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Abstract—Short-video sharing services have seen explosive growth in recent years. Compared to conventional video sharing

platforms, these have very different characteristics which are far from well-understood. This work aims at filling the gap by measuring

and analyzing detailed application-level performance data from a top-10 short video service in China. The application-level data offered

detailed and rare insights into many performance metrics of the service, which are otherwise inaccessible to external measurements.

The service has a scale of over one billion daily views just for the mobile and wireless segments of the service. Our datasets covered

over 22 billion video playbacks, over 100 million video files, served by over 5,000 servers to users across 35 provinces and 13 ISPs in

China. We analyzed three aspects of the service: (a) video content characteristics; (b) network analytics; and (c) video streaming

analytics. Our results revealed significant differences from conventional video-sharing platforms. These findings will have implications

for system designs at all levels. The data also enabled us to conduct an indirect network performance measurement of mobile and

wireless network services across China, as experienced by the service. These results offer rare insights into mobile and wireless

networks’ real-world performance in a large country.

Index Terms—Short-video service, video on demand (VoD), data analysis, video content analytics, network analytics, video streaming

analytics
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1 INTRODUCTION

VIDEO sharing is now one of themost popular applications
on the Internet. In particular, there has been an explosive

growth in short-video sharing (Video on Demand, or VoD)
platforms in recent years, with many new media platforms
such as Douyin, Tik-Tok, Kuaishou, Kwai, Miaopai, Weishi,
and so on. For example, in early 2020, the numbers of daily
active users of Douyin and Kuaishou in China were already
over 400 and 300million, respectively [1], [2], [3].

Since most of these short-video services were only
recently introduced, their service properties and user behav-
iors are far fromwell-understood. Therefore, it is of practical
significance to obtain a more comprehensive understanding
of these short-video services to enable further advances in
their service provisioning.

Previous measurement studies on video-sharing services
primarily focused on conventional video-sharing platforms
such as YouTube or YouTube-like services [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17] where a wide
variety of video contents are hosted. By contrast, these new
short-video services focus on videos of much shorter dura-
tions, often measured in tens of seconds. For example, Gill

et al. [6] measured YouTube videos to have a median video
length of 210 seconds. In contrast, the median video length
in Douyin, for example, is a mere 14 seconds [18]. In addi-
tion to short video length, many other aspects of short-video
service are different, such as user behavior, popularity
dynamics, and so on [19]. Therefore, findings from previous
studies may no longer apply to this new generation of
short-video services. This motivated us to carry out a large-
scale measurement study of one of the top-10 short-video
services in China (the identity of which shall remain anony-
mous and henceforth referred to as the Service).

We collaboratedwith amajor short video service provider
in China, which offered us direct access to application-level log
data, including streaming and network performance logs
that are otherwise inaccessible to external measurements.
The Service has a scale of over one billion daily video views
just for the mobile and wireless (i.e., Wi-Fi) segments of the
providerwe studied. Our datasets cover over 22 billion video
playback requests, over 100 million distinct video files,
served by more than 5000 servers to users from 35 provinces
and 13 ISPs in China. We analyzed three key aspects of the
Service: (a) video content characteristics; (b) network analyt-
ics; and (c) video streaming analytics (c.f. Table 1).

Our results revealed significant differences between short-
video and conventional video-sharing platforms [4]–[17].
These findings will have implications for system designs at all
levels, ranging from video recommendation algorithms,
streaming protocols, to video caching strategies. The Service’s
scale also enabled us to carry out an indirect network perfor-
mance measurement of mobile and wireless network services
across China, as experienced by the Service, incorporated the
impacts of all components along the end-to-end data path. The
network type (3G, 4G, 5G, and Wi-Fi), geographical location
(by province), and ISP used in each video download are
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known (but anonymized), enabling analysis of network per-
formance from multiple angles. These results offer rare
insights into mobile and wireless networks’ real-world perfor-
mance as experienced by a large-scale Internet application.

In the following, we summarize the key findings of this
study:

� Conservative provisioning – The Service’s video bitrate
is around 930 kbps. Compared to the measured
mean network throughput at 30 Mbps, this choice of
video bitrate appears to be very conservative. There
are several possible reasons, including the lack of
bitrate adaptation (Section 4.1 and 7.2), the existence
of low-bandwidth users (Section 5.2), the desired to
keep rebuffering rate very low (Section 6.2) to main-
tain user engagement (Section 6.3), and the impact of
ISP rate-limiting (Section 7.1).

� Exceptionally short streaming duration – The Service’s
video content has a median video length of merely
22 s (Section 4.1). Moreover, videos were rarely
played in full – on average only half of a video was
played before it was skipped (Section 6.3). These two
factors together means that the streaming session
will be exceptionally short. This poses significant
challenges to the design of adaptive bitrate (ABR)
algorithms as there is very little time for an ABR
algorithm to ramp up or converge (Section 7.2). This
could be one of the reasons why the Service does not
currently adopt ABR in streaming.

� Rapid popularity evolution – Video popularity in the Ser-
vice evolves at a very short time scale (Section 4.3) –
minutes versus days in conventional video services
such as YouTube. This could impact caching algo-
rithms as those rely on estimation of video popularity
tomaximize caching efficiency. In addition, we uncov-
ered several factors that could impact the video popu-
larity, including the video upload mode (live versus
pre-recorded), time-of-day, and video length. These
could potentially be exploited to build new video pop-
ularitymodels for optimizing contentmanagement.

� User behavior – The Service’s users have a very limited
attention-span - around 25 s (Section 6.3). For example,
only 30.92% of videos were watched in full. The rests
were skipped (e.g., screen scrolling [19], [20]) early,
with a median play time of just 12 s. We also uncover
factors that could impact user viewing behavior. For

example, our analysis indicated that the Service’s
users are very sensitive to playback rebuffering. For
example, for the top-10000 videos, a single rebuffering
event already reduced the median playback percent-
age by over 45%. This may very well be one of the rea-
sons for the Service’s conservative bitrate choice.

� Network types – Our dataset covered all three genera-
tions of mobile networks (3G, 4G, and 5G) plus Wi-
Fi. An important insight is that Wi-Fi is by far the
dominant network type users used to access the Ser-
vice, accounting for over 80% of all streaming ses-
sions (Section 3.1). This suggests that optimizing
Wi-Fi network performance could yield significant
gains in service quality. In addition, the results show
that Wi-Fi generally outperformed mobile networks,
including 5G, in terms of connection time and
throughput (Section 5). As a result, the Service per-
formed better over Wi-Fi with substantially lower
rebuffering (Section 7.1).

� Mobile network rate-limiting – By comparing users’
network throughput across different days in a
month, we discovered strong evidence of rate-limit-
ing in current mobile networks (Section 7.1). To our
knowledge, this is the first empirical evidence show-
ing not just the existence of rate-limiting, but also its
impact on throughput and rebuffering performan-
ces. This is a new area that warrants further investi-
gation as it could have a significant performance
impact on many mobile applications.

� ABR for short-video streaming – the Service’s adoption
of non-adaptive streaming motivated us to explore
the potential performance of applying current ABR
algorithms to short-video streaming. Our explor-
atory experiment in Section 7.2 demonstrates that
video length has a surprisingly significant impact on
the performance of current ABR algorithms. This
calls for further investigations to rethink not only the
design, but also the metrics to be used in evaluating
the performance of short-video streaming services.

� Empirical models – The scale of our dataset enables us to
model various properties of the Service using known
statistical distributions. These models were validated
across multiple datasets captured from different peri-
ods, so they are representative of the Service, thereby
offering an efficient means to support future research,
e.g., applied in simulation or mathematical models for

TABLE 1
Comparison of Previous Related Works

YouTube-like Services Short-video Services Others

Video Content Characteristic
Characteristic (Length, Size, Bitrate. . .) [5-8, 10, 12, 15-17] [18-19], this work [13-14, 21-22, 25]
Consumption (Popularity, Life Span. . .) [4-7, 9-10, 15-17, 29] [19-20, 23-24], this work [13, 21-22]

Generation (Video Uploaded, Age) [5-6, 9, 15-17] [20] [21-22]

Network Analytics
Flow Characteristic (Size, Duration. . .) [4-7, 10-12] This work [14]

Throughput [4, 9-11] This work [13-14]
Round-Trip-Time (RTT) [7, 10-11] This work [28, 30]

Video Streaming Analytics

Play Time, Playback Percentage [8, 10, 12] This work [13-14, 22, 25-26]
Startup Delay [7-8, 12] This work [13, 25-26]
Rebuffering [7-8] This work [13, 25-26]

Adaptive Bitrate [7-8, 12] [26]
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analysis. Details of the model parameters are either
included with the figures or documented in the
appendices.

