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Abstract— With the progressive deployment of 5G networks 

around the world, mobile networks are entering a new era where 

bandwidth will be breaking through the Gbps barrier. In this 

work, we investigate the performance of current TCP designs in 

such high-bandwidth networks, demonstrating the potential 

bottleneck due to TCP’s Slow-Start mechanism which is an 

integral component in most TCP designs. For example, 

transferring a file of 1 MB size in a first-generation 5G network 

using Linux’s default TCP-Cubic and Google’s TCP-BBR 

resulted in average throughputs of 18.2 Mbps and 32.8 Mbps, 

respectively. Compared to the mean available bandwidth of 180 

Mbps, the gap is significant. To tackle this problem, we 

developed an enhanced Stateful-TCP technique to transform 

BBR into a new S-BBR to accelerate its startup performance to 

narrow the gap. Results from trace-driven emulated 5G network 

experiments show that S-BBR could improve BBR’s throughput 

performance by 50% to 100% while maintaining similar delay 

performance. This is further validated by an independent 

competitive benchmark using over 500 clients where S-BBR 

raised BBR’s throughput by 69%. S-BBR is sender-based and 

thus can be readily deployed in Internet servers without any 

requirements from the client side, it retains BBR’s desirable 

features and so offers a promising solution to enhance mobile 

applications’ performance in the emerging high-bandwidth 

mobile and wireless networks.  

Keywords—slow-start, stateful, BBR, BBRv2, mobile, Wi-Fi, 

networks. 

I. INTRODUCTION 

With the introduction of 5G mobile networks, mobile 
communications are poised to rival the performance of their 
wired counterparts. The first-generation 5G networks could 
offer bandwidths up to 1 Gbps under good network conditions. 
Even in normal environments, e.g., inside an office with a 
stationary 5G smartphone, the measured bandwidth can easily 
exceed 300 Mbps, with a mean bandwidth of 180 Mbps. 
Moreover, further advances in 5G will soon breakthrough the 
Gbps barrier, surpassing even many wired networks connected 
via GBE [1]. 

With the leaps in mobile network bandwidth, it is now up 
to the end-systems, i.e., servers and mobile devices, to exploit 

it to improve the performance of mobile applications and 
services. In this study, we focus on enhancing the Transmission 
Control Protocol (TCP) to realize the benefits from the vastly 
increased bandwidth in the emerging high-speed mobile 
networks. 

There have been continuous innovations in the design and 
optimization of TCP over the years due to its central 
importance to most Internet services and applications. With 
three decades’ of research, modern TCP designs are all very 
efficient, able to achieve very high bandwidth efficiency if the 
flow is sufficiently long [2-17]. However, this last condition is 
increasingly challenged by two factors. 

First, TCP’s flow size is primarily determined by the 
specific application utilizing it. For applications such as large 
software download/update or movie download, the large 
amount of data transferred will enable TCP to ramp up its 
throughput to take advantage of the bandwidth available. On 
the other hand, there are many other applications which 
transmit data in sporadic short bursts, e.g., images in social 
media. Moreover, even video streaming has evolved away 
from RTP/RTSP-based streaming [18] to DASH-based 
streaming [19] where a video is divided into small segments of 
data, each delivered in separate HTTP transactions. 

This latter evolution is significant as video now accounts 
for 73% of all Internet traffics and is projected to increase 
further in the future [20]. Consider a video encoded at a 
medium bitrate of 1 Mbps. If each video segment is 2 seconds 
then the mean segment size (i.e., flow size) will be 250 KB 
only. Previous work [21-24] have demonstrated that at these 
flow sizes, TCP will likely complete the data transfer before it 
can ramp up its transmission rate to fully utilize the bandwidth 
available. 

Second, the rapid increase in mobile network bandwidth 
further compounds the problem. While mobile network 
bandwidth has increased by one order of magnitude, e.g., from 
4G’s 100 Mbps to 5G’s 1 Gbps, the network propagation delay 
is only reduced slightly, e.g., from 30~50 ms in 4G to 10~20 
ms in 5G. The relevance of this is that TCP’s transmission rate 
ramp-up speed is inversely proportional to the path RTT as 

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

978-1-6654-1494-4/21/$31.00 ©2021 IEEE

20
21

 IE
EE

/A
C

M
 2

9t
h 

In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
Q

ua
lit

y 
of

 S
er

vi
ce

 (I
W

Q
O

S)
 | 

97
8-

1-
66

54
-1

49
4-

4/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IW

Q
O

S5
20

92
.2

02
1.

95
21

35
8

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore.  Restrictions apply. 



most TCPs’ congestion control algorithms are driven by 
acknowledgement (ACK) packets returned from the receiver. 
Thus, compared to the bandwidth increase in 5G networks, the 
network delay will present another hurdle to TCP’s ability to 
take full advantage of the abundant bandwidth available. 

