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ABSTRACT 
The Network Simulator version 2, also known as ns-2, is a widely 
used platform for network and protocol performance evaluation. 
Over the years it has benefited from numerous studies in 
improving its simulation fidelity. Nevertheless, this study 
discovered that ns-2’s TCP simulation accuracy could be impaired 
substantially in cases where the first-hop link is the bottleneck. 
This is common in many applications where the client host 
uploads data to Internet servers as the uplink, e.g., wireless and 
mobile networks, may have far lower bandwidth than the Internet 
core. This work investigated this performance anomaly by 
dissecting and comparing ns-2’s implementation against Linux 
implementation; and by developing extensions to ns-2 to resolve 
the anomaly as well as five additional updates to bring its 
implementation to match recent Linux implementations. 
Extensive verifications against experiments conducted in a 
physical testbed confirmed the accuracy of the extended ns-2, 
offering a renewed and accurate simulator for mobile and wireless 
networking. 
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1   INTRODUCTION 
The Network Simulator version 2, also known as ns-2 [1], is one 
of the most widely used network simulators in networking fields. 
In particular, ns-2 can incorporate part of Linux’s TCP congestion 
control modules into the simulator which enables direct 
simulation of Linux TCP congestion modules. For this reason a 
large number of previous works employed ns-2 in the design, 
optimization, and evaluation of a wide range of TCP congestion 
control algorithms (e.g., [2-6]). At the time of writing Google 
scholar returned over ten thousand papers referencing ns-2 which 
clearly demonstrates its wide impact. 

Consequently, the simulation fidelity of ns-2 is of great 
significance to the research community and a number of previous 
works [7-8] have improved ns-2’s accuracy over the years. 
Nevertheless, with continuous development and refinement of 
TCP implementations in production operating systems it is critical 
to assess ns-2’s accuracy against recent TCP implementations. 

In this study we first conducted a systematic assessment of ns-
2 against the current TCP implementation in Linux. The latter 
choice is motivated by the wide-spread deployment of Internet 
services using Linux-based servers. Our investigations revealed 
that there is a fundamental difference in behavior between the 
TCP simulated by ns-2 and the one as implemented in Linux 
despite the fact that ns-2 is already running the Linux TCP 
congestion control codes directly. This difference, which we 
termed Intra-Host-Back-Pressure (IHBP), can lead to significant 
differences in simulated vs real TCP behaviors when the first-hop 
is the bottleneck link. This is now very common as many mobile 
applications such as social networks running in smartphones 
upload data (e.g., photos, videos) to Internet servers.  

In addition, a detailed analysis of the ns-2 codes against Linux 
kernel sources further revealed new features in Linux that are 
missing in ns-2 and differences in implementation of known 
features. These differences further impair ns-2’s simulation 
fidelity of TCP even when the bottleneck is not at the first hop. 

To tackle these limitations we developed a solution to rectify 
the IHBP problem and updated the current ns-2 codebase (version 
2.35) to bring it in line with recent Linux implementations. We 
validated the modifications by comparing ns-2 results to a 
physical testbed with the same topology running Linux. The 
source codes for the modifications are available online [9].  
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Figure 1: Topology for simulation and testbed.  
 

 

Figure 2: Comparison of cwnd trajectories, showing how 
current ns-2 deviates from Linux due to unexpected 
congestion events.     

The rest of this paper is arranged as follows: Section 2 reviews 
the evolution of ns-2; Section 3 reports the performance anomalies 
of current ns-2 and analyzes their root causes; Section 4 presents 
the extended ns-2; Section 5 validates the extended ns-2 against 
Linux; Section 6 summarizes the paper and outline future work. 

 

2 RELATED WORK 
Given ns-2’s wide-spread use in networking research a number of 
researchers have investigated and improved its accuracy over the 
years. An early work by Jansen and McGregor [8] proposed the 
Network Simulation Cradle to incorporate codes from network 
stacks as implemented in production operating system into the 
ns-2 simulator. Their results demonstrated that NSC can 
substantially improve ns-2’s accuracy against real-world TCP 
implementations.  