The rest of the paper is organized as follows: Section 2
reviews some previous related works; Section 3 introduces
our datasets; Section 4, 5, and 6 analyze the video content
characteristics, network analytics, and video streaming ana-
lytics, respectively; Section 7 discusses two new findings,
and Section 8 summarizes the study.

2 BACKGROUND AND RELATED WORK

This section reviews some previous related works on the
measurement of the Internet and mobile video services.
Table 1 summarizes 27 previous studies on video service
measurements. These studies covered one or more of the
following aspects: video content [4]–[10], [12]–[25], [29], net-
work analytics [4]–[7], [9]–[14], [28], [30], and video stream-
ing analytics [7]–[8], [10], [12]–[14], [22], [25]–[26].

In terms of the video services being studied, we can
divide them into three categories: (i) “YouTube-like Serv-
ices” covers services such as YouTube and bilibili; (ii)
“Short-video Services” covers services such as Douyin and
Kuaishou; and (iii) “Others” covers studies analyzing data
from a mixture of different video services or a particular
vantage point such as a server.

Video content analytics primarily covers video file char-
acteristics, content generation patterns, and content con-
sumption patterns. For example, Cha et al. [9] investigated
YouTube’s video popularity characteristics and measured
their popularity evolution over time. Subsequent studies
focused on other characteristics, including rating [5], [6],
request inter-arrival time [4], file lifespan [15], uploader
behavior [27], social networking aspects [5], and advertise-
ments [29]. Besides YouTube, Jia et al. [16], [17] investigated
bilibili, a service in China similar to YouTube. Their study
offered new results on video favorites and viewer-following
characteristics, in addition to common video content statis-
tics. Tang et al. [22] collected long-term traces of streaming
media services to develop MediSyn, a publicly available
streaming media workload generator.

More recently, a handful of studies reported measure-
ments of the emerging short-video services. For example,
Zhang et al. [20] measured video content generation/con-
sumption patterns, users’ screen scrolling, and video pre-
fetch strategy for Twitter’s Vine service. Zhang et al. [23],
[24] investigated the video popularity of Kuaishou, and pro-
posed AutoSight, a distributed edge caching system for
short-video network. He et al. [19] investigated the video
file characteristics of Douyin and proposed LiveClip, an
adaptive streaming strategy for short-video services.

For network analytics, one important angle is understand-
ing the characteristics (e.g., flow size, flow duration [4-7, 10-
12, 14], throughput [4, 9–11, 13–14] and RTT [7, 10–11, 28,
30]) of the network traffic generated by video-sharing serv-
ices. For example, Zink et al. [4] studied YouTube traffic in a
campus network and developed a traffic model for simula-
tions. On the other hand, understanding the underlying net-
work performance metrics (e.g., throughput, RTT) could
inform the design of streaming applications [28]. For exam-
ple, Plissonneau et al. [10] collected packet-level traces of

YouTube and DailyMotion. They analyzed the network RTT,
throughput, loss rate, and data wastage – data downloaded
but never played. Ghasemi et al. [7] studied the bottleneck of
Yahoo’s video streaming service through analysis of latency
(RTT), packet loss, and throughput. Jiang et al. [28] studied
the network performance of Skype, and proposed VIA to
improve Internet telephony call quality, especially under
poor network conditions. Zhou et al. [30] measured the per-
formance of Taobao-Live, a live video service, and proposed
Concerto, a machine-learning-based framework to improve
the coordination of application-layer video codec and trans-
port layer protocols. Shafiq et al. [14] studied the network
dynamics (e.g., signal-to-interference ratio, session inter-
arrival time) that could affect video abandonment and devel-
oped an empirical model to predict the user’s behavior.
Despite the many existing works, network characteristics
and performance metrics in short-video services have not
been reported in the literature thus far.

Finally, for video streaming analytics studies. Previous
works studied various streaming performance metrics in
conventional video services, e.g., play time and playback
percentage [8, 10, 12–14, 22, 25–26], startup delay [7–8, 12–13,
25–26], and rebuffering [7–8, 13, 25–26]. One major focus is
on the relation between streaming performance metrics (e.g.,
startup delay, rebuffering, and bitrate) and user engagement
(e.g., video play time, and playback percentage). For exam-
ple, Chen et al. [13] developed an experimental platform
with more than 50 self-deployed routers in their university
campus and studied the relation between viewer engage-
ment and various system metrics such as rebuffering dura-
tion, network throughput, video content, and viewer
demography. Dobrian et al. [26] investigated the impact of
video streaming metrics on video play time using statistical
correlation, information gain, and regression methods.
Krishnan et al. [25] observed the relationship between video
streaming metrics and user abandonment/engagement by
applying Quasi-Experimental Designs (QED) to uncover
causal relationships from observational data. None of the
existing studies, however, measured streaming performance
and user engagement in short-video services.

3 DATASETS

In this section,we describe theway our datasetswere collected
and summarize their overall properties. Due to space limita-
tions, we focus on the key metrics and findings in the rest of
the paper. We refer the readers to Appendix I, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2021.3139893 for
additional measurement results and analysis. Moreover,
many of the measured metrics could be approximated by
mathematical models. We included the model parameters
along with the figures for the main results and documented
more detailed model parameters in Appendix II, available in
the online supplementalmaterial.

3.1 Data Collection

We were provided the client-side access logs of the large-
scale commercial short-video service. Table 4 summarizes
the Service’s key properties. The data correspond to one
domain name for the Service, which serves short-video
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contents to users using the Service’s mobile app on Android
and iOS platforms over either Wi-Fi or mobile data net-
works. The Service has separate servers for its web presence
which were not included in this study.

The access log is generated as follows. When a user plays
a video, a video playback event is triggered, creating a new
log entry. After the user finishes video playback (e.g.,
returns to the menu or switches to another video), the client
app will collect information of the completed playback
event and then upload it to the logging server.

The Service does not employ adaptive bitrate streaming
such as MPEG-DASH [31], but streams video using a

proprietary protocol. It divides each video into segments of
around 1 MB in size for delivery to the client over a persis-
tent HTTP connection [33] during playback. The client
requests each segment using a separate HTTP request, gen-
erating a download event in the log (e.g., download size,
transfer time, etc.).

Due to the large volume of traffic and the resultant logs
generated, the provider randomly selects and stores 20% of
the access logs uploaded. The access logs in this study were
all collected in 2020 (Table 3). Table 2 summarizes the main
metrics that can be obtained directly or calculated from the
logs. Note that the exact month of the log is undisclosed,

TABLE 2
Features and Notations of the Log

Feature Notation Description

Client Timestamp TC The timestamp (ms) when user triggered a (download/playback) event
Client Downloaded Size BDS Number of bytes the client downloaded (in a download event)
Transfer Time DTT Duration (ms) for network downloading (in a download event)
Video Length DVL Length (ms) of video which was played/downloaded. Refer to Section 4.1
Play Time DPB Duration (ms) for user spent at this video in a video playback. Refer to Section 6.3
File Name - Name of video file which was played (hashed value)
Rebuffering Count NRB Number of rebuffering events in a video playback
Rebuffering Duration DRB Duration (ms) for rebuffering event in a video playback
Rebuffering Rate RRB The ratio of playbacks with at least one rebuffering events. Refer to Section 6.2
Client IP - IP address of client (hashed value)
Server IP - IP address of server (hashed value)
Client Network Type - Network type of client’s device, from “3G, 4G, 5G, Wi-Fi”
Video Uploaded Time - The time the video was uploaded (accuracy up to hours). Refer to Section 4.2
Startup Delay DSU Duration (ms) before video playback. Refer to Section 6.1
DNS Time DDNS Duration (ms) for DNS operation.
Connection Time DRTT First RTT for http connection. Refer to Section 5.1
Province - Client province (hashed value)
ISP - Client ISP (hashed value)
Throughput TP Throughput for a video playback. Refer to Eq. (4) in Section 5.2
Playback Percentage RPB Playback point ratio of a video playback, Refer to Eq. (5) in Section 6.3

TABLE 3
Summary of Key Statistics for the Four Datasets

Dataset #1 Dataset #2 Dataset #3 Dataset #4

Dataset Information

Logging Date (in 2020) 25th 04th 16th-17th 02nd-10th

Log File Length 24 h 24 h 48 h 216 h
Log File Size 584.2 GB 810.3 GB 453.5 GB 949.9 GB

