
Intra-host Rate Control with Centralized Approach
1Zhuang Wang, 1Ke Liu, 1Yifan Shen, 2Jack Y. B. Lee, 1Mingyu Chen, 1Lixin Zhang

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2Department of Information Engineering, The Chinese University of Hong Kong

{wangzhuang, liuke, shenyifan, cmy, zhanglixin}@ict.ac.cn
yblee@ie.cuhk.edu.hk

Abstract— Today’s datacenter is shared among various
applications with different QoS requirements, which poses a
great challenge to deliver low delay transport with high
throughput. Most of works address this challenge by reducing
the in-network delay, but assumes a negligible local delay.
However, we show that this assumption does not hold for a
multi-tenant datacenter that a physical machine is shared by
multiple tenants with virtual machines running different
applications. As measured, we found that VMs in a PM
competing for bandwidth resources introduce delays as high as
13 ms, resulted from the packet queueing at QDisc layer of that
PM, because current VMs’ rate control still operates in a
distributed manner without exploiting knowledge of the QoS
requirements of applications running in VMs. This work
addresses this problem by proposing a centralized rate
adaptation (CERA) that operates in the host PM, dynamically
schedules the flows from all VMs in a centralized manner. We
implemented a CERA prototype and evaluated CERA through
testbed experiments. Our results show that CERA reduces the
local delay significantly thus reduces the average request
latency of delay sensitive applications, e.g., memcached, by a
factor of 6.3, without sacrificing the throughput performance
of throughput intensive applications, e.g., iperf.

I. INTRODUCTION

Datacenters are shared by various applications with
diverse Quality-of-Service (QoS) requirements: delay
sensitive applications, e.g., memcached [1], require low
delay to minimize their flow completion time (FCT);
throughput intensive applications, e.g., data-parallel
computation like MapReduce [2], require high throughput
for large flows; and others require both high throughput and
low delay, e.g., online data-intensive applications [10]. This
dynamic environment in datacenter poses a great challenge
to deliver low delay transport with high throughput.

Some existing approaches [3-5] address this challenge by
reducing the in-network queueing length, while assuming
negligible local delay at the edge, i.e., physical machines
(PM). However, this assumption is not true for multi-tenant
datacenter that every PM sets up a virtual network attached
by multiple Virtual Machines (VM). Those VMs could run
multiple applications thus could deliver over thousands of
flows with diverse QoS requirements, which could result in a
large backlog at the host PM thus increase the end-to-end
delay. To address this problem one intuitive idea is to apply
the methods proposed to reduce the in-network delay to
reduce the local delay. We employed some conventional
approaches including DCTCP [4], CoDel [6] and Multiple
Level Feedback Queue (MLFQ) in a PM and evaluated them

with testbed experiments. We showed that, compared to the
vanilla PM, they could reduce the local queueing delay by at
most a factor of 4.2 when the number of flows in a VM is
small, i.e., 32, but also result in a local queueing delay of at
least 4 ms when the number of flows is over 50. We point
out, the previous approaches are operated in a distributed
manner which controls the transmission rate on a per-flow
basis without exploiting the knowledge of the other flows
from all VMs sharing the same PM, e.g., flows’ transmission
rate, the number of flows, etc.

To this end, we replace the distributed rate control used
in the virtual network of a PM with a centralized rate
adaptation algorithm (CERA) that continuously estimates the
queueing length at QDisc. If the estimated queue length
exceeds a preconfigured target length CERA first reduces the
aggregated sending window of every VM weighted
proportional to the number of bytes it transmitted by every
VM over the past fixed interval – which implicitly estimates
the current transmission rate of every VM. Second, every
VM equally distributes its aggregated window allocated in
the first step among all flows from that VM, both of which
enable CERA to achieve high throughput and low delay.

We implemented a CERA prototype that contains two
components: (1) a Linux kernel module at the QDisc of host
PMs to monitor the queue length and a user-space program
that determines the aggregated sending window of each VM
according to the estimated queueing length; and (2) a Linux
kernel module implemented at every VM kernel to allocate
the sending window of every flow from that VM.

We evaluated CERA on a testbed with a virtualized
network attached by VMs created with KVM [8]. In our
experiments, we find that CERA reduces the average
queueing delay at QDisc by at least a factor of 0.53 when the
number of flows in a VM is small, e.g., 32, and 1.6 when the
number of flows in a VM is large, e.g., 50, thus improves the
average latency.

The remainder of the paper is organized as follows.
Section II introduces the motivations of this work. Section III
presents the CERA’s algorithms. Section IV evaluates
CERA through testbed experiments. Section V reviews the
related works and Section VII concludes this work.

