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Abstract— Today’s datacenter is shared among various 
applications with different QoS requirements, which poses a 
great challenge to deliver low delay transport with high 
throughput. Most of works address this challenge by reducing 
the in-network delay, but assumes a negligible local delay. 
However, we show that this assumption does not hold for a 
multi-tenant datacenter that a physical machine is shared by 
multiple tenants with virtual machines running different 
applications. As measured, we found that VMs in a PM 
competing for bandwidth resources introduce delays as high as 
13 ms, resulted from the packet queueing at QDisc layer of that 
PM, because current VMs’ rate control still operates in a 
distributed manner without exploiting knowledge of the QoS 
requirements of applications running in VMs. This work 
addresses this problem by proposing a centralized rate 
adaptation (CERA) that operates in the host PM, dynamically 
schedules the flows from all VMs in a centralized manner. We
implemented a CERA prototype and evaluated CERA through 
testbed experiments. Our results show that CERA reduces the 
local delay significantly thus reduces the average request 
latency of delay sensitive applications, e.g., memcached, by a
factor of 6.3, without sacrificing the throughput performance 
of throughput intensive applications, e.g., iperf. 

I. INTRODUCTION 

Datacenters are shared by various applications with 
diverse Quality-of-Service (QoS) requirements: delay 
sensitive applications, e.g., memcached [1], require low 
delay to minimize their flow completion time (FCT); 
throughput intensive applications, e.g., data-parallel 
computation like MapReduce [2], require high throughput 
for large flows; and others require both high throughput and 
low delay, e.g., online data-intensive applications [10]. This 
dynamic environment in datacenter poses a great challenge 
to deliver low delay transport with high throughput. 

Some existing approaches [3-5] address this challenge by 
reducing the in-network queueing length, while assuming
negligible local delay at the edge, i.e., physical machines 
(PM). However, this assumption is not true for multi-tenant 
datacenter that every PM sets up a virtual network attached 
by multiple Virtual Machines (VM). Those VMs could run 
multiple applications thus could deliver over thousands of 
flows with diverse QoS requirements, which could result in a 
large backlog at the host PM thus increase the end-to-end 
delay. To address this problem one intuitive idea is to apply 
the methods proposed to reduce the in-network delay to 
reduce the local delay. We employed some conventional 
approaches including DCTCP [4], CoDel [6] and Multiple 
Level Feedback Queue (MLFQ) in a PM and evaluated them 

with testbed experiments. We showed that, compared to the 
vanilla PM, they could reduce the local queueing delay by at 
most a factor of 4.2 when the number of flows in a VM is 
small, i.e., 32, but also result in a local queueing delay of at 
least 4 ms when the number of flows is over 50. We point 
out, the previous approaches are operated in a distributed 
manner which controls the transmission rate on a per-flow 
basis without exploiting the knowledge of the other flows 
from all VMs sharing the same PM, e.g., flows’ transmission 
rate, the number of flows, etc. 

To this end, we replace the distributed rate control used 
in the virtual network of a PM with a centralized rate 
adaptation algorithm (CERA) that continuously estimates the 
queueing length at QDisc. If the estimated queue length 
exceeds a preconfigured target length CERA first reduces the 
aggregated sending window of every VM weighted 
proportional to the number of bytes it transmitted by every 
VM over the past fixed interval – which implicitly estimates 
the current transmission rate of every VM. Second, every 
VM equally distributes its aggregated window allocated in 
the first step among all flows from that VM, both of which 
enable CERA to achieve high throughput and low delay. 

We implemented a CERA prototype that contains two 
components: (1) a Linux kernel module at the QDisc of host 
PMs to monitor the queue length and a user-space program 
that determines the aggregated sending window of each VM 
according to the estimated queueing length; and (2) a Linux 
kernel module implemented at every VM kernel to allocate 
the sending window of every flow from that VM. 

We evaluated CERA on a testbed with a virtualized 
network attached by VMs created with KVM [8]. In our 
experiments, we find that CERA reduces the average 
queueing delay at QDisc by at least a factor of 0.53 when the 
number of flows in a VM is small, e.g., 32, and 1.6 when the 
number of flows in a VM is large, e.g., 50, thus improves the 
average latency. 

The remainder of the paper is organized as follows. 
Section II introduces the motivations of this work. Section III 
presents the CERA’s algorithms. Section IV evaluates 
CERA through testbed experiments. Section V reviews the 
related works and Section VII concludes this work. 