Log Data Size Per Playback 0.540 KB 0.794 KB 0.503 KB 0.565 KB

Video Content Characteristic

Video Age (Mean/Median) 483/115 h 521/85 h 505/102 h 487/104 h
Video Length (Mean/Median) 38/20 s 40/22 s 40/23 s 40/22 s

No. of Playbacks (x109) 1.08 1.02 0.9 1.68
No. of Videos (x106) 62.9 70.5 65.3 108.8

Network Analytics

No. of Segments (x109) 2.6 4.8 2.1 4.9
Transfer Time (Mean/Median) 583/358 ms 513/326 ms 478/284 ms 445/273 ms
Download Size (Mean/Median) 0.92/1MB 0.86/1 MB 0.8/1 MB 0.84/1 MB
Throughput (Mean/Median) 20.09/17 Mbps 22.89/19 Mbps 27.43/20 Mbps 30.26/21 Mbps

Connection Time (Mean/Median) 71.54/27 ms 70.63/27 ms 55.68/21 ms 58.96/22 ms
Persistent Connection Hit Rate 90.02% 94.41% 92.85% 93.17%

Video Streaming Analytics

Play Time (Mean/Median) 25.39/14 s 27.84/13 s 28.78/13 s 27.92/12 s
Playback Percentage (Mean/Median) 55.43/58% 52.31/47% 52.71/49% 50.93/42%

Rebuffering Count (Mean) 0.029 0.020 0.019 0.013
Rebuffering Duration (Mean) 81.9 ms 59.3 ms 51.1 ms 37.0 ms

Rebuffering Rate 2.08% 1.54% 1.33% 0.96%
DNS Time (Mean/Median) 47.56/5 ms 30.78/5 ms 64.32/9 ms 47.94/5 ms

DNS Cache Hit Rate 99.26% 98.79% 99.75% 99.59%
Startup Delay (Mean/Median) 445/342 ms 446/315 ms 494/294 ms 445/284 ms
Video Local Replay Cache Hit 0.01% 0.14% 0.01% 0.01%
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but the four datasets are sorted chronologically from #1 to
#4, spanning a period of 5 months. To protect users’ privacy,
all log data were anonymized with each of the fields,
namely {Client IP}, {Server IP}, {Filename}, {Province}, and
{ISP} replaced by their respective one-way hash values
before transferring to us for analysis.

3.2 General Properties

This section presents some general properties of the data-
sets. We primarily analyzed the data from the video request
level as the dataset does not contain information that can
identify an individual user. Note that inferring user by
(hashed) client IP may not be accurate either as a user’s IP
may change over time (e.g., when switching between Wi-Fi
and mobile network), and ISPs often assign private IPs to
their users who then access the Internet via a Network
Address Translation (NAT) device [32].

We first measure the distribution of client network type
by request in Table 5. Over 80% of requests originated from
Wi-Fi users. The rest were split across the three generations
of mobile networks, with 4G accounting for most of the
requests. This result shows that the Service’s user experi-
ence is dominated by Wi-Fi, or more specifically, the Serv-
ice’s performance over Wi-Fi (Section 5).

It is worth noting that although 5G deployment is still in
its early days, we could already see steady growth over the
four datasets, e.g., increasing from <0.01% in dataset #1 to
0.52% in dataset #4 (amounting to 2.7% of all mobile
accesses). Simultaneously, 3G requests also decreased pro-
gressively as operators phase out 3G services, reaching
about the same proportion as 5G after 5 months.

Geographically, Fig. 1 shows the distribution of the
requests across all 35 provinces in China. The top three
provinces accounted for 30% of all requests. Fig. 2 plots the
distribution of the requests across users’ ISPs. The top three
ISPs accounted for over 93% of all requests. Overall, the

above results show that the dataset covered a broad spec-
trum of requests with respect to network type, ISP, and geo-
graphical locations.

4 VIDEO CONTENT CHARACTERISTICS

In this section, we analyze the video content characteristics
of the Service. These characteristics will be useful in the
design and optimization of CDN infrastructures [6] and
caching policies [4], [5], [6], [9], or even Peer-to-Peer (P2P)
content distribution strategies [4], [5], [9]. Table 3 summa-
rizes the key video content characteristics across all four
datasets. Unless stated otherwise, dataset #4 will be used to
generate the presented results in the rest of the paper as it is
the largest and most recent dataset.

4.1 Video Length and Bitrate

The Service supports two types of video uploads: pre-
recorded videos of arbitrary length or live video recorded in
real-time in one of three preset video lengths, denoted by
L1, L2, and L3 seconds, respectively. In the latter case, the
mobile app stops recording after the preset time is up.

The median video lengths in all four datasets are around
22 s, significantly shorter than conventional video sharing
services (YouTube at 210 s [5–6, 12]). Fig. 3 plots the video
length distribution. We could observe three peaks at L1, L2,
and L3, which correspond to the three preset video lengths
in the video app’s real-time video upload mode. This sug-
gests that users were actively using the feature.

TABLE 4
Key Properties of the Service

Property Details

Streaming infrastructure Streaming is provisioned using a major CDN provider with over 5000 servers distributed in
multiple data centers across China. The exact data center locations were not disclosed.

Video application A custom mobile application for various smartphone platforms was developed for the Service,
including the ability to log and upload streaming performance data to logging servers.

Streaming protocol Proprietary protocol based on persistent HTTP connection over TCP. Video data are transferred
over HTTP in chunks of approximately 1 MB in size.

Video encoding Average encoding bitrate is around 930 Kbps. Only one video version is available, so streaming is
non-adaptive.

Video upload model Either pre-record or recorded live using camera at three preset video lengths.

TABLE 5
Network Type Distribution

Client Network Wi-Fi 3G 4G 5G

All datasets 84.87% 0.60% 14.24% 0.29%
#1 81.94% 1.02% 17.05% <0.01%
#2 90.01% 0.67% 9.32% <0.01%
#3 84.32% 0.54% 14.83% 0.31%
#4 81.08% 0.58% 17.83% 0.52%

Fig. 1. Geographical distribution (by provinces) of the datasets.

Fig. 2. ISP distribution of the datasets.
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Despite the widespread adoption of adaptive video
streaming, most short-video services, including the Service,
currently do not employ adaptive bitrate streaming to
dynamically adjust the video bitrate within a streaming ses-
sion [19]. Instead, the Service’s videos were encoded with an
average bitrate around 930 kbps.We explore the possible rea-
sons for this observation in Section 7.2 by re-examining cur-
rent ABR algorithms’ potential performance when applied to
short-video streaming.

4.2 Video Request and Upload Pattern

Next, we study the video request arrival pattern over differ-
ent times of the day. Fig. 4 plots the per-hour request ratios
across two days in dataset #3. The data exhibited clear time-
of-day variations in the request pattern, which are consis-
tent across the two days. For example, the peak hour is
21:00-22:00, and the request rate drops rapidly after mid-
night, reaching the lowest at 02:00-04:00.

The second day had 19.6% more requests than the first
day, possibly because the second day was a Saturday. Inter-
estingly, although the first day was a workday, there were
still a substantial number of requests during office hours.
For example, the proportion of requests received between
09:00 to 17:00 was 36.39% on Friday versus 41.35% on Satur-
day. We conjecture that the very short video length allows
users to watch them even during work, e.g., while taking a
short break.

One impact of the time-of-day variations in request
arrival is on the Service provider’s capacity dimensioning.
To provide a good user experience, the Service provider
must deploy sufficient resources (i.e., servers and network
bandwidth) to cope with the peak demand. This means
some resources will be idled in the rest of the day.

For example, assuming the Service provisions resources
according to the peak demand in the Saturday dataset, then
the average resource utilization over the two days is only
31%, and the lowest utilization is only 4.4% at 03:00-04:00.
In practice, the utilization will likely be even lower as most,
if not all, service providers reserve additional resources as a
safety margin to cope with demand spikes.

The measurements in Fig. 4 do offer evidence that the
time-of-day variations in video requests could be predict-
able. By exploiting that, the provider could adapt the
resource allocations to match the changing demand to
reduce costs and possibly improve performance as well.
This is a subject that warrants further research.

Next, we turn our attention to the video upload pattern
in Fig. 5 using the same dataset #3. In terms of volume, the
ratio of video download to video upload is around 80:1.
Again, the upload rate exhibited clear time-of-day varia-
tions that are consistent across the two days.