We tackle this challenge in this work by applying the 
recently-introduced Stateful-TCP paradigm [11] to the TCP-
BBR developed by Google [5, 12]. Stateful-TCP aims at 
speeding-up TCP’s initial transmission rate by learning the 
network parameters such as path bandwidth and propagation 
delay from a previous flow to the same peer, and then apply it 
to configure the transmission rate in the new flow’s startup 
phase. It complements TCP’s congestion control and error 
control algorithms and thus could be applied to most existing 
TCP designs. It was first applied to Cubic in a recent work [11] 
which raised Cubic’s throughput performance by over 50% at 
flow size of 1 MB. 

This work focuses on BBR because it was designed to be 
more resilient to non-congestion losses than Cubic, and thus 
offers higher performance especially in mobile and wireless 
networks [5]. Moreover, excluding Cubic, BBR is among the 
more widely-deployed TCP designs in the Internet and is 
gaining popularity among many service providers. 

In the previous work [11], Stateful-TCP has been shown to 
work well in emulated networks, cloud VM environments, as 
well as a competitive benchmarking platform. However, actual 
performance results from deploying Stateful-TCP in 
production Internet services are not yet available. In this work, 
we collaborated with a tier-1 CDN service provider which 
offered us a rare opportunity to conduct comparative 
performance benchmarking in production servers hosting a 
very large scale real-world Internet service. This not only 
directly verifies the feasibility of Stateful-TCP, but also 
provides, for the first time, its actual performance gains 
achievable in real Internet services. 

Our experimental results obtained from trace-driven 
emulation of 5G network showed that Stateful-BBR (or S-BBR 
for short) could achieved substantially higher throughput than 
BBR, ranging from 50% to 100% depending on flow size and 
random loss rate. Moreover, in spite of the higher throughput, 
S-BBR exhibited packet queuing delays comparable to the 
original BBR. A further validation experiment conducted by an 
independent benchmarking company using over 500 clients 
also produced similar throughput performance gains (69%) in 
wired and Wi-Fi networks. Last but not least, we were able to 
deploy Stateful-BBR in Tencent’s production servers and the 
initial results suggested that S-BBR could offer substantially 
higher throughput performance (+27%) as well as reduced low-
throughput cases (-6.6%) compared to BBR.  

The rest of the paper is organized as follows: Section II 
reviews some previous related works; Section III presents 
experimental results to validate Stateful-TCP’s assumptions in 
production Internet servers; Section IV presents the design and 
implementation of Stateful-BBR; Section V evaluates and 
compares S-BBR to current TCP designs; Section VI 
summarizes the paper and outlines some future work. 

II. PREVIOUS RELATED WROK 

Three decades of research in TCP has produced many 
novel designs. An exhaustive review of them is beyond the 
scope of this paper. Below we first briefly review some of the 
more well-known designs and then review the related works on 
accelerating TCP’s initial transmission rate. 

Although no official statistics are available, the most 
widely-deployed TCP design is very likely to be TCP-Cubic [2] 
as it is the default TCP in both Linux and Microsoft Windows. 
Cubic, and its ancestor BIC [6], were designed to perform well 
in large-BDP networks. However, its congestion control 
algorithm is relatively sensitive to random packet losses. This 
motivates research in loss-resilient TCPs. Notable examples 
include Westwood [3], Veno [4], Vivace [9], Sprout [8], and 
BBRv1/v2 [5,12], of which Google’s BBR has gained 
considerable deployment in and out of Google’s services. 

Another class of TCP designs were aimed at achieving low 
packet latency which is critical to many delay-sensitive 
applications. Notable examples include C2TCP [13], Copa [10] 
and ExLL [14]. More recently, researchers have also begun to 
explore the use of machine generated and machine learning 
approaches to the design of TCP, e.g., Taova [16], Indigo [15], 
and Orca [17]. 

Most previous works focused on TCP’s long-term 
performance (i.e., tens of seconds). While that is an important 
performance goal, TCP’s short-flow performance is also 
significant in practice as many Internet applications transfer 
data in sporadic short bursts. To this end, TCP’s short-flow 
performance is primarily constrained by its Slow-Start phase 
which always begins with a conservative transmission rate and 
then ramps it up exponentially until it exits the Slow-Start 
phase. To mitigate the Slow-Start bottleneck, researchers have 
proposed novel ways to set the initial congestion window 
(CWnd) size or sending rate, e.g., based on explicit feedback 
from routers [21], based on receiver’s advertised window 
(AWnd) size [22, 23], or using learning-based approach [24]. 

In a closely-related work, Guo and Lee [11] developed a 
Stateful-TCP paradigm to accelerate TCP’s Slow-Start using 
network parameters obtained from the previous flow to the 
same peer. They applied it to Cubic to form S-Cubic where the 
initial CWnd is set according to the path bandwidth-delay-
product (BDP) estimated in the previous flow, and apply 
pacing in the first RTT to smooth out the initial transmission. 
S-Cubic was shown to achieve substantial performance gain 
over Cubic and in one of the experiments it even outperformed 
BBRv1. This motivates us to investigate the application of 
Stateful-TCP to BBR which potentially could push the 
performance boundary even further. 

