
978-0-7381-3207-5/21/$31.00 ©2021 IEEE

Stateful-BBR – An Enhanced TCP for

Emerging High-Bandwidth Mobile Networks

Lingfeng Guo

Department of Information Engineering

The Chinese Univeristy of Hong Kong

Hong Kong

Email: gl016@ie.cuhk.edu.hk

Yuming Zhang

Department of Information Engineering

The Chinese Univeristy of Hong Kong

Hong Kong

Email: zy219@ie.cuhk.edu.hk

Yan Liu

Cloud ARCH & Platform Dept

Tencent

China

Email: rockyanliu@tencent.com

Jack Y. B. Lee

Department of Information Engineering

The Chinese Univeristy of Hong Kong

Hong Kong

Email: jacklee@computer.org

Wenzheng Yang

Cloud ARCH & Platform Dept

Tencent

China

Email: wzyhktk@gmail.com

Abstract— With the progressive deployment of 5G networks

around the world, mobile networks are entering a new era where

bandwidth will be breaking through the Gbps barrier. In this

work, we investigate the performance of current TCP designs in

such high-bandwidth networks, demonstrating the potential

bottleneck due to TCP’s Slow-Start mechanism which is an

integral component in most TCP designs. For example,

transferring a file of 1 MB size in a first-generation 5G network

using Linux’s default TCP-Cubic and Google’s TCP-BBR

resulted in average throughputs of 18.2 Mbps and 32.8 Mbps,

respectively. Compared to the mean available bandwidth of 180

Mbps, the gap is significant. To tackle this problem, we

developed an enhanced Stateful-TCP technique to transform

BBR into a new S-BBR to accelerate its startup performance to

narrow the gap. Results from trace-driven emulated 5G network

experiments show that S-BBR could improve BBR’s throughput

performance by 50% to 100% while maintaining similar delay

performance. This is further validated by an independent

competitive benchmark using over 500 clients where S-BBR

raised BBR’s throughput by 69%. S-BBR is sender-based and

thus can be readily deployed in Internet servers without any

requirements from the client side, it retains BBR’s desirable

features and so offers a promising solution to enhance mobile

applications’ performance in the emerging high-bandwidth

mobile and wireless networks.

Keywords—slow-start, stateful, BBR, BBRv2, mobile, Wi-Fi,

networks.

I. INTRODUCTION

With the introduction of 5G mobile networks, mobile
communications are poised to rival the performance of their
wired counterparts. The first-generation 5G networks could
offer bandwidths up to 1 Gbps under good network conditions.
Even in normal environments, e.g., inside an office with a
stationary 5G smartphone, the measured bandwidth can easily
exceed 300 Mbps, with a mean bandwidth of 180 Mbps.
Moreover, further advances in 5G will soon breakthrough the
Gbps barrier, surpassing even many wired networks connected
via GBE [1].

With the leaps in mobile network bandwidth, it is now up
to the end-systems, i.e., servers and mobile devices, to exploit

it to improve the performance of mobile applications and
services. In this study, we focus on enhancing the Transmission
Control Protocol (TCP) to realize the benefits from the vastly
increased bandwidth in the emerging high-speed mobile
networks.

There have been continuous innovations in the design and
optimization of TCP over the years due to its central
importance to most Internet services and applications. With
three decades’ of research, modern TCP designs are all very
efficient, able to achieve very high bandwidth efficiency if the
flow is sufficiently long [2-17]. However, this last condition is
increasingly challenged by two factors.

First, TCP’s flow size is primarily determined by the
specific application utilizing it. For applications such as large
software download/update or movie download, the large
amount of data transferred will enable TCP to ramp up its
throughput to take advantage of the bandwidth available. On
the other hand, there are many other applications which
transmit data in sporadic short bursts, e.g., images in social
media. Moreover, even video streaming has evolved away
from RTP/RTSP-based streaming [18] to DASH-based
streaming [19] where a video is divided into small segments of
data, each delivered in separate HTTP transactions.

This latter evolution is significant as video now accounts
for 73% of all Internet traffics and is projected to increase
further in the future [20]. Consider a video encoded at a
medium bitrate of 1 Mbps. If each video segment is 2 seconds
then the mean segment size (i.e., flow size) will be 250 KB
only. Previous work [21-24] have demonstrated that at these
flow sizes, TCP will likely complete the data transfer before it
can ramp up its transmission rate to fully utilize the bandwidth
available.

Second, the rapid increase in mobile network bandwidth
further compounds the problem. While mobile network
bandwidth has increased by one order of magnitude, e.g., from
4G’s 100 Mbps to 5G’s 1 Gbps, the network propagation delay
is only reduced slightly, e.g., from 30~50 ms in 4G to 10~20
ms in 5G. The relevance of this is that TCP’s transmission rate
ramp-up speed is inversely proportional to the path RTT as

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

978-1-6654-1494-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 2

9t
h

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Q

ua
lit

y
of

 S
er

vi
ce

 (I
W

Q
O

S)
 |

97
8-

1-
66

54
-1

49
4-

4/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IW

Q
O

S5
20

92
.2

02
1.

95
21

35
8

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

most TCPs’ congestion control algorithms are driven by
acknowledgement (ACK) packets returned from the receiver.
Thus, compared to the bandwidth increase in 5G networks, the
network delay will present another hurdle to TCP’s ability to
take full advantage of the abundant bandwidth available.

We tackle this challenge in this work by applying the
recently-introduced Stateful-TCP paradigm [11] to the TCP-
BBR developed by Google [5, 12]. Stateful-TCP aims at
speeding-up TCP’s initial transmission rate by learning the
network parameters such as path bandwidth and propagation
delay from a previous flow to the same peer, and then apply it
to configure the transmission rate in the new flow’s startup
phase. It complements TCP’s congestion control and error
control algorithms and thus could be applied to most existing
TCP designs. It was first applied to Cubic in a recent work [11]
which raised Cubic’s throughput performance by over 50% at
flow size of 1 MB.