There are, however, some significant differences in the
upload pattern. Unlike video requests, which exhibited
peak demand during the late evening, the upload pattern
exhibited two peaks from 12:00 to 14:00 and 19:00 to 21:00.
These two periods coincide with lunch and dinner time
which could be one reason behind the higher upload rates.

4.3 Video Popularity

Video popularity is an important metric as it impacts many
service designs such as prefetching, caching [34], recom-
mendation, ad-insertion, etc. Previous work [9] measuring
YouTube video popularity over a span of several months
showed that video popularity generally follows the Pareto
rule, i.e., a small subset of videos accounts for a large pro-
portion of views. The popularity versus video rank often
can be further modeled by a power-law distribution. How-
ever, a recent study by Zhang et al. [23], [24] indicated that
Zipf’s Law might not be applicable to short-video services
due to the fast evolution of video popularity.

Zipf’s Law – To verify this, we analyzed the popularity of
videos in dataset #4. The Pareto rule still applies – 10% of
the videos accounted for around 90% of requests. Next, we
test if video popularity can still be modeled by power-law
distribution, more specifically, the Zipf’s Law [35]:

F ¼ CR�b (1)

where F is the access frequency, C is a normalizing
constant, R is the video file rank, b is Zipf’s coefficient.

Fig. 6 compares the empirical video popularity in dataset
#4 to the best-fit Zipf model. We use the coefficient of deter-
mination, also known as the R2 value [36], to measure the

Fig. 3. Video length distribution in dataset #4.

Fig. 4. Time-of-day variation of video playback requests for dataset #3,
of which the first day is Friday and the second day is Saturday. Each bar
represents the ratio of requests in the time interval [x:00,xþ1:00) over
the two-day total.

Fig. 5. Time-of-day variations of video uploads for dataset #3.

Fig. 6. Measured video popularity versus the Zipf Law.
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goodness of model fit where R2 ¼ 1 represents perfect fit,
and R2 ¼ 0 is the same as the mean predictor. The R2 value
for the best-fit Zipf model is only 0.5, suggesting the latter is
indeed not a good approximation for the video popularity
distribution.

Specifically, the high-rank (popular) videos exhibited
lower popularity than predicted by the Zipf model. This
could be due to the “fetch-at-most-once” property of user-
generated content [9], where most videos are watched only
once (or a few times in case of very popular videos) by a user.

In contrast, a popular music video on YouTube, for
example, will likely be viewed repeatedly by the same user
over an extended period of time. Even the most viral short
video will be quickly overshadowed by new ones, which is
one of the inherent natures of short-video services.

At the other end of the video rank spectrum, we observe
truncation of the tail, i.e., their access counts are much lower
than predicted by the Zipf model. This observation is con-
sistent with previous works [5], [9], [20], and Cha et al. [9]
suggested that the truncated tail is due to content filtering.
Short video services all have recommendation systems that
tend to recommend more popular videos, rendering the
unpopular videos hard to be discovered.

Video age – Next, we investigate the evolution of video
popularity as video ages [22] - defined as the time elapsed
since video upload to the time of playback request, to ana-
lyze the popularity evolution of a video over its lifetime.

Fig. 7 plots the video requests ratio versus video age in
dataset #4 over two timescales (hour and day). In both time-
scales, video popularity dropped rapidly as a video aged. For
example, 30% of all requests were for videos uploadedwithin
the same day, and 90% of all requests were for videos
uploaded within 30 days. In comparison, a previous study on
Vine by Zhang et al. [20] found that 50% of requests were for
video within ten days, whereas the same in our dataset was
substantially higher at 70%. This rapid popularity decay
could impact the performance of caching strategies, e.g., by
causing caching pollution [39] in policies based on the most-
frequently-used metric. More work is thus warranted to fur-
ther explore its impact to inform the design of new caching
strategies.

Themedian video age of all requests in dataset #4 is a mere
104 hours. In the by-hour plot, the request ratio exhibited

wave-shaped variations over video age with a 24-hour peri-
odicity. This is a result of the time-of-day variations in video
requests (Fig. 4) and uploads (Fig. 5).

In contrast, the by-day plot exhibited a clear power-law
trend that can be approximated by

fðxÞ ¼ cxb (2)

where x is the video age (in days), f(x) is the ratio, c ¼ 1 and
b ¼ -1.28 are the power-law coefficients. The power-law
model implies that the distribution has a long tail. For exam-
ple, while most videos have a short video age, a very small,
yet not insignificant, number of videos (1.69% to be exact)
did exhibit video age longer than 180 days.

The above analysis reveals a subtle yet important param-
eter in applying Zipf’s distribution to model video popular-
ity, namely the time scale. The popularity distribution in
Fig. 6 was computed from all video requests in dataset #4,
which spans nine days. However, as video popularity
decays rapidly after just a few hours, it violates Zipf’s Law’s
assumption that the popularity distribution is stationary
under the period of study.

To test this hypothesis, we computed in Table 6 the best-
fit Zipf model for four different time scales, ranging from
216 hours to 5 minutes. It is clear that the Zipf model’s accu-
racy improves significantly as the time scale shortens. At
the 5-min time scale, the best-fit Zipf model has an R2 value
of 91.79%, suggesting a good fit. This shows that the previ-
ous observation of non-Zipf behavior in short-video serv-
ices [23], [24] could be due to the choice of time scale. More
importantly, the discovery that video popularity returns to
the Zipf model at short time scales opens up a new avenue
to exploit it for system optimization such as video replica-
tion, caching, and prefetching.

Upload time-of-day – Next, we investigate if the upload
time of a video correlates to its eventual popularity. We
divided the videos in dataset #4 into 24 groups according to
their upload hour-of-day and then plotted their mean
request count per video in Fig. 8.

We observe significant variations in video popularity for
videos uploaded at different hours of the day. For example,
a video uploaded at 17:00-18:00, on average, received 24
playbacks compared to only 11 for a video uploaded at
22:00-23:00. We speculate that this could be caused by two
inter-related phenomena. On the one hand, as video ages
rapidly with most of its requests generated within the first
few hours after upload (c.f. Fig. 7), videos uploaded during
17:00-18:00 could benefit from the subsequent peak request
hours (c.f. Fig. 4), resulting in more views. On the other
hand, this phenomena could have been exploited by com-
mercial video producers who scheduled their video uploads
to reap the most views from the high tide of the request

Fig. 7. The ratio of video requests by video age. The top and bottom
charts cover videos with ages up to 4 days and 3 months, respectively.
The bottom one can be approximated by the power-law model with b ¼
-1.28. The R2 across 4 datasets are 0.984, 0.962, 0.992, and 0.990.

TABLE 6
Zipf’s Model Fit Over Different Time Scales

Duration Beta (best fit) R2

216 hours 0.68 50.08%
24 hours 0.69 64.26%
3 hours 0.68 77.88%
5 minutes 0.60 91.79%
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wave. These uploaders also tend to produce inherently
more popular videos, thus skewing the popularity numbers
further. A more thorough understanding of these phenome-
non will have a far-reaching impact on content and resource
management and thus warrant further investigations.

Video length – Finally, we study the impact of video length
on video popularity in Fig. 9. The distribution exhibited a con-
cave trend over video length, with video lengths between 60 s
to 180 s having higher popularity. The results clearly demon-
strate the inherent nature of short-video services – even
though longer videos could be uploaded, they are far less
likely to be popular because they are not a good fit for the
expected use cases (e.g., a quick viewing session at the office).

More surprisingly, the popularities at the three preset
video lengths (L1, L2, and L3) for live video upload were sig-
nificantly lower than their neighbors. We conjecture that
there are generally two types of videos. Casual videos cap-
tured live by users at the moment of action, using the live
uploadmodewith preset video lengths, and commercial vid-
eos that are pre-recorded, edited, and then uploaded using
the pre-recorded mode, which has no video length limit.
Commercial videos are obviously optimized for popularity,
thus attributing to the observed anomalies. This discovery
could be low-hanging fruit for optimizing resource manage-
ment, e.g., by assigning lower priority to cache videos
uploaded using the livemode versus the pre-recordedmode.

The above analysis revealedmany interesting correlations
between various factors and a video’s eventual popularity.
Such correlations could be exploited to predict the popular-
ity of newly-uploaded video – an important piece of informa-
tion for video recommendation, content management,
resource allocation, etc. Popularity prediction has been stud-
ied in the context of conventional streaming services, e.g.,
the works by Li et al. [39] and Goian et al. [41]. These previous
works may not translate directly to short-video services,
however, given the significant differences in the latter’s char-
acteristics. We hope the findings in this work will pave the
way for further investigations in this area.