III. AN EXPERIMENTAL VALIDATION OF STATEFUL-TCP 

Taking advantage of our access to the tier-1 CDN service 
provider’s production servers, we first conduct a set of 
experiments to validate the assumptions behind Stateful-TCP 
in the context of a real Internet service. The service itself is an 
app store for downloading and updating mobile apps all over 
the world. 
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We modified the TCP implementation in the chosen servers 
to log various statistics of all TCP flows served. The logging 
module has been carefully designed and tuned to minimize 
impact to the server’s performance. In the following, we 
analyze the collected TCP statistics to validate two key 
assumptions behind Stateful-TCP. 

A. Stateful-TCP Hit Rate 

Stateful-TCP is designed to make use of flow information 
obtained from a previous flow to the same peer to configure the 
initial transmission rate of the new flow. Therefore, it could 
offer performance gains only if the same client connects to the 
server multiple times. Intuitively, most Internet applications are 
likely to initiate multiple TCP connections to the server in a 
single session, there is no quantitative data on the exact extent 
of it. Moreover, CDN service providers often employ server 
load balancer to distribute the incoming requests to the server 
farm so subsequent requests from the same client may not 
necessarily be diverted to the same server, thus reducing the 
opportunity for Stateful-TCP to activate. 

We set out to investigate this question by logging the client 
IP addresses in a production server. The first time a client IP 
connects to the server it will log its IP address in a hash table 
and count the connection as a miss. If the same client IP 
initiates additional TCP connections afterwards then those 
connections will be counted as a hit, representing the case 
where Stateful-TCP can take effect. We ran the experiment 
continuously for one week with a server table size of 64M 
entries. 

Fig. 1 plots the accumulated number of TCP connections 
and the Stateful-TCP hit rate over time. There are two notable 
observations. First, the hit rate grew with time as one would 
expect, reaching 90% in one week’s time. This implies that 
repeated connections to even a single server is significant. 
Second, the server’s Stateful-TCP hit rate increased sharply in 
the first 122 minutes, reaching a level of 65%. This suggests 
that the ramp-up period for Stateful-TCP to take effect is 
reasonably short and thus could begin offering performance 
gains soon after a server is started. This is also consistent with 
the intuition that many Internet applications inherently generate 
multiple TCP connections in an application session so that it 
does not take long for repeated connections to the same client 
IP to appear. 

It is also worth noting that the production service under 
study is a mobile app store. Intuitively, an app store session is 
typically one-off rather than multiple app downloads. 
Therefore, we expect other services such as web, video 
streaming, etc., will exhibit even more rapid ramp-up of the 
Stateful-TCP hit rate. 

B. Path BDP 

Once activated, Stateful-TCP makes use of information 
obtained from the previous flow, e.g., throughput, minimum 
RTT, and BDP in S-Cubic [11], to bypass TCP Slow-Start to 
accelerate the initial transmission rate. A key assumption here 
is that TCP’s Slow-Start is the bottleneck during TCP’s startup 
phase. While this is widely-recognized and can easily be 

demonstrated in network testbeds, there is little quantitative 
evidence in the literature on its extent in real Internet services. 

To fill the gap, we conducted experiments in 10 production 
app-store servers over a period of one week to measure and log 
each TCP flow’s BDP. BDP is estimated from the product of 
minimal RTT measured in a TCP flow and the TCP flow’s 
mean throughput. In particular, if the BDP is equal to or 
smaller than the initial CWnd (i.e., default of 10 MSS in 
Linux), then Slow-Start will not be a bottleneck. In contrast, 
the larger the difference between BDP and initial CWnd, the 
more performance gain will be attainable by Stateful-TCP. 

 Fig. 2 plots the cumulative distribution function (CDF) for 
the BDP of all TCP flows recorded. It is evident that a 
significant proportion of flows, i.e., 80.4%, have estimated 
BDP exceeding 10 MSS. Note that some of the flows were 
very short (e.g., less than 100 KB) and thus would 
underestimate the BDP (again due to Slow-Start). If we 
exclude flows shorter than 100 KB then the proportion of flows 
with BDP larger than 10 MSS increased further to 89.5%. Thus 
even if one increases the initial CWnd to a larger value such as 
50 MSS, the proportion at ~40% (≥100 KB) or ~60% (≥1 MB) 
is still significant. This confirmed that TCP’s Slow-Start is 
indeed a significant bottleneck in practice. 

IV. STATEFUL-BBR 

In this section we first briefly revisit the design of BBRv1 
and BBRv2, and then presents the design and implementation 
of S-BBR. 

A. Recap of BBR 

BBR has attracted much attentions since its introduction by 
Google in 2016 [5] (now known as the BBRv1). It has since 

  
Fig. 1. One-week connection statistics from a production server. 

 

 

Fig. 2. Distribution of BDP from production servers. 
 

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 23,2021 at 06:28:57 UTC from IEEE Xplore.  Restrictions apply. 



been deployed in some of Google’s services. With the 
availability of its Linux implementation, it has also been 
increasingly deployed by others as well. 

BBRv1 differs from Cubic in that it is no longer pure 
credit-based, i.e., transmissions driven by ACK arrivals and 
CWnd availabilities. Instead, BBRv1 employs pacing 
throughout to maintain a transmission rate commensurate with 
the estimated path bandwidth. BBRv1 still maintains CWnd to 
control the packets inflight so as to reduce the bufferbloat issue 
that can occur in Cubic [25]. More importantly, unlike Cubic 
which cuts the CWnd by 30% upon a loss event [2], BBRv1 
does not do so and rely on its bandwidth estimator to regulate 
its transmission rate. This is also one of the reasons why 
BBRv1 is more resilient to packet losses and outperforms 
Cubic in lossy networks. 