In another study Wei and Cao [7] developed an ns-2 TCP 
implementation with congestion control algorithms taken directly 
from the Linux kernel sources. Their work had been adopted into 
the official ns-2 codebase since version 2.33 and has been the 
recommended implementation. 

More recently, the next-generation network simulator, also 
known as ns-3, is being actively developed [10]. ns-3 is a complete 
redesign and is gaining momentum in the research community. 
Nevertheless for TCP-related research ns-3 still lacks support for 
critical components including TCP Cubic [2] (Linux default), TCP 
Compound [3] (Microsoft Windows default), and the capability to 
import current TCP modules from Linux into the simulator. Most 
importantly, a vast body of existing and on-going studies are 
based on ns-2 and thus it is critical to reexamine ns-2’s simulation 
fidelity. In addition, the findings in this work can also inform the 
future development of ns-3. 
 

 

Figure 3: Intra-host buffering between TCP and network 
interface card (NIC) in Linux. 

3 NS-2 TCP SIMULATION REVISITED 
In this section we report our key findings on ns-2’s accuracy in 
simulating TCP by comparing the simulated TCP behavior with a 
physical testbed running Linux (Ubuntu 16 with kernel 4.12.1) 
hosts connected by a Cisco switch. Both simulation and the 
testbed employed the same two-hop topology as shown in Fig. 1. 
The links’ bandwidth (B1, B2) are configurable between 10Mbps, 
100Mbps, and 1Gbps. By configuring different bandwidth for B1 
and B2 we can position the bottleneck at either the first-hop or the 
second-hop.  

3.1 First-Hop Bottleneck 
First, we investigated the case where the first-hop is the 
bottleneck by configuring the first- and second-hop link 
bandwidth to B1=10Mbps and B2=1Gbps respectively. The round-
trip propagation delay (RTprop) is set to 10ms. Note that in ns-2 
there is a queue associated with every link. For the first-hop link 
the queue is interfacing to the sender and we adopted ns-2’s 
default queue size of 50 packets. For the second-hop link we 
matched its queue size to the buffer size of the testbed switch 
(Cisco WS-C2960S). 

We employed TCP Cubic as the congestion control algorithm 
in both simulation and experiment. It is worth reiterating that ns-
2 directly imports the TCP Cubic module from Linux kernel so the 
congestion control implementations are exactly the same.  

For both simulation and experiment a TCP connection was 
setup between the sender and receiver, and then the sender 
continuously transmitted data as fast as TCP allowed. We plot in 
Fig. 2 the trajectories of the congestion window (cwnd) from ns-2 
(TCP parameters were recorded every 10ms) and testbed (via 
tcpprobe) over time. Surprisingly, the two cwnd trajectories differ 
significantly early on. In the case of ns-2 its cwnd kept on 
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increasing until it encountered the first packet loss at time 0.16s 
and continued to encounter packet losses after that. By contrast, 
shortly after an initial increase Ubuntu settled on a cwnd of 25 and 
remained unchanged. Unlike ns-2 there was no packet loss during 
the whole experiment.  

Clearly there was something amiss in the ns-2 simulation. As 
the Cubic congestion module was imported directly from Linux 
kernel it is unlikely due to discrepancies in the congestion control 
algorithm. Given that the first-hop link is the bottleneck at 
10Mbps, there should not be any queuing, let alone packet drops 
at the switch as the switch’s outgoing link is operating at 1Gbps. 
Indeed, analysis of ns-2’s trace data confirmed the lost packets 
were not dropped at the switch but at the sender due to buffer 
overflow at the input of the first-hop link.  

This can occur in ns-2 because there is no flow control between 
the TCP sender inside the sending host and the first-hop link it 
was directly connected to. Therefore as TCP ramped up its cwnd 
during slow-start it eventually exceeded the bandwidth limit of 
the first-hop link. In this case TCP segments will start to queue up 
at the first-hop link until the queue becomes full and consequently 
packets dropped.  

Linux’s implementation [11] as depicted in Fig. 3 does not 
suffer from the same problem as there is implicit flow control 
between the TCP sender and the lower layers. Briefly speaking, 
whenever the lower layers’ (i.e., IP, network card driver) buffers 
are full Linux will block TCP from submitting additional segments 
to IP for transmission. This intra-host-back-pressure forces TCP to 
buffer data internally (e.g., via sockets buffer) and in case the 
internal buffer is full the application itself will be blocked from 
sending more data (e.g., via blocking the send() function in the 
sockets API). 