II. MOTIVATIONS

Our studies were motivated by the unexpectedly large 
delay observed in the large scale virtual network of a host 
PM, thus we report the results of local delay measured from 
a virtual network built in a PM of our testbed, and find out 
the primary source of that delay. 
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Fig. 1. Experiments setup for validating local delays. 

In this section, we validate the problem that a large delay 
could be observed in virtual networks of host PMs. We  
conduct experiments over a testbed depicted in Fig. 1, 
consisting 3 PMs that are connected by a switch, where PM 
A sets up a virtual network attached by multiple VMs that 
send packets to PM B via a bridge connecting the physical 
NIC with 1Gbps link capacity. Specifically, we create four 
VMs in PM A’s virtual network, one of them runs a 
memcached [1] using memaslap load generator [9] and 
measures its request latencies.  

As shown in Fig. 2, the average latency of memcached 
requests are below 1ms that is mainly contributed by the 
transmission delay. However, the request latencies of 
memcached increase up to over 13ms when it concurrently 
runs with 8 iperf flows running in the other 3 VMs 
respectively. We measure that the average delay at QDisc 
queue is around 12ms. 

III. CERA ALGORIHTMS

The idea of using the centralized approach in a datacenter 
is not new. Ghobadi et al. [11] first proposed a central 
controller, OpenTCP, to adjust TCP parameters and variants, 
e.g., initial congestion window size and retransmission time 
out (RTO) according to the measured network state and 
dynamics during that period. Perry et al. [3] proposed 
Fastpass that is a central arbiter instructing every host PM to 
control its every packet transmission timing explicitly over a 
set of timeslots to achieve the goals of both network-wide 
high bandwidth efficiency and near-zero queueing delay. 
However, the delay of the control loop, i.e., between the 
controller/arbiter and PMs, impacts the accuracy of the rate 
controls and the control packets also compete with normal 
traffics for bandwidth. 

We seek a feasible solution that exploits the knowledge 
of flows from all VMs sharing the same PM and 
dynamically controls their transmission rates in a centralized 
manner. Similar to Fastpass [3] and OpenTCP [11], CERA 
algorithms are divided into two components: (1) the central 
controller running in the host PM. If the estimated queue 
length exceeds a preconfigured target length, it determines 
the aggregated sending window of each VM weighted 
proportional to the number of bytes it transmitted by that 
VM over the past fixed interval – which implicitly estimates 
the current transmission rate of every VM; and (2) CERA 
client running in every VM distributes the window 
reduction among all flows from that VM according to their 
current sending windows. 

Fig. 2. The cumulative distribution of memcached requests latencies. 

A. Central Controller 
The central controller continuously monitors the queue 

length at QDisc of the host PM by implementing a loadable 
kernel module. Specifically, we divide time into small fixed 
epoch of ∆ milliseconds in duration. The central controller 
monitors the queue length at the end of each epoch. In the 
meantime, the central controller intercepts every outgoing 
packet just before they are passed to the NIC thus 
determines the number of packets transmitted by every VM 
enqueued at QDisc during the past M∆ milliseconds – where 
M controls the duration of the estimation interval, by 
looking into the source IP address of packets’ IP headers.  

Let qi denote the queue length at the end of the ith epoch; 
nk,i denote the number of packets transmitted by the kth VM 
during the past M∆ milliseconds at the end of the ith epoch, 
thus nk, i implicitly estimates the sending rate of the kth VM 
at the end of ith epoch, i.e., nk,i/M∆. If qi>Tu, where Tu
denotes the upper bound of the target queue length, the 
central controller reduces the aggregated sending window of 
every VM weighted proportional to the sending rate of that 
VM so that the queue length will oscillate between Tu and Tl,
where Tl denotes the lower bound of the target queue length 
and Tl<T. Let d denote the RTT and Wi the current total 
aggregated sending window allocated for all VMs during 
the ith epoch. To reduce the queue length to Tl we have 

/ +i lW dC S T�   (1) 
where S denotes the packet size and C denotes the capacity 
of the NIC. 

Let ikk denote the set of VMs that transmits nonzero 
packets during the past M∆ at the end of the ith epoch; μk
denote the weight for VM k; wk,i denote the aggregated 
sending window allocated for VM k at the ith epoch, thus we 
have 
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If μk=1 for all k, (2) becomes the ECN-based rate control 
such as DCTCP. After deriving wk, the central controller 
sends wk to VM k, for ik k� � k , using TCP connection that is 
established when VM k is created. 
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Fig. 3. Network testbed setup. 