Google released the version 2 of BBR (BBRv2 for short) in 
2019 [12]. BBRv2 was designed to address some potential 
issues observed in the deployment of BBRv1. Specifically, 
BBRv1 probes for more bandwidth by raising its transmission 
rate momentarily by 25% every 8 RTTs. This could cause 
more packet losses in shallow buffer networks [12] and will 
become more severe when multiple BBRv1 flows compete at 
the same bottleneck. 

BBRv2 mitigated the problem through three means: (i) it 
will reduce the transmission rate upon packet loss / ECN 
(instead of not reacting to them as in BBRv1); (ii) it probes 
bandwidth more slowly once the packets inflight has reached 
the estimated BDP; and (iii) it reduces the maximum CWnd 
from BBRv1’s 2 BDP to 1.25 BDP. 

In addition, BBRv2 also fine-tuned the probing mechanism 
for minimum RTT by adjusting the cut in inflight packets from 
4 (as in BBRv1) to half. This allows more packets to fill the 
pipe to achieve better bandwidth utilization, especially in 
networks with varying bandwidth, i.e., mobile and wireless 
networks. 

Table I summarizes the key differences between Cubic, 
BBRv1, and BBRv2. Interested readers are referred to 
literature [2, 5, 12] for more details. 

B. Application of Stateful-TCP 

The key idea behind Stateful-TCP is that most Internet 
applications generates many TCP flows in an application 
session. For example, in short-video services such as TikTok, 
Likee, Kuaishou, etc., which have seen explosive growth in the 
past few years. Users of these short-video services often watch 

many videos in succession. Therefore, the network condition 
experienced by the TCP flows will likely to be highly 
correlated. Stateful-TCP exploits this by using network 
information obtained in a previous flow to configure the initial 
configuration of the subsequent flow so that the latter does not 
need to begin its transmission rate conservatively as is 
currently implemented by Slow-Start. 

To apply Stateful-TCP to BBR – S-BBR, we need to 
address three questions: (i) what network information, i.e., 
stateful metrics, to carry over and how to obtain them; (ii) how 
to configure the startup phase of a new flow; and (iii) how to 
transit from the startup phase to the normal congestion control 
phase. We present one design in the following as the starting 
point for exploration. We emphasize that it is only an initial 
design and there are other possible designs and many open 
problems remain which warrant further investigations. 

On stateful metrics, there are three network parameters 
central to the operation of BBR (henceforth we will use BBR 
to include both BBRv1 and BBRv2), namely estimated path 
bandwidth, minimum RTT, and estimated path BDP. They are 
not independent so one only needs to know any two to 
calculate the remaining one. We chose the first two, i.e., 
estimated path bandwidth and minimum RTT, as the metrics in 
Stateful-TCP as these two are already estimated by BBR as 
part of its normal operation. Therefore, by piggyback on them, 
no additional processing overhead will be incurred. 

One potential issue we found is that BBR’s bandwidth 
estimator works by measuring the amount of data 
acknowledged by ACKs over around one RTT. For long flows 
this work well as the pipe is filled with inflight packets during 
the measurement interval. It may result in underestimation, 
however, if the flow size is smaller than the path BDP1. As an 
illustration, in a 5G network with 1 Gbps bandwidth and 20 ms 
round-trip propagation delay, the BDP will be 2.5 MB. Thus, if 
the flow size is smaller than that then the flow will complete 
within one RTT which could lead to underestimation of the 
path bandwidth.  

This is undesirable as an application session could be 
interleaved by long (e.g., images) and short (e.g., texts) flows. 
Consequently, bandwidth underestimation in the short flows 
will degrade the performance of subsequent flows (c.f.  Fig.2). 
Therefore, we introduce a new constraint to discard the stateful 
metrics if the flow size is smaller than the cached BDP. 
Otherwise the stateful metrics {path bandwidth, minimum RTT} 
will be cached in a table hashed by the peer’s IP address. 

In the startup phase of the new flow (i.e., after three-way 
handshake), S-BBR will first check if cached stateful metrics 
for the peer IP is available, and if so, will use it to directly 
configure the startup phase, bypassing Slow-Start altogether. 
Otherwise, S-BBR will revert back to BBR with normal Slow-
Start where it begins with an initial CWnd size of 10.  

 
1 In BBR the bandwidth (called deliveryRate) is estimated from the 

amount of packets delivered since the ACKed packet was sent 

divided by the time elapsed since the last ACK was received when the 

ACKed packet was sent. The latter is equal to or longer than one RTT. 

TABLE I. COMPARISION OF CUBIC, BBRV1, AND BBRV2.  