A commonly-employed remedy to the above problem is to 
configure a very large queue size for the first-hop link to reduce 
the likelihood of buffer overflow. However this creates another 
problem – increased delay. Specifically, a TCP sender in both ns-
2 and Linux treats a segment submitted to the lower layer as 
transmitted and as such, marks the packet’s transmission 
timestamp at that instant. Thus any queueing time experienced by 
the TCP segment inside the host will count towards the packet’s 
RTT when the corresponding ACK returns. As TCP relies on 
packet RTT measurements for timeout/retransmission this could 
lead to inaccurate TCP behavior.  

To demonstrate this problem we conducted another ns-2 
experiment by configuring the first-hop link buffer to a very large 
value (100M packets) so that sender buffer overflow was 
eliminated. Fig. 4 plots the cwnd evolution and the RTT for each 
packet under ns-2 and Linux respectively. The large first-hop 
buffer resulted in even larger differences in the cwnd trajectory 
and the extra queueing resulted in increased RTT as measured by 
the TCP sender. These are clearly inaccurate simulation of actual 
TCP behavior.  

First-hop bottleneck exists in many real-world networks, most 
notably client-side data upload scenarios. In these cases, e.g., 
ADSL, mobile network, etc., the first-hop uplink is often the 
bottleneck link. Therefore ns-2’s simulation fidelity in these 
network scenarios is of critical importance. 

 

Figure 4: Configuring a large buffer for the first-hop link 
can prevent buffer overflow but will result in significantly 
increased packet delay.  

3.2 Recent Linux TCP Developments 
The TCP module in ns-2 was last updated in 2011. Since then the 
TCP implementation in Linux has undergone several updates 
which affected TCP’s behavior under certain conditions. Through 
analyzing and comparing the source codes of ns-2.35 and Linux 
kernel 4.12.1 we discovered five key updates which can result in 
different TCP behavior between the two platforms. We 
summarize our findings below. 

Hystart – During slow-start TCP begins with a small cwnd and 
then increases it rapidly in an exponential manner. In some cases 
(e.g., large buffer size at the bottleneck [12]) this may result in a 
sufficiently large cwnd that can exceed the bottleneck bandwidth, 
leading to packet losses. To tackle this problem Ha and Rhee 
proposed Hystart [12] to dynamically adapt the exit point for the 
slow-start phase. Since kernel 2.6.29 Hystart has been adopted in 
Linux but has not yet been incorporated into ns-2.  

Cwnd deduction – [2] suggested to deduct Cubic’s cwnd by (1-
819/1024) or ~20% upon detecting a congestion event. This has 
been adopted in ns-2. However, in recent Linux kernel the amount 
of deduction has been changed to (1-717/1024) or ~30%. 

Delayed-ACK – Related to Hystart our study also revealed 
another subtle issue – delayed ACK [13], which is supported in 
both current ns-2 and Linux. However, while ns-2 performs 
delayed-ACK from the beginning of a TCP connection, Linux’s 
implementation is more complicated. Specifically, Linux 
suppresses delayed-ACK at the beginning of a TCP connection 
until a certain number (e.g., 70) of ACK packets have been 
generated. We discovered that this difference could lead to 
differences in the cwnd trajectories under certain network 
conditions (c.f. Section 5.2). 

Cwnd vs packets-inflight – According to RFC2861 [14] TCP’s 
cwnd should not be raised unless it has been fully utilized, i.e., 
when TCP receives an ACK packet, it first checks whether the 
number of packets inflight is equal to the current cwnd. If so then 
TCP will increase cwnd according to the specific congestion 
control algorithm employed. Otherwise TCP will leave cwnd 
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unchanged as the latter has not yet been exhausted. By contrast, 
Linux adopts a slightly different mechanism where the threshold 
is only half of the current cwnd, i.e., as long as half or more of the 
cwnd is in use TCP will increase cwnd as determined by its 
congestion control algorithm.  