This work focuses on BBR because it was designed to be
more resilient to non-congestion losses than Cubic, and thus
offers higher performance especially in mobile and wireless
networks [5]. Moreover, excluding Cubic, BBR is among the
more widely-deployed TCP designs in the Internet and is
gaining popularity among many service providers.

In the previous work [11], Stateful-TCP has been shown to
work well in emulated networks, cloud VM environments, as
well as a competitive benchmarking platform. However, actual
performance results from deploying Stateful-TCP in
production Internet services are not yet available. In this work,
we collaborated with a tier-1 CDN service provider which
offered us a rare opportunity to conduct comparative
performance benchmarking in production servers hosting a
very large scale real-world Internet service. This not only
directly verifies the feasibility of Stateful-TCP, but also
provides, for the first time, its actual performance gains
achievable in real Internet services.

Our experimental results obtained from trace-driven
emulation of 5G network showed that Stateful-BBR (or S-BBR
for short) could achieved substantially higher throughput than
BBR, ranging from 50% to 100% depending on flow size and
random loss rate. Moreover, in spite of the higher throughput,
S-BBR exhibited packet queuing delays comparable to the
original BBR. A further validation experiment conducted by an
independent benchmarking company using over 500 clients
also produced similar throughput performance gains (69%) in
wired and Wi-Fi networks. Last but not least, we were able to
deploy Stateful-BBR in Tencent’s production servers and the
initial results suggested that S-BBR could offer substantially
higher throughput performance (+27%) as well as reduced low-
throughput cases (-6.6%) compared to BBR.

The rest of the paper is organized as follows: Section II
reviews some previous related works; Section III presents
experimental results to validate Stateful-TCP’s assumptions in
production Internet servers; Section IV presents the design and
implementation of Stateful-BBR; Section V evaluates and
compares S-BBR to current TCP designs; Section VI
summarizes the paper and outlines some future work.

II. PREVIOUS RELATED WROK

Three decades of research in TCP has produced many
novel designs. An exhaustive review of them is beyond the
scope of this paper. Below we first briefly review some of the
more well-known designs and then review the related works on
accelerating TCP’s initial transmission rate.

Although no official statistics are available, the most
widely-deployed TCP design is very likely to be TCP-Cubic [2]
as it is the default TCP in both Linux and Microsoft Windows.
Cubic, and its ancestor BIC [6], were designed to perform well
in large-BDP networks. However, its congestion control
algorithm is relatively sensitive to random packet losses. This
motivates research in loss-resilient TCPs. Notable examples
include Westwood [3], Veno [4], Vivace [9], Sprout [8], and
BBRv1/v2 [5,12], of which Google’s BBR has gained
considerable deployment in and out of Google’s services.

Another class of TCP designs were aimed at achieving low
packet latency which is critical to many delay-sensitive
applications. Notable examples include C2TCP [13], Copa [10]
and ExLL [14]. More recently, researchers have also begun to
explore the use of machine generated and machine learning
approaches to the design of TCP, e.g., Taova [16], Indigo [15],
and Orca [17].

Most previous works focused on TCP’s long-term
performance (i.e., tens of seconds). While that is an important
performance goal, TCP’s short-flow performance is also
significant in practice as many Internet applications transfer
data in sporadic short bursts. To this end, TCP’s short-flow
performance is primarily constrained by its Slow-Start phase
which always begins with a conservative transmission rate and
then ramps it up exponentially until it exits the Slow-Start
phase. To mitigate the Slow-Start bottleneck, researchers have
proposed novel ways to set the initial congestion window
(CWnd) size or sending rate, e.g., based on explicit feedback
from routers [21], based on receiver’s advertised window
(AWnd) size [22, 23], or using learning-based approach [24].

In a closely-related work, Guo and Lee [11] developed a
Stateful-TCP paradigm to accelerate TCP’s Slow-Start using
network parameters obtained from the previous flow to the
same peer. They applied it to Cubic to form S-Cubic where the
initial CWnd is set according to the path bandwidth-delay-
product (BDP) estimated in the previous flow, and apply
pacing in the first RTT to smooth out the initial transmission.
S-Cubic was shown to achieve substantial performance gain
over Cubic and in one of the experiments it even outperformed
BBRv1. This motivates us to investigate the application of
Stateful-TCP to BBR which potentially could push the
performance boundary even further.

III. AN EXPERIMENTAL VALIDATION OF STATEFUL-TCP

Taking advantage of our access to the tier-1 CDN service
provider’s production servers, we first conduct a set of
experiments to validate the assumptions behind Stateful-TCP
in the context of a real Internet service. The service itself is an
app store for downloading and updating mobile apps all over
the world.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

We modified the TCP implementation in the chosen servers
to log various statistics of all TCP flows served. The logging
module has been carefully designed and tuned to minimize
impact to the server’s performance. In the following, we
analyze the collected TCP statistics to validate two key
assumptions behind Stateful-TCP.

A. Stateful-TCP Hit Rate

Stateful-TCP is designed to make use of flow information
obtained from a previous flow to the same peer to configure the
initial transmission rate of the new flow. Therefore, it could
offer performance gains only if the same client connects to the
server multiple times. Intuitively, most Internet applications are
likely to initiate multiple TCP connections to the server in a
single session, there is no quantitative data on the exact extent
of it. Moreover, CDN service providers often employ server
load balancer to distribute the incoming requests to the server
farm so subsequent requests from the same client may not
necessarily be diverted to the same server, thus reducing the
opportunity for Stateful-TCP to activate.