5 NETWORK ANALYTICS

In this section, we analyze network analytics such as
throughput and connection time derived from the datasets.

As opposed to active network measurements, which send
probing packets and measure their responses [37], the
derived data show the network characteristics as experienced
by the Service, thereby incorporating the impact of all proto-
col layers as well as the application’s inherent behavior.

The datasets covered 35 provinces, 13 different ISPs, and
more than 5000 server IPs. Therefore, the results offered a
rare opportunity to investigate network characteristics over
a country-wide scale. Table 3 summarizes the key network
statistics for the four datasets.

5.1 Connection Time

We first consider connection time (DRTT) - defined as the
time for the client to establish a TCP connection to the
server. With TCP’s three-way handshake during connection
setup, the connection time reflects the end-to-end round-
trip-time (RTT) between the client and the server, plus proc-
essing time at both end hosts.

As the Service employs persistent HTTP, only the first
HTTP transaction requires connection setup, unless an
extended idle period causes the server to timeout the persis-
tent connection. As a result, over 90% of video playbacks
have zero connection time due to persistent HTTP. Fig. 10
plots the connection time distribution of dataset #4, exclud-
ing the zero cases. We observe that the connection time is
relatively short, with a mean/median of 58.96/22 ms. This
is because both the Service’s clients and servers are located
within China, thereby avoiding trans-continent links. For
comparison, Langley et al. [38] studied the RTT of TCP con-
nections to Google’s servers and found that 20% and 10% of
RTTs were longer than 150 ms and 300 ms. By contrast, only
5.5% and 2.97% connection times were longer than 150 ms
and 300 ms in dataset #4.

The connection time distribution could be approximated
by the lognormal model:

fðxÞ ¼ scaleffiffiffiffiffiffi
2p

p
sðx� locÞ exp � log 2ðx�loc

scale Þ
2s2

 !
(3)

where x is the connection time, f(x) is the probability, and s,
loc, and scale are the model parameters. As the connection
time is largely comprised of RTT between the client and the
server, the model in (3) could be used in simulations for gen-
erating random RTT values or used in mathematical models
for analysis purposes. In the following, we analyze the corre-
lations between various factors with connection time.

Network types – Intuitively, RTT, and consequently con-
nection time are network-dependent. We segregated the
dataset by network types {3G, 4G, 5G, Wi-Fi} and plotted

Fig. 8. Impact of upload time-of-day on video popularity.

Fig. 9. Impact of video length on video popularity.

Fig. 10. Connection Time (DRTT) distribution, excluding zero cases and a
lognormal approximation with (s, loc, scale) ¼ (0.9, 2.95, 19.33). R2

across 4 datasets are 0.958, 0.947, 0.979, and 0.981.
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their respective distribution in Fig. 11. There are two notable
observations.

First, connection time generally shortens when going
from 3G to 4G and 5G mobile networks, with mean/median
values of 151/51 ms, 95/44 ms, and 86/42 ms, respectively.
The improved connection time directly translates into a bet-
ter user experience, especially in short-video services,
where short startup delay is far more important than con-
ventional streaming services.

Second, the mean/median connection time for Wi-Fi, at
just 49/18 ms, is considerably shorter than even 5G net-
works. This could be attributed to the early-stage deploy-
ment of 5G, where one would expect it to improve over
time. Nevertheless, this does show that in addition to reduc-
ing mobile data consumption, switching the smartphone
from mobile data to Wi-Fi whenever available will also
improve application performance.

Time-of-day –We first investigate the relative usage of dif-
ferent network types over different hours of the day in
Fig. 12. As expected, most requests were served over 4G
and Wi-Fi. What is interesting are the 4G and Wi-Fi curves
which are almost mirror images of one another in shape.
This shows the impact of Wi-Fi offloading, which is widely
adopted by mobile users to reduce their mobile data usage.
Nevertheless, despite the variations, the ratio of 4G requests
did not drop to near zero even during evenings or midnight,
where most users are likely home (and with Wi-Fi access).
We hypothesize that some of the users may have subscribed
to mobile plans with unlimited data, so there is no need to
offload to Wi-Fi. However, our previous connection time
analysis (and also throughput analysis in Section 5.2) does
show that even if mobile data usage is not a factor, switch-
ing over to Wi-Fi will still likely improve application
performance.

Next, we analyze the connection time variations over
hour of the day in Fig. 13 for 4G and Wi-Fi, respectively. 3G

and 5G were omitted due to their very small request ratios.
We observe that 4G exhibited more significant time-of-day
variations in its mean connection time (green triangle) than
Wi-Fi (4G: {62 to 114} ms versus Wi-Fi: {51 to 63} ms). We
conjecture that the difference is due to Wi-Fi’s generally
higher bandwidth which shortens traffic flow duration and
can accommodate higher usage bursts. The top two peaks
in 4G occurred around lunch (12:00) and dinner time
(18:00), possibly due to users being outside the office/home
without stable Wi-Fi access, thereby straining the mobile
network.

Overall, the above analysis shows that connection time,
and likewise RTT, can and do vary substantially across fac-
tors such as network type and time-of-day. In particular,
despite the fact that both servers and clients are located in
China, the mean connection time could still reach over 100
ms in many cases. This is significant for transport layer (i.e.,
TCP) optimization as long network delay could severely
degrade transport protocol performance, especially in high-
bandwidth networks [44].

5.2 Throughput

The Service divides a video into 1-MB segments, and the cli-
ent downloads each segment over a separate HTTP transac-
tion. Each segment download generates a log entry where
the download size, denoted by BDS, defined as the number of
bytes successfully transferred to the client, is recorded. In
addition to segment size, the log also recorded the transfer
time DTT, defined as the time to download the video
segment.

Knowing the download size and transfer time, one can
then compute the throughput in transferring a video seg-
ment. Given the Service’s scale and reach, this offers a rare
opportunity to indirectly measure the end-to-end network
throughput performance in a large country. We note that
the computed throughput would have incorporated all ele-
ments in the end-to-end path, including path bandwidth
limit, the dynamics of TCP (i.e., flow and congestion control,
loss recovery), the impact of competing flows (sharing a
base station or Wi-Fi AP), as well as processing limits of the
mobile devices and servers.

In other words, the data measured the end-to-end
throughput as experienced by the Service and recorded by
the client. The available raw bandwidth is likely to be
higher, especially over 5G and Wi-Fi, but the recorded
throughput reflects what the Service can actually utilize.

Fig. 11. Comparison of connection time (ms) distribution across 3G, 4G,
5G, and Wi-Fi. R2 for 4 datasets across different networks are all over
0.96.

Fig. 12. Network type over time of day of the datasets.

Fig. 13. Impact of time-of-day on connection time. (Boxplot with orange
bar and green triangle represent the median and mean).
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Further investigations into the gap between achievable
throughput and raw bandwidth will reveal the potential
bottlenecks and pave the way to performance optimizations
(e.g., transport bottlenecks [44]).

We calculated the mean throughput, denoted by TP, for
each video session by averaging over all the segment trans-
fers, as follows:

TP ¼
X
i2V

BDSi

,X
i2V

DTTi (4)

where V is the set of segments downloaded for the video,
BDSi andDTTi are the download size and transfer time of seg-
ment i. Note that as the Service employs persistent HTTP,
only the first few segment requests would be subject to TCP
Slow-Start [44] depending on the bandwidth available. Alter-
natively, if the user idles for a time exceeding theHTTP keep-
alive timeout, then the TCP connection will also need to be
re-established with a new Slow-Start phase. Nonetheless, as
over 90% of the segment downloads recorded zero connec-
tion time, the impact of TCP Slow-Start is relatively small.

We plot in Fig. 14 the overall per-stream throughput dis-
tribution, which can be approximated by a lognormal
model. In the following, we further analyze the correlations
of various factors with throughput.

Network types – We first divide the dataset by network
types and plot their respective distributions in Fig. 15. As
expected, the throughput generally increases from 3G, 4G,
5G, and finally to Wi-Fi, which has the highest mean
throughput. We note that the increase in mean throughput
when climbing the network type ladder is somewhat smaller
than onemay expect.

For example, while 4G generally can offer significantly
higher raw bandwidth than 3G, the observed average
throughput increased by a mere 21.4% from 11.48 Mbps (3G)

to 13.94 Mbps (4G). However, 4G did exhibit far fewer low-
throughput cases, with only 5.3% having throughput lower
than 1 Mbps (slightly higher than the video bitrate of 930
Kbps) compared to 9.7% under 3G.