Application-limited TCP sender – In TCP Cubic its cwnd is a 
cubic function of time since the last congestion event. This 
mechanism plays an important role in maintaining fairness 
among flows with different RTTs. However, this may also result 
in unexpected side-effect in case the application suspends data 
transmission for a period of time. Without application data for 
transmission TCP obviously will not run into any congestion 
event. However the cubic function will continue to grow during 
the idle period. If the idle time is sufficiently long then cwnd could 
grow to a large value so that a large burst of transmission will 
result when transmission resumes, potentially overflowing the 
bottleneck link buffer leading to packet losses. 

Google recently developed a remedy for this issue [15] by 
modifying TCP Cubic to detect application-limited phase so that 
the idle time is deducted from the non-congestion period used in 
computing the cubic function, thereby preventing large data 
bursts once transmission resumes. We note that ns-2 normally 
will not trigger this issue as its TCP sender always has data for 
transmission so there is no application idle time. However if one 
modifies the sender, e.g., to simulate explicit application 
transmission rate control, then the anomaly may still occur. 

4 PROPOSED NS-2 EXTENSIONS 
In this section we tackle the limitations reported in Section 3 by 
extending the ns-2 implementation to support implicit intra-host-
back-pressure and by updating the ns-2 implementation to match 
Linux. We first analyze intra-host buffering in current ns-2 and 
then present our extensions. 

4.1 Current ns-2 Implementation 
Current ns-2 uses a node to represent both an end-host and a 
switch (or router). However, buffer in ns-2 is associated with a 
link instead of a node. This is a suitable abstraction for network 
switches and routers as buffers are typically associated with 
switch/router ports which are abstracted as links. Inside the 
sending node the first-hop link’s buffer then effectively becomes 
the intra-host buffer as packets generated by TCP all pass through 
it before reaching the first-hop link.  

We analyzed ns-2’s implementation and summarized the logic 
of two main functions related to packet transmission, namely 
Send_much() and Recv(), using pseudocode in Fig. 5. First, an ACK 
reception event results in a call to Recv() which in turn calls 
Send_much(). The latter continuously sends packets in a loop 
until cwnd is exhausted. The root cause of the issue here is that 
Send_much() does not consider if the link has buffer space to 
accommodate the incoming packets and thus may lead to the 
intra-host packet drops as reported in Section 3. We present an 
extension to correct this behavior in the next section.  

 
 

 

Send and Receive functions in current ns-2 
Send_much() /*sends out packet(s) */ 
Begin: 
        Load parameters, including cwnd, sequence number. 
        While (packet_in_fligt < cwnd) 
                Send a packet 
End  
 
Recv(ACK ) /*called upon each ACK reception */ 
Begin: 
        If (ACK is duplicated): 
                Do retransmission if necessary 
        Else: 
                Calculate time-related parameters, e.g., RTT. 
        Call congestion modules, e.g., Cubic, Reno. 
        Call Send_much() 
End  

Figure 5: Pseudocode for TCP implementation in current 
ns-2. 

Send and Receive functions in extended ns-2 
Send_much()  /*sends out packet(s) */ 
Begin: 
        interval = transmission delay 
        Load parameters, including cwnd, sequence number. 
        While (packet_in_fligt < cwnd) 
                If (link buffer is full): 

        Schedule(recv(Empty-ACK), “now + interval”) 
        break 

                Else: 
         Send a packet 
End  
 
Recv(ACK ) /*called on each ACK reception */ 
Begin: 
        If (ACK is Empty-ACK): 
                Send_much() 
                Return 
        If (ACK is duplicated): 
                Do retransmission if necessary 
        Else: 
                Calculate time-related parameters, e.g., RTT. 
        Call congestion modules, like Cubic, Reno. 
        Call Send_much() 
End  

Figure 6: Pseudocode for TCP implementation in extended 
ns-2. 

4.2 Intra-Host-Back-Pressure (IHBP) 
A naïve approach to simulate IHBP would be to check against 
buffer availability at the link and exit the packet transmission loop 
in the Send_much() function in case the link buffer is full. 
However this approach is also inaccurate.  
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Table 1: Summary of modifications in extended ns-2. 