We set out to investigate this question by logging the client
IP addresses in a production server. The first time a client IP
connects to the server it will log its IP address in a hash table
and count the connection as a miss. If the same client IP
initiates additional TCP connections afterwards then those
connections will be counted as a hit, representing the case
where Stateful-TCP can take effect. We ran the experiment
continuously for one week with a server table size of 64M
entries.

Fig. 1 plots the accumulated number of TCP connections
and the Stateful-TCP hit rate over time. There are two notable
observations. First, the hit rate grew with time as one would
expect, reaching 90% in one week’s time. This implies that
repeated connections to even a single server is significant.
Second, the server’s Stateful-TCP hit rate increased sharply in
the first 122 minutes, reaching a level of 65%. This suggests
that the ramp-up period for Stateful-TCP to take effect is
reasonably short and thus could begin offering performance
gains soon after a server is started. This is also consistent with
the intuition that many Internet applications inherently generate
multiple TCP connections in an application session so that it
does not take long for repeated connections to the same client
IP to appear.

It is also worth noting that the production service under
study is a mobile app store. Intuitively, an app store session is
typically one-off rather than multiple app downloads.
Therefore, we expect other services such as web, video
streaming, etc., will exhibit even more rapid ramp-up of the
Stateful-TCP hit rate.

B. Path BDP

Once activated, Stateful-TCP makes use of information
obtained from the previous flow, e.g., throughput, minimum
RTT, and BDP in S-Cubic [11], to bypass TCP Slow-Start to
accelerate the initial transmission rate. A key assumption here
is that TCP’s Slow-Start is the bottleneck during TCP’s startup
phase. While this is widely-recognized and can easily be

demonstrated in network testbeds, there is little quantitative
evidence in the literature on its extent in real Internet services.

To fill the gap, we conducted experiments in 10 production
app-store servers over a period of one week to measure and log
each TCP flow’s BDP. BDP is estimated from the product of
minimal RTT measured in a TCP flow and the TCP flow’s
mean throughput. In particular, if the BDP is equal to or
smaller than the initial CWnd (i.e., default of 10 MSS in
Linux), then Slow-Start will not be a bottleneck. In contrast,
the larger the difference between BDP and initial CWnd, the
more performance gain will be attainable by Stateful-TCP.

 Fig. 2 plots the cumulative distribution function (CDF) for
the BDP of all TCP flows recorded. It is evident that a
significant proportion of flows, i.e., 80.4%, have estimated
BDP exceeding 10 MSS. Note that some of the flows were
very short (e.g., less than 100 KB) and thus would
underestimate the BDP (again due to Slow-Start). If we
exclude flows shorter than 100 KB then the proportion of flows
with BDP larger than 10 MSS increased further to 89.5%. Thus
even if one increases the initial CWnd to a larger value such as
50 MSS, the proportion at ~40% (≥100 KB) or ~60% (≥1 MB)
is still significant. This confirmed that TCP’s Slow-Start is
indeed a significant bottleneck in practice.

IV. STATEFUL-BBR

In this section we first briefly revisit the design of BBRv1
and BBRv2, and then presents the design and implementation
of S-BBR.

A. Recap of BBR

BBR has attracted much attentions since its introduction by
Google in 2016 [5] (now known as the BBRv1). It has since

Fig. 1. One-week connection statistics from a production server.

Fig. 2. Distribution of BDP from production servers.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

been deployed in some of Google’s services. With the
availability of its Linux implementation, it has also been
increasingly deployed by others as well.

BBRv1 differs from Cubic in that it is no longer pure
credit-based, i.e., transmissions driven by ACK arrivals and
CWnd availabilities. Instead, BBRv1 employs pacing
throughout to maintain a transmission rate commensurate with
the estimated path bandwidth. BBRv1 still maintains CWnd to
control the packets inflight so as to reduce the bufferbloat issue
that can occur in Cubic [25]. More importantly, unlike Cubic
which cuts the CWnd by 30% upon a loss event [2], BBRv1
does not do so and rely on its bandwidth estimator to regulate
its transmission rate. This is also one of the reasons why
BBRv1 is more resilient to packet losses and outperforms
Cubic in lossy networks.

Google released the version 2 of BBR (BBRv2 for short) in
2019 [12]. BBRv2 was designed to address some potential
issues observed in the deployment of BBRv1. Specifically,
BBRv1 probes for more bandwidth by raising its transmission
rate momentarily by 25% every 8 RTTs. This could cause
more packet losses in shallow buffer networks [12] and will
become more severe when multiple BBRv1 flows compete at
the same bottleneck.

BBRv2 mitigated the problem through three means: (i) it
will reduce the transmission rate upon packet loss / ECN
(instead of not reacting to them as in BBRv1); (ii) it probes
bandwidth more slowly once the packets inflight has reached
the estimated BDP; and (iii) it reduces the maximum CWnd
from BBRv1’s 2 BDP to 1.25 BDP.

In addition, BBRv2 also fine-tuned the probing mechanism
for minimum RTT by adjusting the cut in inflight packets from
4 (as in BBRv1) to half. This allows more packets to fill the
pipe to achieve better bandwidth utilization, especially in
networks with varying bandwidth, i.e., mobile and wireless
networks.

Table I summarizes the key differences between Cubic,
BBRv1, and BBRv2. Interested readers are referred to
literature [2, 5, 12] for more details.