 Cubic BBRv1 BBRv2 

Congestion signal Pkt losses N/A Pkt losses / ECN 

Bandwidth 

probing 
Cubic curve +25% burst  

every 8 RTTs 

inflight_probe grows 

exponentially per 

round 

Inflight packets 

cap  
None 2 BDPs 1.25 BDPs 

Min RTT Probing None Cut packets 

inflight to 4 pkts 

Cut packets inflight 

by half 
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By contrast, with cached stateful metrics, S-BBR will 
override Slow-Start by setting the pacing rate to the cached 
path bandwidth and the initial CWnd to path BDP which is 
computed from the product of cached path bandwidth and 
cached minimum RTT from the previous flow. This enables S-
BBR to transmit at a data rate matching the previously-
estimated path bandwidth right from the beginning, thereby 
improving its throughput especially for short flows. Note that 
in S-BBR, the AWnd is suppressed unless it is zero [26]. In 
other words, the maximum inflight packets allowed is 
determined solely by CWnd (instead of min{CWnd, AWnd}). 
This prevents the receiver’s initial AWnd, which like CWnd is 
typically small, from restricting the sender to send a full BDP’s 
worth of packets to fully utilize the bandwidth available.  

The startup phase completes once the first ACK is received 
and S-BBR will pass the control back to BBR’s congestion 
control algorithm for the rest of the flow. Upon flow 
termination, the latest bandwidth and minimum RTT estimates 
are then stored into the stateful table entry for the peer. 

C. Linux Implementation 

Implementations for BBR have evolved over the years. To 
support our experiment platforms we implemented three S-
BBR versions: (i) S-BBRv1 based on Linux kernel 5.4 – this 
represents the more recent Linux kernel version and is used for 
trace-driven emulated experiments in Section V-A; (ii) S-
BBRv1 based on an earlier kernel version 4.14 – this is the 
kernel version required by the competitive benchmarking 
platform used in Section V-B; and (iii) S-BBRv2 based on the 
BBRv2 Alpha codebase [27] for Linux kernel version 5.4. Just 
like BBR, S-BBR is entirely sender-based so no modification 
to the receiver TCP is required. Moreover, the Stateful-TCP 
logics can be implemented entirely within TCP’s pluggable 
congestion module so that no further kernel modification is 
needed. The source codes of the S-BBR implementations are 
available at github2. 

To enable the stateful startup phase, S-BBR must maintain 
an internal table to cache the stateful metrics for completed 
flows to be looked up later by subsequent flows. The 
congestion control module implements this by allocating a 
fixed-size table at module registration time for use throughout 
the runtime of the module. The table will be deallocated during 
module deregistration, e.g., switching to a different TCP 
congestion control module, and so cached stateful metrics are 
not persistent in that regard. A further optimization would be to 
store the table to persistent storage upon module deregistration 

 
2 Implementations of S-BBRv1 and S-BBRv2 are available at 

https://github.com/mclab-cuhk/Stateful-BBR 

for use the next time the module is started (e.g., after server 
reboot). 

A key component of S-BBR is its stateful metrics table. To 
reduce runtime overhead, the current implementation adopts a 
simple hashing function to map the peer’s IP address to a hash 
table entry. Collision detection is supported by storing the 
peer’s IP address alongside the stateful metrics. In addition to 
IPv4, the S-BBR module also supports IPv6 but only the lower 
64 bits of the address is used for hashing and storage to reduce 
memory consumption. 

Altogether, each table entry consumes 16 bytes of memory 
which is relatively modest. Larger table is desirable as collision 
rate will decrease, enabling more effective activation of S-BBR. 
The exact table size needed is likely to dependent on many 
factors such as the client population’s geographical as well as 
topological distribution, the types of applications/services 
provisioned at the server, and the rules adopted in the server 
farm’s load-balancer. This is an open problem that warrants 
further investigation. 

V. PERFORMANCE EVALUATION 

In this section, we take a first look at the performance of S-
BBR and compare it to BBR as well as other TCP designs. In 
particular, we focus on S-BBR’s performance in mobile and 
wireless networks. Three experimental platforms were 
employed in this study. The first one employed network 
emulator, either netem [28] or a modified version of 
dummynet 3 , using bandwidth trace data captured from 
production mobile networks to recreate their bandwidth 
variations in the topology depicted in Fig. 3.  

The second one is a commercial competitive benchmarking 
platform. This platform is mainly used by content and service 
providers to conduct independent competitive testing to inform 
their selection of CDN, data center, and network providers. 
The main advantages of this platform is their scale (500+ 
clients), scope (covering 9 provinces through the top three 
ISPs), and its design to capture realistic performance as 
experienced by end-users. 

The third and the most important platform is the production 
app-store servers of our tier-1 CDN service provider. We 
present and discuss their performance results in the following 
sections. 

A. Emulated Mobile Network Experiments 

In the first set of experiments, we employed bandwidth 
trace data captured from a production 5G network using a 
stationary 5G-smartphone as the receiver. The server is located 
in a data center. The bandwidth capture was done by flooding 
the 5G link with UDP datagrams sent from the server to the 
smartphone. The network trace is then captured using a custom 
software running in the smartphone which were later processed 
into a format for use in the network emulators. 