File name Modified/added Purpose 
Agent.h Recv() Update parameters 
Classifier.cc Recv() Update parameters 
Connector.h Recv() Update parameters 
Delay.cc Recv() Update parameters 
Object.h New class NIC Add new parameters 
Object.cc Recv() Update parameters 
Queue.cc Recv() Update parameters 
Tcp-linux.cc Send_much() 

Recv() 
Fix intra-host buffer 
overflow 

Tcp_cubic.cc Hystart_reset() 
Hystart_update() 
Bic_acked() 
Bictcp_cwnd_event() 

Implement Hystart 
and fix application-
limited bug 

Table 2: Summary of testbed and simulation settings. 

Configurations  Testbed  Extended ns-2 simulator 
OS Ubuntu 16 N/A 
TCP variant Cubic Cubic 
Queue discipline N/A DropTail (1st hop link) 
Host buffer size at first-
hop link bandwidth 

10Mbps: 6 packets 
100Mbps: 12 packets 
1Gbps: 20 packets 

10Mbps: 6 packets 
100Mbps: 12 packets 
1Gbps: 20 packets 

SACK [17] Enabled Enabled 
Delayed ACK [13] Enabled  Enabled  
TCP Control Block [18] Disabled Not supported 
Initial ssthresh 2147483647 packets 2147483647 packets 
Initial cwnd [19] 10 packets 10 packets 
Switch Cisco WS-C2960S N/A 
Queue discipline DropTail DropTail 
Link buffer size 40 packets 40 packets 

 
Recall that packet transmission via Send_much() is triggered 

only by the reception of an ACK packet. Consequently, if 
transmission is suspended due to full buffer then no packet will be 
transmitted until a new ACK is received, even if link buffer 
becomes available again before then. In contrast, Linux will be able 
to resume transmission once link buffer space is available again, 
without needing to wait for a new ACK to be received.  

There are several ways to implement the correct behavior in 
ns-2. We chose an approach that minimizes code changes so as to 
avoid any potential side-effects. This is illustrated in Fig. 6 where 
the new codes are in italic. Specifically, whenever Send_much() is 
terminated due to link buffer full we insert a special ACK packet 
reception event, called Empty-ACK, into the ns-2 scheduler. This 
special event has a schedule calculated to be the exact time at 
which the head-of-line packet in the connected link will be 
completely transmitted, i.e., same time for buffer space to become 
available again.  

The Recv() function is modified to handle this special Empty-
ACK packet by calling the Send_much() function to resume 
submitting TCP packets to the link buffer for transmission. Once 
Send_much() returns, presumably due to link buffer full again, the 
Recv() function will then return, bypassing the rest of the codes 
for actual congestion control. Handling of normal ACK packets 
are not affected. 

4.3 Additional Updates 
In addition to intra-host-back-pressure we also implemented the 
five missing/differing mechanisms in ns-2 as discussed in Section 
3.3. We summarize the updates below:  

Hystart – Hystart was absent from current ns-2 so we 
implemented it in accordance to the Linux implementation.  

Cwnd Deduction – We updated Cubic’s cwnd deduction in ns-
2 from 20% to 30% to match Linux’s implementation.  

Delayed-ACK – We added a new option in ns-2 to configure 
when delayed-ACK should be activated to match Linux’s 
behavior. For example, in our experiments Linux activated 
delayed-ACK at the 70th ACK. We note that although this option 
is an approximation of Linux’s delayed-ACK behavior, it was 
shown to be reasonably accurate (c.f. Section 5.2). 

cwnd vs packets-inflight – We updated ns-2’s slow-start phase 
behavior such that cwnd is allowed to grow as long as half of the 
cwnd has been utilized. 

Application-limited TCP sender – We updated the TCP Cubic 
implementation in ns-2 to exclude application idle time from the 
non-congestion period used in computing the cubic function. 

Together with the IHBP mechanism these were implemented 
in ns-2 version 2.35 using approximately 200 lines of new codes 
distributed in nine source files. Table 1 lists the source files 
updated and summarizes the affected functions.  

5 SIMULATOR VERIFICATION 
In this section we validate the accuracy of the extended ns-2 
simulator by comparing simulated results to experimental results 
obtained from a physical testbed running Linux hosts connected 
by an Ethernet switch with equivalent topology and 
configurations. 