B. Application of Stateful-TCP

The key idea behind Stateful-TCP is that most Internet
applications generates many TCP flows in an application
session. For example, in short-video services such as TikTok,
Likee, Kuaishou, etc., which have seen explosive growth in the
past few years. Users of these short-video services often watch

many videos in succession. Therefore, the network condition
experienced by the TCP flows will likely to be highly
correlated. Stateful-TCP exploits this by using network
information obtained in a previous flow to configure the initial
configuration of the subsequent flow so that the latter does not
need to begin its transmission rate conservatively as is
currently implemented by Slow-Start.

To apply Stateful-TCP to BBR – S-BBR, we need to
address three questions: (i) what network information, i.e.,
stateful metrics, to carry over and how to obtain them; (ii) how
to configure the startup phase of a new flow; and (iii) how to
transit from the startup phase to the normal congestion control
phase. We present one design in the following as the starting
point for exploration. We emphasize that it is only an initial
design and there are other possible designs and many open
problems remain which warrant further investigations.

On stateful metrics, there are three network parameters
central to the operation of BBR (henceforth we will use BBR
to include both BBRv1 and BBRv2), namely estimated path
bandwidth, minimum RTT, and estimated path BDP. They are
not independent so one only needs to know any two to
calculate the remaining one. We chose the first two, i.e.,
estimated path bandwidth and minimum RTT, as the metrics in
Stateful-TCP as these two are already estimated by BBR as
part of its normal operation. Therefore, by piggyback on them,
no additional processing overhead will be incurred.

One potential issue we found is that BBR’s bandwidth
estimator works by measuring the amount of data
acknowledged by ACKs over around one RTT. For long flows
this work well as the pipe is filled with inflight packets during
the measurement interval. It may result in underestimation,
however, if the flow size is smaller than the path BDP1. As an
illustration, in a 5G network with 1 Gbps bandwidth and 20 ms
round-trip propagation delay, the BDP will be 2.5 MB. Thus, if
the flow size is smaller than that then the flow will complete
within one RTT which could lead to underestimation of the
path bandwidth.

This is undesirable as an application session could be
interleaved by long (e.g., images) and short (e.g., texts) flows.
Consequently, bandwidth underestimation in the short flows
will degrade the performance of subsequent flows (c.f. Fig.2).
Therefore, we introduce a new constraint to discard the stateful
metrics if the flow size is smaller than the cached BDP.
Otherwise the stateful metrics {path bandwidth, minimum RTT}
will be cached in a table hashed by the peer’s IP address.

In the startup phase of the new flow (i.e., after three-way
handshake), S-BBR will first check if cached stateful metrics
for the peer IP is available, and if so, will use it to directly
configure the startup phase, bypassing Slow-Start altogether.
Otherwise, S-BBR will revert back to BBR with normal Slow-
Start where it begins with an initial CWnd size of 10.

1 In BBR the bandwidth (called deliveryRate) is estimated from the

amount of packets delivered since the ACKed packet was sent

divided by the time elapsed since the last ACK was received when the

ACKed packet was sent. The latter is equal to or longer than one RTT.

TABLE I. COMPARISION OF CUBIC, BBRV1, AND BBRV2.

 Cubic BBRv1 BBRv2

Congestion signal Pkt losses N/A Pkt losses / ECN

Bandwidth

probing
Cubic curve +25% burst

every 8 RTTs

inflight_probe grows

exponentially per

round

Inflight packets

cap
None 2 BDPs 1.25 BDPs

Min RTT Probing None Cut packets

inflight to 4 pkts

Cut packets inflight

by half

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

By contrast, with cached stateful metrics, S-BBR will
override Slow-Start by setting the pacing rate to the cached
path bandwidth and the initial CWnd to path BDP which is
computed from the product of cached path bandwidth and
cached minimum RTT from the previous flow. This enables S-
BBR to transmit at a data rate matching the previously-
estimated path bandwidth right from the beginning, thereby
improving its throughput especially for short flows. Note that
in S-BBR, the AWnd is suppressed unless it is zero [26]. In
other words, the maximum inflight packets allowed is
determined solely by CWnd (instead of min{CWnd, AWnd}).
This prevents the receiver’s initial AWnd, which like CWnd is
typically small, from restricting the sender to send a full BDP’s
worth of packets to fully utilize the bandwidth available.

The startup phase completes once the first ACK is received
and S-BBR will pass the control back to BBR’s congestion
control algorithm for the rest of the flow. Upon flow
termination, the latest bandwidth and minimum RTT estimates
are then stored into the stateful table entry for the peer.

C. Linux Implementation

Implementations for BBR have evolved over the years. To
support our experiment platforms we implemented three S-
BBR versions: (i) S-BBRv1 based on Linux kernel 5.4 – this
represents the more recent Linux kernel version and is used for
trace-driven emulated experiments in Section V-A; (ii) S-
BBRv1 based on an earlier kernel version 4.14 – this is the
kernel version required by the competitive benchmarking
platform used in Section V-B; and (iii) S-BBRv2 based on the
BBRv2 Alpha codebase [27] for Linux kernel version 5.4. Just
like BBR, S-BBR is entirely sender-based so no modification
to the receiver TCP is required. Moreover, the Stateful-TCP
logics can be implemented entirely within TCP’s pluggable
congestion module so that no further kernel modification is
needed. The source codes of the S-BBR implementations are
available at github2.

To enable the stateful startup phase, S-BBR must maintain
an internal table to cache the stateful metrics for completed
flows to be looked up later by subsequent flows. The
congestion control module implements this by allocating a
fixed-size table at module registration time for use throughout
the runtime of the module. The table will be deallocated during
module deregistration, e.g., switching to a different TCP
congestion control module, and so cached stateful metrics are
not persistent in that regard. A further optimization would be to
store the table to persistent storage upon module deregistration

2 Implementations of S-BBRv1 and S-BBRv2 are available at

https://github.com/mclab-cuhk/Stateful-BBR

for use the next time the module is started (e.g., after server
reboot).