II. MOTIVATIONS

Our studies were motivated by the unexpectedly large
delay observed in the large scale virtual network of a host
PM, thus we report the results of local delay measured from
a virtual network built in a PM of our testbed, and find out
the primary source of that delay.

2016 IEEE International Conference on Cluster Computing

2168-9253/16 $31.00 © 2016 IEEE

DOI 10.1109/CLUSTER.2016.23

384

Fig. 1. Experiments setup for validating local delays.

In this section, we validate the problem that a large delay
could be observed in virtual networks of host PMs. We
conduct experiments over a testbed depicted in Fig. 1,
consisting 3 PMs that are connected by a switch, where PM
A sets up a virtual network attached by multiple VMs that
send packets to PM B via a bridge connecting the physical
NIC with 1Gbps link capacity. Specifically, we create four
VMs in PM A’s virtual network, one of them runs a
memcached [1] using memaslap load generator [9] and
measures its request latencies.

As shown in Fig. 2, the average latency of memcached
requests are below 1ms that is mainly contributed by the
transmission delay. However, the request latencies of
memcached increase up to over 13ms when it concurrently
runs with 8 iperf flows running in the other 3 VMs
respectively. We measure that the average delay at QDisc
queue is around 12ms.

III. CERA ALGORIHTMS

The idea of using the centralized approach in a datacenter
is not new. Ghobadi et al. [11] first proposed a central
controller, OpenTCP, to adjust TCP parameters and variants,
e.g., initial congestion window size and retransmission time
out (RTO) according to the measured network state and
dynamics during that period. Perry et al. [3] proposed
Fastpass that is a central arbiter instructing every host PM to
control its every packet transmission timing explicitly over a
set of timeslots to achieve the goals of both network-wide
high bandwidth efficiency and near-zero queueing delay.
However, the delay of the control loop, i.e., between the
controller/arbiter and PMs, impacts the accuracy of the rate
controls and the control packets also compete with normal
traffics for bandwidth.

We seek a feasible solution that exploits the knowledge
of flows from all VMs sharing the same PM and
dynamically controls their transmission rates in a centralized
manner. Similar to Fastpass [3] and OpenTCP [11], CERA
algorithms are divided into two components: (1) the central
controller running in the host PM. If the estimated queue
length exceeds a preconfigured target length, it determines
the aggregated sending window of each VM weighted
proportional to the number of bytes it transmitted by that
VM over the past fixed interval – which implicitly estimates
the current transmission rate of every VM; and (2) CERA
client running in every VM distributes the window
reduction among all flows from that VM according to their
current sending windows.

Fig. 2. The cumulative distribution of memcached requests latencies.

A. Central Controller
The central controller continuously monitors the queue

length at QDisc of the host PM by implementing a loadable
kernel module. Specifically, we divide time into small fixed
epoch of ∆ milliseconds in duration. The central controller
monitors the queue length at the end of each epoch. In the
meantime, the central controller intercepts every outgoing
packet just before they are passed to the NIC thus
determines the number of packets transmitted by every VM
enqueued at QDisc during the past M∆ milliseconds – where
M controls the duration of the estimation interval, by
looking into the source IP address of packets’ IP headers.

Let qi denote the queue length at the end of the ith epoch;
nk,i denote the number of packets transmitted by the kth VM
during the past M∆ milliseconds at the end of the ith epoch,
thus nk, i implicitly estimates the sending rate of the kth VM
at the end of ith epoch, i.e., nk,i/M∆. If qi>Tu, where Tu
denotes the upper bound of the target queue length, the
central controller reduces the aggregated sending window of
every VM weighted proportional to the sending rate of that
VM so that the queue length will oscillate between Tu and Tl,
where Tl denotes the lower bound of the target queue length
and Tl<T. Let d denote the RTT and Wi the current total
aggregated sending window allocated for all VMs during
the ith epoch. To reduce the queue length to Tl we have

/ +i lW dC S T� (1)
where S denotes the packet size and C denotes the capacity
of the NIC.

Let ikk denote the set of VMs that transmits nonzero
packets during the past M∆ at the end of the ith epoch; μk
denote the weight for VM k; wk,i denote the aggregated
sending window allocated for VM k at the ith epoch, thus we
have

,
,

,

k k i
k i i

k k i
k k

n
w W

n
�
�

� �

� �
� 	� � 	
� 	� 	

 k kn�

k
,k k ,

k

�
 (2)

If μk=1 for all k, (2) becomes the ECN-based rate control
such as DCTCP. After deriving wk, the central controller
sends wk to VM k, for ik k� � k , using TCP connection that is
established when VM k is created.