5.1 Simulation and Experiment Setup 
Both simulation and experiment employed the same network 
topology as depicted in Fig. 1. Table 2 lists the configurations 
adopted in ns-2 and testbed. Many of the ns-2 default parameters 
do not match the testbed so we explicitly configured them to 
match the testbed parameters 

For the host buffer, i.e., the buffer between TCP sender and 
the network interface card, Linux implements buffering via a 
mechanism known as TCP Small Queue (TSQ) [16]. This was 
introduced to improve fairness among competing flows within the 
same host. We added codes to the Linux kernel to determine the 
runtime buffer size allocated by TSQ which was shown to be 
primarily link-bandwidth dependent. We adopted the observed 
intra-host buffer size in our extended ns-2 simulator. 

Current Linux also implements TCP Control Block (TCB) [18] 
which caches certain TCP parameters such as ssthresh from 
previous connection for use in new ones. This only affects 
scenarios with repeated connections from the same peer. TCB is 
not currently supported by ns-2 and so we disabled the same in 
the testbed. We are currently investigating the feasibility of 
implementing TCB in our extended ns-2 simulator. 
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Figure 7: Comparison of cwnd trajectories with first-hop 
bottleneck of 10Mbps for round-trip propagation delays of 
10ms, 50ms, and 100ms. 

Figure 8: Comparison of cwnd trajectories with first-hop 
bottleneck of 100Mbps for round-trip propagation delays 
of 10ms, 50ms, and 100ms. 

For the testbed, link bandwidth was controlled by 
configuring the Ethernet network interface to operate in 10Mbps, 
100Mbps, or 1Gbps mode using ethtool [20]. Link delays of {10ms, 
50ms, 100ms} were emulated using netem [21]. We employed iperf 
[22] to generate TCP traffic. Access to internal TCP parameters 
such as cwnd and ssthresh were obtained via tcpprobe [23]. In all 
experiments full packet traces were captured using tcpdump [24] 
for subsequent analysis. 

5.2 First-Hop Bottleneck 
We first revisit the network topology with the first-hop link being 
the bottleneck. Fig. 7 and Fig. 8 compare the TCP cwnd trajectories 
over time for the first-hop link bandwidth of 10Mbps and 100Mbps 
respectively (the second-hop link bandwidth was fixed to 1Gbps 
for both cases). Each figure comprises three sub-figures for round-
trip propagation delays of 10ms, 50ms, and 100ms respectively. 
Comparing to the Linux testbed the current ns-2 clearly exhibited 
very substantial deviations in its cwnd trajectories in all six tested 
cases. 

In the ns-2 simulations there were packet losses caused by 
buffer overflow at the first-hop link, resulting in TCP’s cwnd 
deduction. As discussed in Section 3 this will never occur in Linux 
as its intra-host-back-pressure mechanism will prevent TCP from 
sending more packets than can be buffered. This is verified by 
Linux’s cwnd trajectories which have no packet loss. Most 
importantly, the cwnd trajectories of the extended ns-2 tracked 
the Linux ones remarkably closely, exhibited no packet loss as 
expected.  

We note that in addition to implementing the IHBP 
mechanism the five updates in Section 4.3 also made contribution 
to the accurate simulation results in the extended ns-2. Due to 
space limitation these additional verification results were omitted 
here. 

Next we turn our attention to throughput performance in Fig. 
9 and Fig. 10. In Fig. 9 where the first-hop link bandwidth was 10 
Mbps, the long-term throughputs in the stable region of current 
ns-2, extended ns-2, and Linux are similar. However current ns-2 
exhibited throughput drops as if it encountered congestions. This 
is clearly not congestion-related as the first-hop was the 
bottleneck and is a direct consequence of intra-host buffer 
overflow when the cwnd grew beyond the first-hop link’s 
capacity. 

Finally we compare the packet-level delays in Table 3. For 
each configuration the packet delay was computed from 
averaging the RTTs of all packets. In the testbed this was done by 
analyzing the packet trace captured by tcpdump in the sender.  