A key component of S-BBR is its stateful metrics table. To
reduce runtime overhead, the current implementation adopts a
simple hashing function to map the peer’s IP address to a hash
table entry. Collision detection is supported by storing the
peer’s IP address alongside the stateful metrics. In addition to
IPv4, the S-BBR module also supports IPv6 but only the lower
64 bits of the address is used for hashing and storage to reduce
memory consumption.

Altogether, each table entry consumes 16 bytes of memory
which is relatively modest. Larger table is desirable as collision
rate will decrease, enabling more effective activation of S-BBR.
The exact table size needed is likely to dependent on many
factors such as the client population’s geographical as well as
topological distribution, the types of applications/services
provisioned at the server, and the rules adopted in the server
farm’s load-balancer. This is an open problem that warrants
further investigation.

V. PERFORMANCE EVALUATION

In this section, we take a first look at the performance of S-
BBR and compare it to BBR as well as other TCP designs. In
particular, we focus on S-BBR’s performance in mobile and
wireless networks. Three experimental platforms were
employed in this study. The first one employed network
emulator, either netem [28] or a modified version of
dummynet 3 , using bandwidth trace data captured from
production mobile networks to recreate their bandwidth
variations in the topology depicted in Fig. 3.

The second one is a commercial competitive benchmarking
platform. This platform is mainly used by content and service
providers to conduct independent competitive testing to inform
their selection of CDN, data center, and network providers.
The main advantages of this platform is their scale (500+
clients), scope (covering 9 provinces through the top three
ISPs), and its design to capture realistic performance as
experienced by end-users.

The third and the most important platform is the production
app-store servers of our tier-1 CDN service provider. We
present and discuss their performance results in the following
sections.

A. Emulated Mobile Network Experiments

In the first set of experiments, we employed bandwidth
trace data captured from a production 5G network using a
stationary 5G-smartphone as the receiver. The server is located
in a data center. The bandwidth capture was done by flooding
the 5G link with UDP datagrams sent from the server to the
smartphone. The network trace is then captured using a custom
software running in the smartphone which were later processed
into a format for use in the network emulators.

The network emulator emulates the 5G link by recreating
the bandwidth variations from the trace data. The emulated

3 The modified dummynet is available at https://github.com/mclab-

cuhk/netmap-ipfw

Fig. 3. The topology used in emulated mobile network experiments.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

link’s propagation delay is set to 20 ms with a link buffer size
of 10 MB in accordance with our measurement of the actual
5G network. Two random packet loss settings, 0.1% and 1%
corresponding to low and high loss scenarios, were tested. To
offer a broader perspective on the performance of S-BBR, we
included six other recent TCP designs in the experiment. This
includes Indigo [15], Orca [17], Taova [16], Vivace [9], Cubic
[2], as well as S-Cubic [11] – the stateful version of Cubic.

 In the experiments, TCP flows were generated with flow
size drawn from the Pareto distribution (with α = 2.5) which
exhibits long-tail characteristics resembling Internet flows-size
distribution [29-30]. Four distributions with mean flow sizes of
64 KB, 128 KB, 512 KB, and 1024 KB, were tested, each
comprising 1,000 flows.

We first evaluate the TCPs’ overall performance in Fig. 4
which plots the CDF of the average throughput achieved by
individual flows from all four flow-size distributions (i.e.,
4,000 flows per TCP). Throughput is calculated from the

amount of data transferred divided by the duration of the flow,
including connection-setup time.

We note that the curves for BBRv1 and BBRv2 almost
overlap completely, suggesting that both achieved similar
performance in this experiment. Their stateful counterparts,
namely S-BBRv1 and S-BBRv2, achieved noticeably higher
throughput in both random loss settings. Compared to S-Cubic
which also adopts Stateful-TCP, S-BBR generally achieved
higher throughput performance, more so in the 1% loss setting.
This is due to Cubic’s congestion control algorithm’s
sensitivity to random packet losses [5]. The other TCP designs
are generally less sensitive to random packet losses as many of
them have taken random packet loss into consideration in their
design. Overall, S-BBR achieved the best throughput
performance in this experiment.

We further analyze the TCPs’ throughput performance in
Table II and III by separating the results according to the four
flow size distributions. Here, we can clearly see the impact of
flow size on the achievable throughput where most TCPs

Fig. 4(a). Distribution of per-flow mean throughput in an emulated 5G

network with 0.1% random packet loss.

TABLE II. THROUGHPUT (IN MBPS) COMPARISON IN AN EMULATED 5G

NETWORK WITH 0.1% RANDOM PACKET LOSS.

 Mean Flow Size

TCP 64 KB 128 KB 512 KB 1024 KB

BBRv1 4.5 7.5 20.5 32.8

BBRv2 4.4 7.2 19.7 31.7

S-BBRv1 9.0 15.3 39.7 59.3
S-BBRv2 8.9 15.1 39.9 59.8

Cubic 4.5 7.0 14.3 18.2

S-Cubic 7.8 13.0 32.8 48.8
Indigo 3.5 5.5 14.3 22.3

Orca 4.3 6.9 15.8 20.8

Taova 6.6 11.8 31.8 46.9
Vivace 2.9 3.9 8.3 13.3

TABLE III. THROUGHPUT (IN MBPS) COMPARISON IN AN EMULATED 5G

NETWORK WITH 1% RANDOM PACKET LOSS.