The network emulator emulates the 5G link by recreating 
the bandwidth variations from the trace data. The emulated 

 
3 The modified dummynet is available at https://github.com/mclab-

cuhk/netmap-ipfw 

 
Fig. 3. The topology used in emulated mobile network experiments. 
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link’s propagation delay is set to 20 ms with a link buffer size 
of 10 MB in accordance with our measurement of the actual 
5G network. Two random packet loss settings, 0.1% and 1% 
corresponding to low and high loss scenarios, were tested. To 
offer a broader perspective on the performance of S-BBR, we 
included six other recent TCP designs in the experiment. This 
includes Indigo [15], Orca [17], Taova [16], Vivace [9], Cubic 
[2], as well as S-Cubic [11] – the stateful version of Cubic. 

 In the experiments, TCP flows were generated with flow 
size drawn from the Pareto distribution (with α = 2.5) which 
exhibits long-tail characteristics resembling Internet flows-size 
distribution [29-30]. Four distributions with mean flow sizes of 
64 KB, 128 KB, 512 KB, and 1024 KB, were tested, each 
comprising 1,000 flows. 

We first evaluate the TCPs’ overall performance in Fig. 4 
which plots the CDF of the average throughput achieved by 
individual flows from all four flow-size distributions (i.e., 
4,000 flows per TCP). Throughput is calculated from the 

amount of data transferred divided by the duration of the flow, 
including connection-setup time. 

We note that the curves for BBRv1 and BBRv2 almost 
overlap completely, suggesting that both achieved similar 
performance in this experiment. Their stateful counterparts, 
namely S-BBRv1 and S-BBRv2, achieved noticeably higher 
throughput in both random loss settings. Compared to S-Cubic 
which also adopts Stateful-TCP, S-BBR generally achieved 
higher throughput performance, more so in the 1% loss setting. 
This is due to Cubic’s congestion control algorithm’s 
sensitivity to random packet losses [5]. The other TCP designs 
are generally less sensitive to random packet losses as many of 
them have taken random packet loss into consideration in their 
design. Overall, S-BBR achieved the best throughput 
performance in this experiment. 

We further analyze the TCPs’ throughput performance in 
Table II and III by separating the results according to the four 
flow size distributions. Here, we can clearly see the impact of 
flow size on the achievable throughput where most TCPs 

 
Fig. 4(a). Distribution of per-flow mean throughput in an emulated 5G 

network with 0.1% random packet loss. 

 
TABLE II.  THROUGHPUT (IN MBPS) COMPARISON IN AN EMULATED 5G 

NETWORK WITH 0.1% RANDOM PACKET LOSS.  

 Mean Flow Size 

TCP 64 KB 128 KB 512 KB 1024 KB 

BBRv1 4.5 7.5 20.5 32.8 

BBRv2 4.4 7.2 19.7 31.7 

S-BBRv1 9.0 15.3 39.7 59.3 
S-BBRv2 8.9 15.1 39.9 59.8 

Cubic 4.5 7.0 14.3 18.2 

S-Cubic 7.8 13.0 32.8 48.8 
Indigo 3.5 5.5 14.3 22.3 

Orca 4.3 6.9 15.8 20.8 

Taova 6.6 11.8 31.8 46.9 
Vivace 2.9 3.9 8.3 13.3 

 
TABLE III. THROUGHPUT (IN MBPS) COMPARISON IN AN EMULATED 5G 

NETWORK WITH 1% RANDOM PACKET LOSS.  

 Mean Flow Size 

TCP 64 KB 128 KB 512 KB 1024 KB 

BBRv1 4.5 7.2 18.9 30.1 

BBRv2 4.4 7.1 19.1 30.6 

S-BBRv1 8.1 13.7 35.3 52.9 
S-BBRv2 7.9 13.4 34.8 52.0 

Cubic 4.1 6.1 10.3 11.3 
S-Cubic 5.5 9.0 22.3 30.6 

Indigo 3.5 5.5 14.3 22.3 

Orca 3.5 5.5 11.5 14.3 
Taova 6.4 11.3 28.9 41.0 

Vivace 2.8 3.8 8.2 13.0 

 

 
Fig. 4(b). Distribution of per-flow mean throughput in an emulated 5G 

network with 1% random packet loss. 
 

TABLE IV. QUEUING DELAY (IN MS) COMPARISON IN AN EMULATED 5G 

NETWORK WITH 0.1% RANDOM PACKET LOSS.  

 Mean Flow Size 

TCP 64 KB 128 KB 512 KB 1024 KB 

BBRv1 1 1 6 10 

BBRv2 1 2 8 13 
S-BBRv1 1 1 5 10 

S-BBRv2 1 2 7 13 

Cubic 1 1 1 1 
S-Cubic 1 1 1 1 

Indigo 1 1 1 1 

Orca 1 1 1 1 
Taova 1 1 1 1 

Vivace 1 1 1 1 

 
TABLE V. QUEUING DELAY (IN MS) COMPARISON IN AN EMULATED 5G 

NETWORK WITH 1% RANDOM PACKET LOSS.  