Comparing the first set of results for the 10Mbps bottleneck 
link case it is clear that current ns-2 exhibited significantly longer 
delays. This is due to queueing inside the intra-host buffer which, 
as discussed in Section 3.1, was counted by TCP as part of the RTT. 
By contrast, the extended ns-2 exhibited similar delays to the 
testbed. The minor differences are likely due to processing delays 
in the testbed.  
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Figure 9: Comparison of throughput trajectories with 
first-hop bottleneck of 10Mbps for round-trip propagation 
delays of 10ms, 50ms, and 100ms. 

Figure 10: Comparison of throughput trajectories with 
first-hop bottleneck of 100Mbps for round-trip 
propagation delays of 10ms, 50ms, and 100ms. 

Table 3: Comparison of average packet delay (in ms). 

RTprop Extended 
ns-2 

Current ns-2 
(Default buffer) 

Current ns-2 
(Large buffer) 

Linux 
Testbed 

First-hop bottleneck link at 10Mbps 
10ms 17 59 485 18 
50ms 57 92 595 58 
100ms 107 134 636 108 

First-hop bottleneck link at 100Mbps 
10ms 11 14 746 12 
50ms 51 50 737 52 
100ms 101 100 663 101 

 
Interestingly, current ns-2 apparently did not exhibit delay 

anomalies in the {100Mbps, 50ms} and {100Mbps, 100ms} cases. 
This is because early packet losses due to intra-host buffer 
overflow caused TCP Cubic to enter the congestion avoidance 
phase during which the cwnd was only increased slowly (c.f. Fig. 
8). As a result the throughput was in fact below the link bandwidth 
of the first-hop (c.f. Fig. 10) and hence there was little to no 
queueing inside the host to increase packet delay. 

Finally, a known trick to prevent intra-host buffer overflow is 
to increase the first-hop link buffer size to a large value (e.g., 100M 
packets). We tested this method and while it can indeed prevent 
buffer overflow, packets queueing inside the large buffer will 
experience extended delays as listed in Table 3. Obviously such 
large delays are far from the actual TCP behavior. 

5.3 Non-First-Hop Bottleneck 
In this section we relocate the bottleneck from the first-hop link 
to the second-hop link by setting the former to 1Gbps and the 
latter to 10/100Mbps. There are two goals: (a) to validate the 
extended ns-2’s behavior against real Linux to ensure that the 
extensions do not create unintended side-effects; and (b) to 
demonstrate the added fidelity due to the updates described in 
Section 3.2. 

First, we compare in Fig. 11 the cwnd trajectories of Linux, 
current and extended ns-2 for the case of 10Mbps bottleneck at 
the second-hop link. Although intra-host buffer overflow did not 
occur in this topology, current ns-2’s cwnd trajectory still 
deviated significantly from Linux at the beginning of the 
connection. This is due to Linux’s Hystart [12] mechanism which 
is absent from current ns-2. It prevented Linux TCP from growing 
its cwnd too aggressively at the beginning which could result in 
early congestion in low-bandwidth links as demonstrated by the 
extra congestion events early on in current ns-2’s cwnd 
trajectories. By contrast, with Hystart incorporated the extended 
ns-2 closely tracked Linux’s cwnd trajectories.  

Fig. 12 plots the cwnd trajectories for the case of 100Mbps 
bottleneck at the second-hop link. With the higher link bandwidth 
the impact of Hystart became smaller. Nevertheless current ns-2 
still exhibited some deviations from Linux especially at longer 
propagation delays of 50ms and 100ms. By contrast, the extended 
ns-2 tracked Linux’s cwnd trajectories consistently, 
demonstrating its simulation fidelity. 
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Figure 11: Comparison of cwnd trajectories with second-
hop bottleneck of 10Mbps for round-trip propagation 
delays of 10ms, 50ms, and 100ms. 

Figure 12: Comparison of cwnd trajectories with second-
hop bottleneck of 100Mbps for round-trip propagation 
delays of 10ms, 50ms, and 100ms. 