 Mean Flow Size

TCP 64 KB 128 KB 512 KB 1024 KB

BBRv1 4.5 7.2 18.9 30.1

BBRv2 4.4 7.1 19.1 30.6

S-BBRv1 8.1 13.7 35.3 52.9
S-BBRv2 7.9 13.4 34.8 52.0

Cubic 4.1 6.1 10.3 11.3
S-Cubic 5.5 9.0 22.3 30.6

Indigo 3.5 5.5 14.3 22.3

Orca 3.5 5.5 11.5 14.3
Taova 6.4 11.3 28.9 41.0

Vivace 2.8 3.8 8.2 13.0

Fig. 4(b). Distribution of per-flow mean throughput in an emulated 5G

network with 1% random packet loss.

TABLE IV. QUEUING DELAY (IN MS) COMPARISON IN AN EMULATED 5G

NETWORK WITH 0.1% RANDOM PACKET LOSS.

 Mean Flow Size

TCP 64 KB 128 KB 512 KB 1024 KB

BBRv1 1 1 6 10

BBRv2 1 2 8 13
S-BBRv1 1 1 5 10

S-BBRv2 1 2 7 13

Cubic 1 1 1 1
S-Cubic 1 1 1 1

Indigo 1 1 1 1

Orca 1 1 1 1
Taova 1 1 1 1

Vivace 1 1 1 1

TABLE V. QUEUING DELAY (IN MS) COMPARISON IN AN EMULATED 5G

NETWORK WITH 1% RANDOM PACKET LOSS.

TCP Mean Flow Size

 64 KB 128 KB 512 KB 1024 KB

BBRv1 1 1 5 9

BBRv2 1 2 5 8
S-BBRv1 1 1 5 8

S-BBRv2 1 1 4 7

Cubic 0 0 0 0
S-Cubic 1 1 0 0

Indigo 1 1 1 1

Orca 1 1 1 1
Taova 1 1 1 1

Vivace 0 0 1 1

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

needed flow size of at least 512 KB to reach mean throughputs
over 10 Mbps. Note that the average bandwidth of the 5G trace
data used is ~180Mbps so the gap is substantial. Part of the
reason is due to TCP’s connection setup time which is
unavoidable and becomes more significant at smaller flow
sizes. The rest of the gap is due to TCP’s ramp-up time as
discussed earlier. Among the non-stateful TCP designs, Taova
achieved considerably higher throughput at the two lower flow
size distributions. This is because Taova does not adopt TCP
Slow-Start and hence its initial transmission rate is not
constrained by it.

Overall, S-BBR achieved substantially higher mean
throughput than the other TCPs, especially at the smaller flow
sizes. For example, at the mean flow size of 128 KB, S-BBRv2
achieved 110% higher throughput than BBRv2 in the 0.1% loss
setting. Even at 1 MB mean flow size, S-BBRv2 still achieved
89% higher throughput than BBRv2, and 23% higher than the
second best TCP, i.e., S-Cubic. The performance gap widens
further in the 1% loss setting as S-Cubic’s performance is
degraded by its sensitivity to random packet losses. In the 1
MB mean flow size case, S-BBRv2 achieved 70% higher
throughput than BBRv2 and 27% higher throughput than the
second best TCP, i.e., Taova.

Next, we investigate their delay performance. We recorded
the packet queueing delay at the network emulator and
summarized the mean packet queueing delay in Table IV and
V for the two loss settings. We observe that BBR and S-BBR
exhibited longer queueing delay than other TCPs, especially
for the longer flow sizes. This is a result of their higher
throughput and their bandwidth probing mechanisms.
Remarkably, compared to BBR, S-BBR’s higher throughput
did not incur higher queueing delay. This is because the
stateful startup phase allows a substantial portion of the flow to
be transmitted at a rate close to the path bandwidth, thereby
reducing exposure to subsequent periodic bandwidth probing
which could cause packet queueing.

The results thus far focused on 5G network. In the second
set of experiments, we expanded the network emulation to
cover 4G and 3G networks. In addition to trace data collected
by the authors, additional dataset from Orca [17] were included
as it contains trace data collected from home and subways, two
scenarios that were not covered in our trace data. Table VI
summarizes properties of the five trace datasets used in the
experiments.

In this second set of experiments, we focus on the
performance gains of S-BBR compared to BBR over different
types of mobile networks ranging from 3G to 5G. To ease
comparison, we employ the metric throughput gain – defined
as the throughput gained by S-BBR compared to BBR under
the same network condition, in the following comparisons.

Fig. 5(a) and 5(b) plot the throughput gained by S-BBRv1
and S-BBRv2, respectively, over the five mobile network
traces with two random packet loss settings. Compared to the
5G network case, their throughput gains are lower in 4G
networks as their mean BDP sizes are far smaller than 5G (c.f.
Table VI). Comparing the three 4G network traces, we can
observe that the gains are largely in line with the trace’s mean
BDP size although the correlation is weakened in the 1% loss
setting. Finally, the gains under the 3G trace is lowest as one
would expect from its much smaller BDP. This result strongly
suggests that the performance gains are likely to increase in
future networks where bandwidth is only going to go up.

B. Independent Benchmarking

In this section, we report experimental results obtained
from Bonree [31], a benchmarking platform specializes in
competitive performance benchmarking of networks and
services. The benchmarking setup comprises over 500 client
hosts distributed across nine provinces in China. Unlike the
previous experiments, these clients are connected via either
wired or Wi-Fi networks, thereby offering an additional
perspective to evaluate S-BBR’s performance.

One limitation is that BBRv2 is not part of the Linux kernel
supported by the platform and it does not allow kernel
recompilation (which BBRv2 requires) due to security
restriction so the benchmarking experiment is limited to
BBRv1 only. The experiment lasted for 24 hours, with BBRv1
and S-BBRv1 tested in a round-robin manner to download a
file of 1 MB size. In total around 2,000 downloads were

TABLE VI. MOBILE TRACE DATASET CHARACTERISTICS.

