12
50ms 51 50 737 52
100ms 101 100 663 101

Interestingly, current ns-2 apparently did not exhibit delay

anomalies in the {100Mbps, 50ms} and {100Mbps, 100ms} cases.
This is because early packet losses due to intra-host buffer
overflow caused TCP Cubic to enter the congestion avoidance
phase during which the cwnd was only increased slowly (c.f. Fig.
8). As a result the throughput was in fact below the link bandwidth
of the first-hop (c.f. Fig. 10) and hence there was little to no
queueing inside the host to increase packet delay.

Finally, a known trick to prevent intra-host buffer overflow is
to increase the first-hop link buffer size to a large value (e.g., 100M
packets). We tested this method and while it can indeed prevent
buffer overflow, packets queueing inside the large buffer will
experience extended delays as listed in Table 3. Obviously such
large delays are far from the actual TCP behavior.

5.3 Non-First-Hop Bottleneck
In this section we relocate the bottleneck from the first-hop link
to the second-hop link by setting the former to 1Gbps and the
latter to 10/100Mbps. There are two goals: (a) to validate the
extended ns-2’s behavior against real Linux to ensure that the
extensions do not create unintended side-effects; and (b) to
demonstrate the added fidelity due to the updates described in
Section 3.2.

First, we compare in Fig. 11 the cwnd trajectories of Linux,
current and extended ns-2 for the case of 10Mbps bottleneck at
the second-hop link. Although intra-host buffer overflow did not
occur in this topology, current ns-2’s cwnd trajectory still
deviated significantly from Linux at the beginning of the
connection. This is due to Linux’s Hystart [12] mechanism which
is absent from current ns-2. It prevented Linux TCP from growing
its cwnd too aggressively at the beginning which could result in
early congestion in low-bandwidth links as demonstrated by the
extra congestion events early on in current ns-2’s cwnd
trajectories. By contrast, with Hystart incorporated the extended
ns-2 closely tracked Linux’s cwnd trajectories.

Fig. 12 plots the cwnd trajectories for the case of 100Mbps
bottleneck at the second-hop link. With the higher link bandwidth
the impact of Hystart became smaller. Nevertheless current ns-2
still exhibited some deviations from Linux especially at longer
propagation delays of 50ms and 100ms. By contrast, the extended
ns-2 tracked Linux’s cwnd trajectories consistently,
demonstrating its simulation fidelity.

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

61

Figure 11: Comparison of cwnd trajectories with second-
hop bottleneck of 10Mbps for round-trip propagation
delays of 10ms, 50ms, and 100ms.

Figure 12: Comparison of cwnd trajectories with second-
hop bottleneck of 100Mbps for round-trip propagation
delays of 10ms, 50ms, and 100ms.

6 SUMMARY AND FUTURE WORK
This work uncovered the intra-host-back-pressure issue in
current ns-2 implementation and developed extensions to
substantially improve its fidelity in simulating recent Linux TCP
implementation. In addition to the extensions investigated in this
work, there are a number of TCP-related mechanisms which are
absent from ns-2, most notably TCP Control Block [18], TCP Fast
Open [25], TCP receiver window, etc. Although these mechanisms
are outside the scope of TCP congestion control (the focus of
many TCP studies) they could impact TCP behavior under certain
network conditions. Therefore additional work is warranted to
investigate their performance impact and implementation into ns-
2.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their suggestions and
comments in improving this paper to its final form.

REFERENCES
[1] Network Simulator-2 ns-2. [Online] http:www.isi.edu/nsnam/ns/
[2] I. Rhee and L. Xu. Cubic: A New TCP-Friendly High-Speed TCP Variant.

ACM SIGOPS Operating System, New York, USA, Jul.2008, pp. 64-74.
[3] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach

for High-Speed and Long-Distance Networks. in Proc. IEEE INFOCOM’
2006, Barcelona, Spain, Apr. 2006, pp 1-12.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). in Proc.
SIGCOMM’2010, New Delhi, India, Aug. 2010, pp. 63-74.

[5] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-Generated
Congestion Control. in Proc. SIGCOMM’2013, Hong Kong, China, Aug.
2013, pp 123-134.

[6] L. A. Grieco and S. Mascolo. Performance Evaluation and Comparison of
Westwood+, New Reno, and Vegas TCP Congestion Control. in Proc.
SIGCOMM’2004, Portland, Oregon, USA. Aug. 2004, pp. 25-38.

[7] D. X. Wei, P. Cao. ns-2 TCP-Linux: An ns-2 TCP Implementation with
Congestion Control Algorithm from Linux. in Proc. The Workshop on Ns-2:
The IP Network Simulator (WNS2’2006), Pisa, Italy. Oct. 2006.

[8] S. Jansen and A. McGregor. Simulation with Real World Network Stacks.
In Proc. 37th Conference on Winter Simulation (WSC’05), Orlando, Florida,
USA. Dec. 2005, pp. 2454-2463.

[9] Extended ns-2. [Online]. https://github.com/mclab-cuhk/Extended_ns2
[10] Network Simulator-3 ns-3. [Online]. https://www.nsnam.org/
[11] D. Siemon. Queueing in the Linux Network Stack. Linux Journal,

Houston, TX, USA, Sep. 2013.
[12] S. Ha and I. Rhee. Taming the Elephants: New TCP Slow Start. Computer

networks, vol. 55, issue. 9. pp. 2092-2110. Jun. 2011.
[13] R. Braden. Requirements for Internet Hosts—Communication Layers. RFC

1122, 1989.
[14] M. Handley, J. Padhye, S. Floyd. TCP Congestion Window Validation.

RFC 2861, 2000.
[15] Better Follow Cubic Curve After Idle Period (Sep 2015). [Online]

https://github.com/torvalds/linux/commit/30927520dbae297182990bb21d
8762bcc35ce1d

[16] TCP Small Queues. [Online] https://lwn.net/Articles/507065/
[17] S. Floyd, M. Mathis, J. Mahdavi, and A. Romanow. TCP Selective

Acknowledgement Option. RFC 2018, 1996.
[18] TOUCH, J. TCP Control Block Interdependence. RFC 2140, 1997.
[19] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial

Window. RFC 6928, 2013.
[20] Ethtool. [Online] https://linux.die.net/man/8/ethtool
[21] Netem. [Online] http://man7.org/linux/man-pages/man8/tc-netem.8.html
[22] Iperf. [Online] https://iperf.fr/
[23] Tcpprobe.[Online] https://wiki.linuxfoundation.org/networking/tcpprobe
[24] Tcpdump. [Online] https://linux.die.net/man/8/tcpdump
[25] J, Chu. TCP Fast Open. RFC 7413, 2014.

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

62