6 SUMMARY AND FUTURE WORK 
This work uncovered the intra-host-back-pressure issue in 
current ns-2 implementation and developed extensions to 
substantially improve its fidelity in simulating recent Linux TCP 
implementation. In addition to the extensions investigated in this 
work, there are a number of TCP-related mechanisms which are 
absent from ns-2, most notably TCP Control Block [18], TCP Fast 
Open [25], TCP receiver window, etc. Although these mechanisms 
are outside the scope of TCP congestion control (the focus of 
many TCP studies) they could impact TCP behavior under certain 
network conditions. Therefore additional work is warranted to 
investigate their performance impact and implementation into ns-
2. 

ACKNOWLEDGMENTS 
We thank the anonymous reviewers for their suggestions and 
comments in improving this paper to its final form. 
 

REFERENCES 
[1] Network Simulator-2 ns-2. [Online] http:www.isi.edu/nsnam/ns/ 
[2] I. Rhee and L. Xu. Cubic: A New TCP-Friendly High-Speed TCP Variant.

ACM SIGOPS Operating System, New York, USA, Jul.2008, pp. 64-74. 
[3] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A Compound TCP Approach

for High-Speed and Long-Distance Networks. in Proc. IEEE INFOCOM’ 
2006, Barcelona, Spain, Apr. 2006, pp 1-12. 

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, 
S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). in Proc. 
SIGCOMM’2010, New Delhi, India, Aug. 2010, pp. 63-74. 

[5] K. Winstein and H. Balakrishnan. TCP ex Machina: Computer-Generated
Congestion Control. in Proc. SIGCOMM’2013, Hong Kong, China, Aug. 
2013, pp 123-134. 

[6] L. A. Grieco and S. Mascolo. Performance Evaluation and Comparison of
Westwood+, New Reno, and Vegas TCP Congestion Control. in Proc. 
SIGCOMM’2004, Portland, Oregon, USA. Aug. 2004, pp. 25-38. 

[7] D. X. Wei, P. Cao. ns-2 TCP-Linux: An ns-2 TCP Implementation with
Congestion Control Algorithm from Linux. in Proc. The Workshop on Ns-2: 
The IP Network Simulator (WNS2’2006), Pisa, Italy. Oct. 2006. 

[8] S. Jansen and A. McGregor. Simulation with Real World Network Stacks.
In Proc. 37th Conference on Winter Simulation (WSC’05), Orlando, Florida, 
USA. Dec. 2005, pp. 2454-2463. 

[9] Extended ns-2. [Online]. https://github.com/mclab-cuhk/Extended_ns2
[10] Network Simulator-3 ns-3. [Online]. https://www.nsnam.org/
[11] D. Siemon. Queueing in the Linux Network Stack. Linux Journal,

Houston, TX, USA, Sep. 2013. 
[12] S. Ha and I. Rhee. Taming the Elephants: New TCP Slow Start. Computer

networks, vol. 55, issue. 9. pp. 2092-2110. Jun. 2011. 
[13] R. Braden. Requirements for Internet Hosts—Communication Layers. RFC

1122, 1989. 
[14] M. Handley, J. Padhye, S. Floyd. TCP Congestion Window Validation.

RFC 2861, 2000. 
[15] Better Follow Cubic Curve After Idle Period (Sep 2015). [Online] 

https://github.com/torvalds/linux/commit/30927520dbae297182990bb21d 
8762bcc35ce1d 

[16] TCP Small Queues. [Online] https://lwn.net/Articles/507065/
[17] S. Floyd, M. Mathis, J. Mahdavi, and A. Romanow. TCP Selective

Acknowledgement Option. RFC 2018, 1996. 
[18] TOUCH, J. TCP Control Block Interdependence. RFC 2140, 1997.
[19] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial

Window. RFC 6928, 2013. 
[20] Ethtool. [Online] https://linux.die.net/man/8/ethtool 
[21] Netem. [Online] http://man7.org/linux/man-pages/man8/tc-netem.8.html
[22] Iperf. [Online] https://iperf.fr/
[23] Tcpprobe.[Online] https://wiki.linuxfoundation.org/networking/tcpprobe
[24] Tcpdump. [Online] https://linux.die.net/man/8/tcpdump
[25] J, Chu. TCP Fast Open. RFC 7413, 2014. 

 
 

Session: Protocols Q2SWinet’18, October 28-November 2, 2018, Montréal, QC, Canada

62