Similarly, moving from 4G to 5G resulted in a through-
put increase of 27.5% from 13.94 Mbps (4G) to 17.78 Mbps
(5G) which is lower than what 5G can potentially offer (e.g.,
over 1 Gbps for 5G [40]). This could be attributed to the
early-stage 5G deployment at the time of the study (e.g.,
only 0.52% of the connections were 5G), so coverage could
be limited, resulting in a mean throughput lower than what
5G could have achieved.

Wi-Fi, on the other hand, offers the highest mean
throughput at 34.1 Mbps, outperforming the current 5G.
The proportion of low-throughput cases (< 1 Mbps) stood
at 1.35% for Wi-Fi versus 4.15% for 5G. In addition to Wi-
Fi’s generally higher bandwidth, its shorter connection
time, and hence RTT, could also contribute to higher
throughput achieved by TCP.

Time-of-day – Next, we consider the correlations with
time-of-day in Fig. 16 for 4G and Wi-Fi connections. Similar
to the observations in connection time (Section 5.1), Wi-Fi
exhibited more stable throughput throughout the day, rang-
ing from a low of 26 Mbps (20:00-21:00) to a high of 37
Mbps (05:00-06:00). By contrast, 4G ranged from 12 Mbps
(18:00-19:00) to 24 Mbps (21:00-22:00).

It is worth noting that the peak hours for 4G centered on
lunch and dinner times, where users are more likely to be
outside office/home Wi-Fi coverage. The throughput varia-
tions of 4G and Wi-Fi are also near mirror-image of one
another, demonstrating their complementary nature.

Our further analysis of the four datasets uncovered an
often-neglected factor that could also significantly impact
network and service performance – mobile network rate-
limiting. We present a more detailed discussion of this find-
ing in Section 7.1.

5.3 Throughput-Connection Time Correlation

One key factor impacting throughput performance is TCP
itself, as it is used for transporting video data in the Service.
Generally, TCP throughput is correlated with link band-
width, RTT, and loss rate. As connection time is closely
related to RTT, we investigate its correlation to mean
throughput performance in Fig. 17. It is evident that there
are indeed strong correlations between connection time and
throughput. Moreover, the relation between connection
time and mean/median throughput could be approximated

Fig. 14. Throughput distribution and its lognormal approximation with (s,
loc, scale) ¼ (0.37, -30.74, 49.16). R2 across 4 datasets are 0.911,
0.979, 0.981, and 0.996.

Fig. 15. Comparison of throughput distribution across network types.
Note the lognormal models for dataset #4 do not fit other datasets due to
mobile network rate limiting (see Section 7.1).

Fig. 16. Impact of time-of-day on throughput.
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by the power-law model (see Appendix II, available in the
online supplemental material).

We note that for connection time shorter than 5 ms, the
power-law model’s accuracy decreased significantly. It is
not clear why very short connection times exhibited lower
than expected throughput. More work is needed to investi-
gate this counter-intuitive phenomenon further.

On the other hand, their correlations suggest that the ini-
tial connection time could be exploited to predict the
throughput of the connection. This will be very useful to
bandwidth-sensitive applications. For example, the pre-
dicted throughput could be used to select the video bitrate
for the streaming session in non-adaptive streaming plat-
forms or the initial bitrate in adaptive streaming platforms.
Again, more work is warranted to explore this finding’s
potential applications to different Internet applications.

6 VIDEO STREAMING ANALYTICS

The application-layer logs in the dataset offered rare details
on various performance metrics of the streaming sessions.
Instead of inferring or estimating streaming performance
from the network analytics [7], [41], the application logs
recorded many streaming analytics that are critical to the
Service. In the following, we first analyze two key streaming
metrics - startup delay and playback rebuffering. Then we
analyze the viewing statistics (play time and playback per-
centage) that reflect user engagement to attempt to quantify
the impact of streaming metrics.

6.1 Startup Delay

Startup delay (or startup time) refers to the time from the
user clicks a video to the time video playback begins. It is
one of the key performance indicators (KPIs) of commercial
streaming services as it directly impacts the user experience
[26]. It is even more important for short-video services as
the video themselves are often only tens of seconds long,
and the users typically browse through videos in quick suc-
cession looking for interesting ones to watch.

Fig. 18 plots the startup delay distribution and its lognor-
mal approximation. The startup delay is remarkably short,

with a mean/median of 445/284 ms. In comparison, Fina-
more et al. [12] measured the startup delay in YouTube and
found more than 30% longer than 1 s in one of their dataset.
By contrast, less than 3% of streams had startup delay lon-
ger than 1 s across all four datasets from the Service. The
data reflect short-video services’ fundamentally different
KPIs where startup delay is one of the most important met-
rics. In retrospect, the Service’s choice of moderate video
bitrate (�930 Kbps) and small segment size (�1 MB) are all
deliberate design choices to shorten the startup delay per-
formance that is critical to short-video streaming.

We note that there is a small fraction (0.01%�0.14%) of
zero-startup-delay cases (c.f. last row of video local replay
cache hit rate in Table 3). This occurs when the same video is
played again by the same client using video data that are
cached locally. The very low cache hit rate confirmed the
fetch-at-most-once property of short video services, as dis-
cussed in Section 4.3. Therefore, unlike streaming music
services, caching locally in the client is unlikely to reduce
server load significantly in short video services.

6.2 Playback Rebuffering

During video playback, rebuffering may occur if the client
runs out of video data to sustain continuous playback. The
overall rebuffering rate (RRB), defined as the ratio of play-
backs with at least one rebuffering event, is quite low in the
Service at 0.94%. This is likely due to the conservative video
bitrate choice (c.f. Section 4.2). In the following, we focus on
the streaming sessions with one or more rebuffering events.

Fig. 19 plots the distribution of rebuffering count, defined
as the number of rebuffering events in a video playback. We
observe that the majority (76%) of playbacks encountered
only one rebuffering event. This is not surprising given the
generally short video length. Another way to measure
rebuffering is the duration of playback pause - rebuffering
duration, plotted in Fig. 20. The results show that when
rebuffering occurs, the rebuffering time can be relatively
long, e.g., 23% have rebuffering duration � 5 s. Given the
small video segment size of just 1 MB, this suggests that
rebuffering is likely caused by exceptionally poor network
conditions, e.g., temporary loss of mobile/Wi-Fi connection,
which then takes considerable time to recover.

6.3 Viewing Statistics and User Engagement

Viewing statistics measure metrics of the playback itself,
e.g., video play time and playback percentage. These are
vital statistics to the Service provider as they reflect the
users’ experience (also known as user engagement).

Fig. 17. Dataset #4, Relation between DRTT and mean TP. R2 across 4
datasets are 0.825, 0.757, 0.657, and 0.809.

Fig. 18. Startup delay distribution and its lognormal approximation with
(s, loc, scale) ¼ (0.56, 33.81, 274.74). R2 across 4 datasets are 0.908,
0.969, 0.993, and 0.997.

Fig. 19. Rebuffering count distribution for sessions with at least one
rebuffer. R2 across 4 datasets are 0.998, 0.996, 0.999, and 0.999.
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These data are rarely published by service providers as
they are proprietary commercial information. Moreover,
only the application itself can directly measure these statis-
tics so it is difficult, if not impossible, to measure them
externally.

Video Play Time / Playback Percentage – The first metric is
video play time – measured from the time video playback
begins to the time the user terminates playback. Due to their
short duration, it is common for short video services to
repeatedly play the video in a loop so the play time could
exceed the video length. Moreover, it also includes time
spent when playback is paused (either explicitly or implic-
itly due to switching to other applications or answering an
incoming call) as well as rebuffering time, if any.

Fig. 21 plots the video play time distribution. As
expected, the play time is short, with a mean/median of
27.92/12 s. The video play time distributions of the four
datasets can all be approximated by the power-law model,
suggesting that the previous assumption of Gaussian distri-
bution (e.g., [19]) for the play time may not apply in actual
short video services. To our knowledge, this is the first
known result in play time distribution for short video
services.

We observe that a substantial proportion of playbacks
(31%) have play time shorter than 3 s. These could be attrib-
uted to the user’s browsing behavior [42], [43], i.e., user
finding the initial few seconds of the video uninteresting
will terminate it to switch to the next one. This could result
in significant data wastage as the rest of the video data
downloaded will be discarded [19], [44].