385

Fig. 3. Network testbed setup.

B. CERA Client
Once a VM, e.g., VM k, is created, CERA client

establishes a TCP connection with the central controller thus
can receive the aggregated window from the controller, i.e.,
wk,i. In the meantime, VM k keeps track of all the active
TCP flows. Specifically, when a TCP flow is established, it
is added to a circular list, and is deleted from the list if that
TCP flow is closed. Because the receiving window (AWnd)
cannot become the throughput bottleneck by default until
loss events are detected, we only modify the CWnd that
mainly affects the sending window.

Let cwm,k,i denote the CWnd of the mth TCP flow of the
kth VM at the end of the ith epoch after the window
distributions; MM denote the set of the active TCP flow, the
algorithm to distribute the aggregated sending window
among all the active TCP flows is summarized into the
following two ways:

(i) CERA client equally allocates CWnds among TCP
flows in MM , thus we have,

, , , /m k i k icw w M� 	� � �
	M 		M (3)

But (3) will result in the remaining windows as cwm,k,i takes
the floor of , /k iw MM , thus the remaining windows is

, , ,k i m k iw cw M
 M (4)

(ii) In order to efficiently make full use of the remaining
windows CERA client allocates (4) one by one to those TCP
flows in a round-robin manner. It is unfair to allocate (4)
always from the head of the circular list, because the flows
in the tail of the list do not have equal chance to obtain the
remaining windows, hence we record the position of the last
updated TCP flow in the circular list during the last epoch,
and allocate (4) from the next one of that recorded position
until (4) becomes zero.

 After step (i) and step (ii), every TCP’s CWnd will be
governed by its TCP variant employed, e.g., TCP CUBIC,
until the next end of epoch.

IV. PERFORAMCNE EVALUATIONS

A. Network Testbed Setup
We evaluate CERA over a testbed consisting of three

Intel Xeon-based physical machines. As shown in Fig. 3,
every PM adopts Linux kernel 3.10.25. PM A setups 4 VMs
using KVM. Every VM also adopts Linux Kernel 3.10.25,

which can access the networks to which a physical NIC is
connected via a bridge. The queue length at QDisc of the
bridge is set to 1000 packets by default. Three PMs are
connected with each other through a physical switch with
1Gbps capacity. Similarly, 3 VMs, i.e., VM 2-4, in PM A
are running different number of iperf flows using TCP to
emulate different levels of traffic loads. The other VM, i.e.,
VM 1 in PM A, generates memcached requests using
memaslap load generator from libmemcached v1.0.18 [9]
using TCP. The GET and SET requests ratio of memcached
requests is 9:1 and the concurrent number of requests is 32.
The underlying transport protocol is TCP CUBIC by default
in the following experiments unless specified.

B. Througput-delay Tradeoff
We evaluated the throughput-delay tradeoffs for various

approaches including DCTCP, CoDel, FQ_CoDel and
CERA by starting 8 iperf TCP flows from VM 2-4 and 32
memcached requests from VM 1 simultaneously. We also
use the default TCP variant, TCP CUBIC, in current Linux
platform as the underlying transport protocol and default TC
module pfifo_fast, i.e., FIFO in Fig. 4, in our testbed
experiments. We also started the memcached requests only
to derive the optimal delays achievable as ground truth, i.e.,
memcached_only in Fig. 2. We tested two versions of
CERA with the target queue length set to 25 and 60, i.e.,
CERA_25 and CERA_60, respectively.

As shown in Fig. 4 that plots the cumulative
distributions of the queueing delay experienced by both
iperf and memcached packets at QDisc achieved by the
above approaches, CERA with the target queue length set to
25 achieves the minimal average queueing delay, 1.38 ms,
which reduces the average queueing delay by a factor of
0.53 and 8.4 compared to DCTCP and TCP CUBIC, while
always outperforms DCTCP in total throughput
performance regardless of the number of iperf flows. CERA
with the target queue length set to 60 also outperform
DCTCP and TCP CUBIC in average queueing delay by a
factor of 0.35 and 7.3, increasing the average queueing
delay by only 12%, i.e., 1.57 versus 1.38 ms, compared to
CERA with the target queue length set to 25, but achieves
near-100% bandwidth utilization regardless the number of
iperf flows, e.g., near full bandwidth utilization for 1 iperf
flow, outperforming DCTCP by 40% as shown in Fig. 5,
while CERA with the target queue length set to 25 achieves
75% bandwidth utilization when the number of iperf flows
is set to 1. To achieve near-100% bandwidth efficiency for
any number of iperf flows we set 60 for the target queue
length by default, which can be tuned for a different traffic
distribution thus we will evaluate the sensitivity of the target
queue length over different traffic distributions in one of our
future works. The other approaches also achieve the near
full bandwidth utilization but result in an even larger
average queueing delay.