TCP Mean Flow Size 

 64 KB 128 KB 512 KB 1024 KB 

BBRv1 1 1 5 9 

BBRv2 1 2 5 8 
S-BBRv1 1 1 5 8 

S-BBRv2 1 1 4 7 

Cubic 0 0 0 0 
S-Cubic 1 1 0 0 

Indigo 1 1 1 1 

Orca 1 1 1 1 
Taova 1 1 1 1 

Vivace 0 0 1 1 
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needed flow size of at least 512 KB to reach mean throughputs 
over 10 Mbps. Note that the average bandwidth of the 5G trace 
data used is ~180Mbps so the gap is substantial. Part of the 
reason is due to TCP’s connection setup time which is 
unavoidable and becomes more significant at smaller flow 
sizes. The rest of the gap is due to TCP’s ramp-up time as 
discussed earlier. Among the non-stateful TCP designs, Taova 
achieved considerably higher throughput at the two lower flow 
size distributions. This is because Taova does not adopt TCP 
Slow-Start and hence its initial transmission rate is not 
constrained by it.  

Overall, S-BBR achieved substantially higher mean 
throughput than the other TCPs, especially at the smaller flow 
sizes. For example, at the mean flow size of 128 KB, S-BBRv2 
achieved 110% higher throughput than BBRv2 in the 0.1% loss 
setting. Even at 1 MB mean flow size, S-BBRv2 still achieved 
89% higher throughput than BBRv2, and 23% higher than the 
second best TCP, i.e., S-Cubic. The performance gap widens 
further in the 1% loss setting as S-Cubic’s performance is 
degraded by its sensitivity to random packet losses. In the 1 
MB mean flow size case, S-BBRv2 achieved 70% higher 
throughput than BBRv2 and 27% higher throughput than the 
second best TCP, i.e., Taova. 

Next, we investigate their delay performance. We recorded 
the packet queueing delay at the network emulator and 
summarized the mean packet queueing delay in Table IV and 
V for the two loss settings. We observe that BBR and S-BBR 
exhibited longer queueing delay than other TCPs, especially 
for the longer flow sizes. This is a result of their higher 
throughput and their bandwidth probing mechanisms. 
Remarkably, compared to BBR, S-BBR’s higher throughput 
did not incur higher queueing delay. This is because the 
stateful startup phase allows a substantial portion of the flow to 
be transmitted at a rate close to the path bandwidth, thereby 
reducing exposure to subsequent periodic bandwidth probing 
which could cause packet queueing. 

The results thus far focused on 5G network. In the second 
set of experiments, we expanded the network emulation to 
cover 4G and 3G networks. In addition to trace data collected 
by the authors, additional dataset from Orca [17] were included 
as it contains trace data collected from home and subways, two 
scenarios that were not covered in our trace data. Table VI 
summarizes properties of the five trace datasets used in the 
experiments. 

In this second set of experiments, we focus on the 
performance gains of S-BBR compared to BBR over different 
types of mobile networks ranging from 3G to 5G. To ease 
comparison, we employ the metric throughput gain – defined 
as the throughput gained by S-BBR compared to BBR under 
the same network condition, in the following comparisons. 

Fig. 5(a) and 5(b) plot the throughput gained by S-BBRv1 
and S-BBRv2, respectively, over the five mobile network 
traces with two random packet loss settings. Compared to the 
5G network case, their throughput gains are lower in 4G 
networks as their mean BDP sizes are far smaller than 5G (c.f. 
Table VI). Comparing the three 4G network traces, we can 
observe that the gains are largely in line with the trace’s mean 
BDP size although the correlation is weakened in the 1% loss 
setting. Finally, the gains under the 3G trace is lowest as one 
would expect from its much smaller BDP. This result strongly 
suggests that the performance gains are likely to increase in 
future networks where bandwidth is only going to go up. 

B. Independent Benchmarking 

In this section, we report experimental results obtained 
from Bonree [31], a benchmarking platform specializes in 
competitive performance benchmarking of networks and 
services. The benchmarking setup comprises over 500 client 
hosts distributed across nine provinces in China. Unlike the 
previous experiments, these clients are connected via either 
wired or Wi-Fi networks, thereby offering an additional 
perspective to evaluate S-BBR’s performance.  

One limitation is that BBRv2 is not part of the Linux kernel 
supported by the platform and it does not allow kernel 
recompilation (which BBRv2 requires) due to security 
restriction so the benchmarking experiment is limited to 
BBRv1 only. The experiment lasted for 24 hours, with BBRv1 
and S-BBRv1 tested in a round-robin manner to download a 
file of 1 MB size. In total around 2,000 downloads were 

TABLE VI. MOBILE TRACE DATASET CHARACTERISTICS.  

Mobile 

Networks 

Mean 

Bandwidth 

 

RTT 

Mean 

BDP 

Link Buffer 

Size 

Data 

Source 

3G (office) ~5 Mbps 50 ms ~21 MSS’s 1280 KB Own 

4G (office) ~20 Mbps 50 ms ~84 MSS’s 5 MB Own 
4G (home) ~16 Mbps 50 ms ~67 MSS’s 5 MB [17] 

4G (subway) ~11 Mbps 50 ms ~46 MSS’s 5 MB [17] 

5G (office) ~180 Mbps 20 ms ~300 MSS’s 10 MB Own 

 

 
(a) S-BBRv1 over BBRv1 

 
 (b) S-BBRv2 over BBRv2 

Fig. 5. Throughput gains of  S-BBRv1 over BBRv1 and S-BBRv2 over 

BBRv2 in six mobile networks.  
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completed for each TCP, with a success rate of 99.9% in both 
cases. 