Mobile

Networks

Mean

Bandwidth

RTT

Mean

BDP

Link Buffer

Size

Data

Source

3G (office) ~5 Mbps 50 ms ~21 MSS’s 1280 KB Own

4G (office) ~20 Mbps 50 ms ~84 MSS’s 5 MB Own
4G (home) ~16 Mbps 50 ms ~67 MSS’s 5 MB [17]

4G (subway) ~11 Mbps 50 ms ~46 MSS’s 5 MB [17]

5G (office) ~180 Mbps 20 ms ~300 MSS’s 10 MB Own

(a) S-BBRv1 over BBRv1

 (b) S-BBRv2 over BBRv2

Fig. 5. Throughput gains of S-BBRv1 over BBRv1 and S-BBRv2 over

BBRv2 in six mobile networks.

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

completed for each TCP, with a success rate of 99.9% in both
cases.

Fig. 6 compares the 2-hr mean throughput achieved by
BBRv1 and S-BBRv1. As expected, S-BBRv1 achieved higher
throughput in all 12 timeslots, with an overall throughput gain
of 69%. Among the ~2,000 downloads, S-BBRv1 has more
high throughput (≥100 Mbps) cases than BBR (4.4% vs. 2.5%)
as well as fewer low throughput (≤10 Mbps) cases (5.3% vs.
16.3%). Compared to the mobile network experiments in the
previous section, the throughput gains here are even higher
even though the throughputs are lower than the 5G network
trace. It is not apparent what the reason is as the competitive
benchmarking platform is not open to users so the exact
network conditions are not known. Nonetheless, the results
show that S-BBR’s performance gains do carry over to wired
and Wi-Fi networks

C. Production App-Store Servers

In this section, we report experimental results obtained
from production app-store servers of a tier-1 CDN service
provider. As this is a production Internet service it is not
possible to conduct controlled experiment. Instead, we selected
two production servers with the same hardware and OS kernel
version, located inside the same data center to minimize
differences due to server hardware/OS and server-side network
connectivity.

In our experiment, one of the two servers ran S-BBR while
the other server ran the comparing algorithms, i.e., BBRv1,
Cubic and S-Cubic. We were not able to test S-BBRv2/BBRv2
because the production servers’ Linux kernel does not yet
support BBRv2. Nevertheless, based on the results from the
previous sections, we expect their performances to be similar.
In each A/B comparison, we started both servers at the same
time and ran each comparison for two days, recording the

throughput of all mobile app downloads. Each experiment
generated around one million download records.

We summarize in Table VII three of the most critical
performance metrics in the CDN industry, namely mean
throughput, low-speed ratio (<1 Mbps), and success rate. In the
first comparison, the overall mean throughput of S-BBRv1 and
BBRv1 were 7.6 Mbps and 6.0 Mbps respectively,
representing a 27% gain in throughput by S-BBRv1. This is a
significant performance gain as it reduces the app download
time, thereby improving the user experience. In addition to
overall mean throughput, Stateful-TCP could also reduce the
likelihood of poor connections, S-BBRv1 cuts down the low-
speed ratio by 6.6%, compared to BBRv1. While in the second
comparison, S-BBRv1’s mean throughput gain of 35% over
Cubic is even higher. We conjecture that this is due to Cubic’s
more sensitive performance in lossy networks (e.g., 4G and
Wi-Fi).

Next, we compare S-BBRv1 against the Stateful-TCP
version of Cubic, i.e., S-Cubic proposed by Guo and Lee [11].
At 8.7 Mbps versus S-Cubic’s 7.1 Mbps overall mean
throughput, S-BBRv1 achieved 23% higher throughput
performance than S-Cubic, therefore offering an attractive
option for improving today’s production Internet services.

Last but not least, we also want to verify if Stateful-TCP
exhibits any compatibility issue with mobile client’s TCP stack
in a production Internet service. As summarized in Table VII,
all three TCP designs share a similar download success rate of
~99%, demonstrating that S-BBRv1 has the same compatibility
performance as the unmodified TCP in the Linux kernel.

VI. SUMMARY AND FUTURE WORK

Through experiments in both emulated and production
environments, this work demonstrated the feasibility and
performance gains achievable by applying Stateful-TCP to
BBR. This is an important milestone as the ultimate test of any
new TCP design is in actual deployment, and this work is the
first step in this direction. Clearly, it is still merely one data
point and much work remains to be done to fully explore and
exploit the potentials of Stateful-TCP, even beyond its
application to Cubic and BBR. Therefore, we are releasing the
full source codes of both S-BBRv1 and S-BBRv2 to facilitate
and encourage the research community as well as the industry
to experiment with them and possibly to deploy them in other
production Internet services to further investigate their
performance and to uncover any limitations that will lead to
even better designs.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for
their comments and suggestions in improving this work, and
Tencent for their generous support of this work by authorizing
their production servers for the experiments, and providing
access to the Bonree benchmarking platform. This work was
partially funded by CUHK Direct Grant for Research Project
No. 4055156.

Fig. 6. Comparison of average throughput for BBRv1 and S-BBRv1 in a
benchmarking platform. Each data point is an average of 2-hour samples.

TABLE VII. PERFORMANCE COMPARISON IN CDN PRODUCTION SERVERS.

A/B

Comparison

TCP

Variant

Mean

Throughput

Success

Rate

Low-speed

Ratio

#1 BBRv1 6.0 Mbps 98.9% 18.7%

S-BBRv1 7.6 Mbps 99.1% 12.1%
#2 Cubic 6.2 Mbps 98.4% 14.2%

S-BBRv1 8.4 Mbps 98.4% 9.8%

#3 S-Cubic 7.1 Mbps 98.8% 8.8%
S-BBRv1 8.7 Mbps 98.7% 9.3%

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Gupta and R. Jha, “A Survey of 5G Network: Architecture and
Emerging Technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.