Comparing to the mean video length (e.g., 40 s in dataset
#4), the mean play time is even shorter (e.g., 27.92 s). This
implies a substantial proportion of the videos was not
watched completely. This can be quantified by playback per-
centage, denoted by RPB – defined as the ratio of play time
DPB to video length DVL:

RPB ¼ DPB

DVL
(5)

Fig. 22 plots the distribution for the playback percentage.
There are two notable observations. First, the playback per-
centage can exceed 100% due to looped playback, rebuffer-
ing, and user interruption. In fact, 30.92% of the playbacks
were longer than the video length. Second, there is a signifi-
cant peak around 100%. The increase when approaching
100% could be attributed to the user recognizing the video
is near the end and switch to another video early. In con-
trast, the peak after 100% is likely due to the looped play-
back feature that repeats playback of the video after it has
reached the end. Noticing the repeat, the user then termi-
nates and switches to another video, resulting in a playback
percentage slightly larger than 100%.

The first peak in Fig. 22 suggests that user tends to decide
if a video will be interesting early on during the playback
session and will terminate and switch quickly if not inter-
ested. However, apparently that early decision may not
always be correct as well. As a thought experiment, let say a
user will spend the first 10% of the video length deciding if
a video is interesting. If the video turns out to be interesting
to the user, then the user will play at least 90% of its dura-
tion. Otherwise the user will terminate and switch early.
Using the data in Fig. 22, this translates into a decision cor-
rectness rate of 36%. Further analysis of such data could
lead to interesting directions for content recommendation,
video data prefetching, caching, and so on.

In the following, we further analyze the correlations
between playback percentage and four other metrics.

Playback Rebuffering – In addition to startup delay,
another important KPI in the Service is playback rebuffer-
ing. To exclude the influents of the content itself, we com-
pare the playback percentage of streaming sessions of the
same video with different numbers of rebuffering events by
dividing them into three groups: (i) no rebuffering; (ii) one
rebuffering; and (iii) more than one rebuffering. Table 7
summarizes the playback percentage for the top N ¼
100. . .,100000 videos by popularity.

Compared to the no-rebuffering group, the playback per-
centage dropped markedly by over 45% even when there
was just a single rebuffering event in the streaming session.
A more detailed analysis shows that the drops in playback
percentage are generally higher for larger N. For example,
playback percentages with just one rebuffering dropped
from 57.43% (N ¼ 100) and 56.44% (N ¼ 10000) to 33.49% (N
¼ 100) and 30.67% (N ¼ 100000), respectively. A possible
explanation for this observation is that users are more likely
to endure rebuffering if the content is more interesting (i.e.,
smaller N).

To our knowledge, this is the first known results quanti-
fying the impact of playback rebuffering on user engage-
ment in short video services. For conventional video
services, Dobrian et al. [26] did a measurement study and

Fig. 20. Rebuffering duration distribution for sessions with at least one
rebuffer. R2 across datasets are 0.962, 0.937, 0.975, and 0.984.

Fig. 21. Play Time distribution, power law model with b ¼ �1.0. R2

across datasets are 0.911, 0.901, 0.909, and 0.895.

Fig. 22. Playback percentage distribution.
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found that a 1% increase in the rebuffering duration could
reduce the playback percentage by 1.6% to 4.8% for a 60-
min video. As the metric is different, we cannot draw direct
quantitative comparison.

Nonetheless, the results from the Service do show that
users are very sensitive to rebuffering. Therefore, more
works are needed to incorporate the new quantitative
results into the design of new QoE metrics that are better
suited for short video services.

Video popularity – Next, we investigate the correlation
between video popularity and playback percentage. Intui-
tively, one would expect the two to be positively correlated.
The actual results, plotted in Fig. 23, are more complicated.
Specifically, playback percentage did increase with video
popularity, but only up to around 102.5 views where it pla-
teaued. This shows that even for popular videos, a substan-
tial portion of users may still watch only a part of the video
before moving on to the next one.

Time-of-day – Another interesting angle is the impact of
time-of-day on viewing statistics. Figs. 24 and 25 plot the
hourly mean play time and playback percentage over hours
of a day. There is a marked increase in both metrics between
19:00 and 24:00.

This suggests that users not only watch more videos dur-
ing those hours, but they also watch them for a longer
time/proportion as well, likely because those hours are
their time of leisure.

Video length – Intuitively, one would expect the play time
to increase with the video length. Indeed, as Fig. 26 shows,
the mean play time does increase with the video length.

However, the median play time exhibits a different trajec-
tory. Its increasing trend levels off beyond around 90 s and
then begins to decrease slightly for longer video lengths
(e.g., over 130 s). One possible explanation for this differ-
ence is as follows.

Short-video service users generally have very low levels
of patient, i.e., they tend to terminate and switch to another
video unless they find the content appealing right from the
beginning. Therefore, for the less appealing contents (e.g.,
the bottom half), the user will only watch for so long before
switching to another video. Hence, the plateau of the
median playback time, i.e., around 25 s, represents the
users’ patient threshold.

This is significant for content producers as it means that a
video must be able to attract viewer’s attention within the
first 25 s or else the user will likely skip. Similar observation
can be drawn from the playback percentage results in
Fig. 27 where the median playback percentage drops
sharply for video length longer than around 25 s.

Another notable observation from Figs. 26 and 27 is the
dips in both metrics at the preset video lengths L1, L2, and
L3. This result is consistent with the findings from the video
popularity versus video length plot in Fig. 9 in Section 4.3
which shows that live video uploads are significantly less
popular than pre-recorded video uploads.

We further quantify its impact in Table 8 by comparing
the viewing statistics of live video uploads (with video
lengths of L1, L2, and L3) to those of pre-recorded video
uploads (video lengths of preset lengths plus 1 s). It is evi-
dent that live video uploads were significantly less popular,
more so with longer preset lengths. The mean number of
accesses for the three preset durations L1, L2, and L3 were
merely 40%, 23%, and 8% of their pre-recorded counterparts.

TABLE 7
Comparison of Playback Percentage for Top-N Videos, With and

Without Rebuffering

Top N Videos NRB ¼ 0 NRB ¼ 1 NRB > 1

100 57.43% 33.49% 35.52%
500 53.88% 30.89% 31.61%
1000 54.41% 31.27% 30.75%
5000 55.61% 30.43% 30.98%
10000 56.44% 30.67% 30.70%

Fig. 23. Playback percentage versus video popularity level.

Fig. 24. Play time across time-of-day.

Fig. 25. Playback percentage across time-of-day.

Fig. 26. Relation between play time and video length.

Fig. 27. Relation between playbck percentage and video length.
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This surprising finding could have far-reaching impact to
designs in content recommendation, resource allocation, and
more fundamentally, user interface design for short video
services.

7 DISCUSSIONS AND EXPLORATIONS

In this section, we consolidated some of the key findings in
the previous analysis and discussed their broader implica-
tions as well as their potential applications.

7.1 Mobile Network Rate-Limiting

A significant finding from analyzing the network analytics
across the four datasets is the extend of mobile network
rate-limiting and its potential impact on network and ser-
vice performance. The first clue arises from inconsistency in
the throughput model fit across datasets.

In Section 5.2, the throughput distributions of all four
network types can be approximated by lognormal models.
However, we discovered some anomalies when applying it
to dataset #3, shown in Fig. 28. The distributions for 4G and
5G networks in dataset #3 exhibited significantly more low-
throughput cases than predicted by the model.

Further investigation suggests that this could be caused
by the rate-limiting policy of the mobile operators [45]. Most
operators offer data SIMwith a data quota (e.g., 5 GB) for net-
work access at either full-speed or at high-speed. Once the
quota is exhausted, the operator will limit the maximum
bandwidth available to the subscriber to a much lower data
rate (e.g., 1 Mbps or less). This is a compromise between
unlimited data (which is available but very costly) and fixed
data quota (which is cheaper but very inconvenient once the

quota is exhausted). Most importantly, most data SIM plans
in China adopt an accounting cycle according to calendar
months.

In other words, the effects of rate-limiting across users
are synchronized and will increase as one gets closer to the
end of the calendar month. This explains the anomaly in
dataset #3 as those were captured between 16th-17th of the
month versus 2nd-10th of the month in dataset #4. Taking
the analysis further, we calculated in Table 9 the ratio of
low-throughput (< 1 Mbps) requests for three specific days
of the month from dataset #4. We only use data from dataset
#4 as it spans a wider range of days, and they were all cap-
tured within the same month, thus minimizing the impact
of potential confounding factors such as improvement in
network infrastructure.