386

Fig. 4. The cumulative distributions of queuing delays achieved by
different approaches.

Fig. 5. Total throughput comparison between DCTCP and CERA with two
target queue lengths.

V. RELATED WORKS

There are numerous recent works [3, 4, 5, 6, 11, 12, 13,
14] on improving in-network delay in datacenter networks,
which can be classified into three categories: End-to-End
approaches (E2E), active queue managements (AQM) and
centralized approaches. In this section we literally introduce
those works and compare them to CERA.

E2Es such as DCTCP [4] generally employ a novel rate
control at end-hosts. TIMELY [12] revisits RTT to detect
the network congestion for datacenter networks. Specifically,
TIMELY leverages NIC hardware to make RTT
measurements with microsecond accuracy thus adjusts
transmission rates with RTT gradients to keep packet
latency low while delivering high bandwidth utilization.
TIMELY achieves more accuracy of in-network RTT by
only considering RTT between any two NICs, while CERA
improves delay from VMs to NIC. D2TCP [13] adds
deadline-awareness on the top of DCTCP, thus adjusts
CWnds based on both ECN and deadline information to
meet deadlines, thus they also suffer from the problems in
DCTCP if it is used in VMs.

AQMs such as CoDel [6] and ECN [14] that drops or
marks queueing packets with congestion indicators such as
the queue length and delay, and endpoints might also need

to be modified to react to this signals to adjust their
transmission rates.

ACKNOWLEDGMENT

We are thankful to all anonymous reviewers for their
helpful feedback. The research was supported in part by the
National Natural Science Foundation of China (NSFC)
under Grant No. 61331008, 61502459, 61221062 and
61521092, the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant No.
XDA06010401.

VI. CONCLUSION AND FUTURE WORKS

This paper first reveals that VMs in a PM competing for
bandwidth resources introduce a local delay as high as 13
ms which results from the packet queueing at QDisc layer of
that PM, and addresses this problem by proposing CERA
that adjusts the transmission rate of every VM/flow by using
a centralized approach. Extensive testbed experiments
showed that CERA achieves the best the throughput-delay
tradeoff compared to other existing approaches. In the future
we plan to evaluate CERA over various traffic distributions,
e.g., web search, data mining, etc., and further improve
CERA implementations, e.g., multi-level weight
assignments, and test it in a real datacenter network.

REFERENCES

[1] N. Rajesh, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R.
McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung and V.
Venkataramani, “Scaling Memcache at Facebook,” in USENIX NSDI,
2013.

[2] J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters,” in USENIX OSDI, 2004.

[3] P. Jonathan, A. Ousterhout, H. Balakrishnan, D. Shah and H. Fugal,
“Fastpass: A Centralized Zero-queue Datacenter Network,” in ACM
SIGCOMM, 2015.

[4] A. Mohammad, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta and M. Sridharan, “Data Center TCP
(DCTCP),” in ACM SIGCOMM, 2011.

[5] A. Mohammad, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, M.
Yasuda, “Less is More: Trading a little Bandwidth for Ultra-low
Latency in the Data Center,” in USENIX NSDI, 2012.

[6] N. Kathleen and V. Jacobson. “Controlling Queue Delay,” in ACM
Queue, 2012.

[7] Microsoft SQL Server, Available: http://www.microsoft.com/en-
us/server-cloud/products/sql-server/.

[8] KVM, Available: http://linux-kvm.org.
[9] Libmemcached, Available: http://libmemcached.org/.
[10] FQ_Codel, available: https://tools.ietf.org/html/draft-hoeiland-

joergensen-aqm-fq-codel-01
[11] G. Monia, S. H. Yeganeh and Y. Ganjali. “Rethinking End-to-End

Congestion Control in Software-defined Networks,” in ACM HotNet,
2012.

[12] M. Radhika, T. Lam, N. Dukkipati, E. Blem, H. Wassel, M.
Ghobadi, A. Vahdat, Y. Wang, D. Wetherall and D. Zats, “TIMELY:
RTT-based Congestion Control for the Datacenter,” in ACM
SIGCOMM, 2015.

[13] V. Balajee, J. Hasan and T. N. Vijaykumar, “Deadline-aware
Datacenter TCP (D2TCP),” in ACM SIGCOMM, 2012.

[14] K. Ramakrishnan, S. Floyd and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” in RFC 3168, 2011

387