Fig. 6 compares the 2-hr mean throughput achieved by 
BBRv1 and S-BBRv1. As expected, S-BBRv1 achieved higher 
throughput in all 12 timeslots, with an overall throughput gain 
of 69%. Among the ~2,000 downloads, S-BBRv1 has more 
high throughput (≥100 Mbps) cases than BBR (4.4% vs. 2.5%) 
as well as fewer low throughput (≤10 Mbps) cases (5.3% vs. 
16.3%). Compared to the mobile network experiments in the 
previous section, the throughput gains here are even higher 
even though the throughputs are lower than the 5G network 
trace. It is not apparent what the reason is as the competitive 
benchmarking platform is not open to users so the exact 
network conditions are not known. Nonetheless, the results 
show that S-BBR’s performance gains do carry over to wired 
and Wi-Fi networks 

C. Production App-Store Servers 

In this section, we report experimental results obtained 
from production app-store servers of a tier-1 CDN service 
provider. As this is a production Internet service it is not 
possible to conduct controlled experiment. Instead, we selected 
two production servers with the same hardware and OS kernel 
version, located inside the same data center to minimize 
differences due to server hardware/OS and server-side network 
connectivity.  

In our experiment, one of the two servers ran S-BBR while 
the other server ran the comparing algorithms, i.e., BBRv1, 
Cubic and S-Cubic. We were not able to test S-BBRv2/BBRv2 
because the production servers’ Linux kernel does not yet 
support BBRv2. Nevertheless, based on the results from the 
previous sections, we expect their performances to be similar. 
In each A/B comparison, we started both servers at the same 
time and ran each comparison for two days, recording the 

throughput of all mobile app downloads. Each experiment 
generated around one million download records. 

We summarize in Table VII three of the most critical 
performance metrics in the CDN industry, namely mean 
throughput, low-speed ratio (<1 Mbps), and success rate. In the 
first comparison, the overall mean throughput of S-BBRv1 and 
BBRv1 were 7.6 Mbps and 6.0 Mbps respectively, 
representing a 27% gain in throughput by S-BBRv1. This is a 
significant performance gain as it reduces the app download 
time, thereby improving the user experience. In addition to 
overall mean throughput, Stateful-TCP could also reduce the 
likelihood of poor connections, S-BBRv1 cuts down the low-
speed ratio by 6.6%, compared to BBRv1. While in the second 
comparison, S-BBRv1’s mean throughput gain of 35% over 
Cubic is even higher. We conjecture that this is due to Cubic’s 
more sensitive performance in lossy networks (e.g., 4G and 
Wi-Fi).  

Next, we compare S-BBRv1 against the Stateful-TCP 
version of Cubic, i.e., S-Cubic proposed by Guo and Lee [11]. 
At 8.7 Mbps versus S-Cubic’s 7.1 Mbps overall mean 
throughput, S-BBRv1 achieved 23% higher throughput 
performance than S-Cubic, therefore offering an attractive 
option for improving today’s production Internet services.  

Last but not least, we also want to verify if Stateful-TCP 
exhibits any compatibility issue with mobile client’s TCP stack 
in a production Internet service. As summarized in Table VII, 
all three TCP designs share a similar download success rate of 
~99%, demonstrating that S-BBRv1 has the same compatibility 
performance as the unmodified TCP in the Linux kernel. 

VI. SUMMARY AND FUTURE WORK 

Through experiments in both emulated and production 
environments, this work demonstrated the feasibility and 
performance gains achievable by applying Stateful-TCP to 
BBR. This is an important milestone as the ultimate test of any 
new TCP design is in actual deployment, and this work is the 
first step in this direction. Clearly, it is still merely one data 
point and much work remains to be done to fully explore and 
exploit the potentials of Stateful-TCP, even beyond its 
application to Cubic and BBR. Therefore, we are releasing the 
full source codes of both S-BBRv1 and S-BBRv2 to facilitate 
and encourage the research community as well as the industry 
to experiment with them and possibly to deploy them in other 
production Internet services to further investigate their 
performance and to uncover any limitations that will lead to 
even better designs. 
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Fig. 6. Comparison of average throughput for BBRv1 and S-BBRv1 in a 
benchmarking platform. Each data point is an average of 2-hour samples. 

 
TABLE VII. PERFORMANCE COMPARISON IN CDN PRODUCTION SERVERS.  

A/B 

Comparison 

TCP 

Variant 

Mean 

Throughput 

Success  

Rate 

Low-speed 

Ratio 

#1 BBRv1 6.0 Mbps 98.9% 18.7% 

S-BBRv1 7.6 Mbps 99.1% 12.1% 
#2 Cubic 6.2 Mbps 98.4% 14.2% 

S-BBRv1 8.4 Mbps 98.4% 9.8% 

#3 S-Cubic 7.1 Mbps 98.8% 8.8% 
S-BBRv1 8.7 Mbps 98.7% 9.3% 
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