[2] I. Rhee and L. Xu, “Cubic: A New TCP-Friendly High-Speed TCP
Variant,” ACM SIGOPS Operating System Review, New York, USA,
Jul.2008, pp. 64-74.

[3] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth Estimation for Enhanced Transport over
Wireless Links,” Proc. ACM Mobicom. Rome, Italy, July 2001.

[4] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for Transmission
over Wireless Access Networks,” IEEE J. Sel. Areas Commun, vol.
21(2), Feb. 2003, pp. 216–228.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, V. Jacobson, and S. Yeganeh,
“BBR: Congestion-Based Congestion Control,” Proc. ACM Queue, Sep.
2016.

[6] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-distance Networks,” Proc. IEEE INFOCOM, vol.4,
Hong Kong, 2004, pp.2514-2524.

[7] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” Proc.
SIGCOMM, New Delhi, India, Aug 2010, pp.63-74.

[8] K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks,”
Proc. NSDI, Lombard, IL, Apr. 2013, pp 459–471.

[9] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and M.
Schapira, “Vivace: Online-learning Congestion Control,” Proc NSDI.
Washington, USA, Apr 2018.

[10] Venkat Arun and Hari Balakrishnan, “Copa: Practical Delay-Based
Congestion Control for the Internet,” Proc. NSDI. Renton, WA, 2018.

[11] L.F. Guo and J.Y.B. Lee, “Stateful-TCP - A New Approach to
Accelerate TCP Slow-Start, ” to appear in IEEE Access.

[12] Neal Cardwell, Yuchung Cheng, “BBR Congestion Control Work at
Google - IETF 101 update,” IETF, Tech. Rep., 2019.

[13] Soheil Abbasloo, Y. Xu, and H. Jonathan Chao, “C2TCP: A Flexible
Cellular TCP to Meet Stringent Delay Requirements,” IEEE J. Sel.
Areas Commun, vol. 37(4):918–932, 2019.

[14] Shinik Park, Jinsung Lee, Junseon Kim, Jihoon Lee, Sangtae Ha, and
Kyunghan Lee, “ExLL: An Extremely Low-latency Congestion Control
for Mobile Cellular Networks,” Proceedings of ACM CoNEXT, 2018.

[15] F. Y. Yan, J. Ma, G. Hill, D. Raghavan, R. S. Wahby, P. Levis, and K.
Winstein, “Pantheon: the Training Ground for Internet Congestion
Control Research,” Proc NSDI. Boston, USA, Jul 2018.

[16] K. Winstein and H. Balakrishnan, “TCP Ex Machina: Computer-
generated Congestion Control,” Proc. SIGCOMM, HongKong, Aug
2013.

[17] S. Abbasloo, C.Y. Yen, H.J. Chao, “Classic Meets Modern: A Pragmatic
Learning-based Congestion Control for the Internet,” Proc. SIGCOMM,
Aug, 2020.

[18] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP – Design
Principles and Standards,” Proc. MMSys, NY, USA, 2011.

[19] A. Aloman, A. I. Ispas, P. Ciotirnae, R. Sanchez-Iborra and M. D. Cano,
“Performance Evaluation of Video Streaming Using MPEG DASH,
RTSP, and RTMP in Mobile Networks,” Proc IFIP (WMNC), Munich,
2015, pp. 144-151.

[20] I. Sandvine, “Global Internet Phenomena Report. 2016,” 2015.

[21] S. Hauger, M. Scharf, J. K¨ogel, and C. Suriyajan, “Quick-Start and
XCP on A Network Processor: Implementation Issues and Performance
Evaluation,” Proc. IEEE HPSR, Shanghai, China, May 2008, pp 703-
714.

[22] D. Liu, M. Allman, S. Jiny, and L. Wang, “Congestion Control without
A Startup Phase,” Proc. Int. Workshop PFLDnet, Feb. 2007, pp. 61–66.

[23] Qingxi Li, Mo Dong, and Brighten Godfrey, “Halfback: Running Short
Flows Quickly and Safely,” Proc. ACM CoNEXT, Germany. Dec 2015.

[24] X. Nie, Y. Zhao, G. Chen, K. Sui, Y. Chen, D. Pei, M. Zhang, and J.
Zhang, “TCP Wise: One Initial Congestion Window is not Enough,”
Proc. IPCCC, San Diego, USA, Dec 2017, pp. 1–8.

[25] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Proc. ACM Queue. 2011

[26] K. Liu and J.Y.B. Lee, “Mobile Accelerator: A New Approach to
Improve TCP Performance in Mobile Data Networks,” Proc. IWCMC,
Istanbul, Turkey, Jul. 2011, pp. 2174 - 2180.

[27] BBRv2 source code, [online]
https://github.com/google/bbr/blob/v2alpha/net/ipv4/tcp_bbr2.c

[28] Netem, [Online] https://github.com/akamai/cell-emulation-util

[29] K. Avrachenkov, “Differentiation between Short and Long TCP Flows:
Predictability of the Response Time,” Proc. INFOCOM, 2004.

[30] A. B. Downey, “Lognormal and Pareto Distributions in the Internet,”
Computer Communications. vol. 28(7), 2005, pp. 790–801

[31] Bonree. Accessed: Sep. 1, 2020. [Online]. Available:
https://www.bonree. Com

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore. Restrictions apply.

		2021-08-25T13:50:39-0400
	Preflight Ticket Signature