The results in Table 9 show that the low-throughput ratio
increases substantially over time. As a control, we calcu-
lated the same ratios for Wi-Fi which do not exhibit such an
increasing trend. Another remarkable finding is how early
rate-limiting kicks in – by the 10th, the ratio has already
increased by 2.6 times. In retrospect, perhaps this is to be
expected as our samples were for short-video users where
video streaming is inherently data-intensive.

Mobile network rate-limiting could have a significant
impact on service performance. For example, we compare
in Table 10 the rebuffering rate of those three days for 4G
and Wi-Fi requests. The 4G rebuffering rate increased from
1.37% on the 2nd to 2.21% on the 10th, while the control, i.e.,
Wi-Fi rebuffering rate, showed no such trend. Worst still, if
the limited rate is lower than the Service’s video bitrate, the
Service will become unusable over the mobile network.

The above finding could just be the tip of the iceberg as
the impact of rate-limiting goes far beyond short-video serv-
ices. This is uncharted territory and given the widespread
deployment of rate-limiting in mobile networks, a more
thorough understanding of its characteristics, impact, and
detection could lead to improved designs at all levels of
mobile services.

7.2 Exploring ABR for Short Video Streaming

Given that adaptive streaming has been widely deployed in
many other streaming services, it begs the question of why

TABLE 8
Playback Statistics for Live (L1, L2, L3) vs. Pre-recorded

(the þ1’s) Video Uploads

Video
Length (s)

Mean Playback
Percentage

Median Playback
Percentage

Mean Number
of Accesses

L1 58.80% 60% 4.47
L1 þ 1 63.23% 77% 11.30
L2 39.93% 20% 5.38
L2 þ 1 46.84% 31% 23.37
L3 29.10% 8% 3.63
L3 þ 1 43.32% 25% 44.29

Fig. 28. Throughput across network types in dataset #3 (16th-17th). For
mobile networks (3G, 4G, 5G), there were substantially more (over 10%)
low throughput cases (less than 1Mbps) than in dataset #4, possibly due
to mobile network rate-limiting.

TABLE 9
Ratio of Requests with Throughput Less Than
1 Mbps Over Three Specific Days of a Month

Day of the Month (Dataset#4)

02nd 06th 10th

4G 3.72% 5.71% 9.66%
Wi-Fi 1.26% 1.51% 1.42%

TABLE 10
Rebuffering Rate Over Three Specific Days of a Month

Day of the Month (Dataset#4)

02nd 06th 10th

4G 1.37% 1.57% 2.21%
Wi-Fi 0.75% 0.92% 0.82%
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short-video services have yet to adopt them. We explore this
question in this section by applying three well-known ABR
algorithms, namely Pensieve [46], MPC [47], Buffer Based
Algorithm (BBA) [48], to a short-video service streaming
simulator based on Mao et al. [46] to explore their potential
performance and limitations.

Table 11 summarizes the simulation settings. We kept
the ABR algorithms’ original settings except for video
length, which now ranges from 8 to 156 s. We note that the
original simulator [46] does not count startup delay in cal-
culating QoE. This may not be suited for evaluating short-
video services as startup delay is one of the key KPIs.
Therefore, we adopted two versions of QoE metrics, QoE-

norm1 and QoEnorm2:

QoEnorm1 ¼ 1

N � 1

XN
n¼2

Rn � m
XN
n¼1

Tn �
XN�1

n¼1

jRnþ1 �Rnj
 !

(6Þ

QoEnorm2¼ 1

N

XN
n¼1

Rn�msT0 � m
XN
n¼1

Tn�
XN�1

n¼1

jRnþ1�RnjÞ (7Þ
 

where N is the total number of segments. Rn, is the video
bitrate for segment n, Tn is the rebuffering duration for seg-
ment n.

QoEnorm1 measures video quality, rebuffering, and qual-
ity variation. It is the same as QoElin [46], [47], [48] adopted
widely in the literature except that it is normalized by the
number of video segments, as unlike in the original studies
[46], the video length is variable instead of fixed. QoEnorm2

expands QoEnorm1 by incorporating the penalty due to
startup delay (second term in (7)).

Our objective is to explore the impact of video length and
startup delay penalty on the ABR algorithms as these are
two of the key differences between current streaming serv-
ices and short-video services. We first evaluate the ABR
algorithms’ QoE performance versus video length using
QoEnorm1 in Fig. 29. In the same figure, we also plotted the

offline optimal QoE (assuming full knowledge of future
bandwidth) obtained from dynamic programming [46].
There are two important observations.

First, it is clear that video length has a significant impact
on the QoE performances of all threeABR algorithms. Specif-
ically, their QoE decreases as video length shortens. The deg-
radation accelerates when video length falls below around
40 s. Note that we assumed videos are always played
completely in the simulator, so the video length is more akin
to video play time in practice. In the Service, only 23.35% of
streaming sessions have play time longer than 40 s, implying
that current ABR algorithms would likely operate in the
degraded performance regimemost of the time.

Second, even the offline optimal exhibited similar perfor-
mance degradations at short video lengths. One reason for
the degradation is the initial bitrate choice for the first video
segment, which defaults to the second bitrate version (750
Kbps). While this choice may be inconsequential in conven-
tional streaming services with longer video lengths, its
impact on short video streaming increases rapidly as video
length shortens. For example, with a 20-s video, the initial
segment (4 s) already accounts for 20% of the whole video.
While the ABR algorithms will subsequently raise the
bitrate when bandwidth allows, climbing the bitrate ladder
also results in bitrate variation penalties (i.e., the third term
in (6)) which offset the gains in video quality. In conven-
tional streaming, the ABR algorithm can still reap the bene-
fits once the bitrate converges as the video length is
typically longer. By contrast, in short-video streaming, the
ABR algorithm may not even have sufficient time to con-
verge, let alone reap the benefits from an optimized bitrate
choice.

Next, we explore the impact of startup-delay penalty in
Fig. 30, which plots QoEnorm2 versus video length for the
four schemes. The QoE performances degraded even fur-
ther by the startup-delay penalty, so much so that they turn
negative for a video shorter than 56 s. Obviously, the results
depend on the choice of the weighting coefficient for the
startup-delay penalty – it was set to be the same as the one
for the rebuffering penalty (Table 11) in this exploratory
study.

The results from the above exploratory experiment are
obviously not meant to be conclusive, but rather to demon-
strate the potential performance limitations of current ABR
algorithms when applied to short-video streaming. The sur-
prisingly large performance impacts of short video length
and startup delay penalty call for new thinking not only in
the design of ABR algorithms, but also in the formulation of
new QoE functions for short-video services.

TABLE 11
Exploratory Experiment Settings

Parameter Value

Video Segment Size 4 s
Initial Video Quality 750 Kbps (2nd lowest bitrate)
Bandwidth Trace Data Pensieve Trace [46]
Video Length 8 s to 156 s
Bitrate Ladder [300, 750, 1200, 1850, 2850, 4300] Kbps
Startup Penalty (ms) 4.3
Rebuffering Penalty (m) 4.3

Fig. 29. The impact of video length on QoEnorm1 (w/o startup delay pen-
alty) for Pensieve, Robust MPC, BBA, and Offline optimal (DP).

Fig. 30. The impact of video length on QoEnorm2 (w/ startup delay pen-
alty) for Pensieve, Robust MPC, BBA, and offline optimal (DP).
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8 SUMMARY AND FUTURE WORK

The extensive data analysis in this measurement study
offers new insights into the characteristics and behavior of a
large-scale short-video service. The measurement results,
many of which could be modeled by well-known mathe-
matical distributions, could be readily employed in the
study of short-video services, either as inputs to improve
the fidelity of simulators, or as the basis to formulate a sys-
tem model for performance analysis and optimization. In
addition to the models presented in the main text, readers
can also find additional models in the appendices.

Furthermore, the measurement results revealed many
short-video service characteristics that differ significantly
from conventional streaming services. Examples include
the extremely rapid popularity evolution; the conformance
to the Zipf law at a very short timescale; strong correlations
between popularity, upload time, and video length; the sur-
prising popularity difference between pre-recorded versus
live video uploads; the correlation between connection time
and throughput; the impact of mobile network rate-limiting;
the very short user-patient; and so on.

Many of these findings point to new ways to design and
optimize the content delivery for short-video services,
which are important topics for future research given the
reach and scale of such services grown over just a few years.
Moreover, the exploratory experiment in Section 7.2 clearly
demonstrated the limitations of applying current ABR algo-
rithms to short-video services, which calls for new thinking
not only in the design, but also the in evaluation of these
services.
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