B. CERA Client 
Once a VM, e.g., VM k, is created, CERA client 

establishes a TCP connection with the central controller thus 
can receive the aggregated window from the controller, i.e.,
wk,i. In the meantime, VM k keeps track of all the active 
TCP flows. Specifically, when a TCP flow is established, it 
is added to a circular list, and is deleted from the list if that 
TCP flow is closed. Because the receiving window (AWnd) 
cannot become the throughput bottleneck by default until 
loss events are detected, we only modify the CWnd that 
mainly affects the sending window.  

Let cwm,k,i denote the CWnd of the mth TCP flow of the 
kth VM at the end of the ith epoch after the window 
distributions; MM denote the set of the active TCP flow, the 
algorithm to distribute the aggregated sending window 
among all the active TCP flows is summarized into the 
following two ways: 

(i) CERA client equally allocates CWnds among TCP 
flows in MM , thus we have, 

, , , /m k i k icw w M� 	� � �
	M 		M   (3) 

But (3) will result in the remaining windows as cwm,k,i takes 
the floor of , /k iw MM , thus the remaining windows is 

, , ,k i m k iw cw M
 M   (4) 

(ii) In order to efficiently make full use of the remaining 
windows CERA client allocates (4) one by one to those TCP 
flows in a round-robin manner. It is unfair to allocate (4)
always from the head of the circular list, because the flows 
in the tail of the list do not have equal chance to obtain the 
remaining windows, hence we record the position of the last 
updated TCP flow in the circular list during the last epoch, 
and allocate (4) from the next one of that recorded position 
until (4) becomes zero. 

 After step (i) and step (ii), every TCP’s CWnd will be 
governed by its TCP variant employed, e.g., TCP CUBIC, 
until the next end of epoch. 

IV. PERFORAMCNE EVALUATIONS

A. Network Testbed Setup 
We evaluate CERA over a testbed consisting of three 

Intel Xeon-based physical machines. As shown in Fig. 3,
every PM adopts Linux kernel 3.10.25. PM A setups 4 VMs
using KVM. Every VM also adopts Linux Kernel 3.10.25, 

which can access the networks to which a physical NIC is 
connected via a bridge. The queue length at QDisc of the 
bridge is set to 1000 packets by default. Three PMs are 
connected with each other through a physical switch with 
1Gbps capacity. Similarly, 3 VMs, i.e., VM 2-4, in PM A 
are running different number of iperf flows using TCP to 
emulate different levels of traffic loads. The other VM, i.e., 
VM 1 in PM A, generates memcached requests using 
memaslap load generator from libmemcached v1.0.18 [9]
using TCP. The GET and SET requests ratio of memcached 
requests is 9:1 and the concurrent number of requests is 32.
The underlying transport protocol is TCP CUBIC by default 
in the following experiments unless specified. 

B. Througput-delay Tradeoff  
We evaluated the throughput-delay tradeoffs for various 

approaches including DCTCP, CoDel, FQ_CoDel and 
CERA by starting 8 iperf TCP flows from VM 2-4 and 32 
memcached requests from VM 1 simultaneously. We also 
use the default TCP variant, TCP CUBIC, in current Linux 
platform as the underlying transport protocol and default TC 
module pfifo_fast, i.e., FIFO in Fig. 4, in our testbed 
experiments. We also started the memcached requests only 
to derive the optimal delays achievable as ground truth, i.e., 
memcached_only in Fig. 2. We tested two versions of 
CERA with the target queue length set to 25 and 60, i.e., 
CERA_25 and CERA_60, respectively.  

As shown in Fig. 4 that plots the cumulative 
distributions of the queueing delay experienced by both 
iperf and memcached packets at QDisc achieved by the 
above approaches, CERA with the target queue length set to 
25 achieves the minimal average queueing delay, 1.38 ms, 
which reduces the average queueing delay by a factor of 
0.53 and 8.4 compared to DCTCP and TCP CUBIC, while 
always outperforms DCTCP in total throughput 
performance regardless of the number of iperf flows. CERA 
with the target queue length set to 60 also outperform 
DCTCP and TCP CUBIC in average queueing delay by a 
factor of 0.35 and 7.3, increasing the average queueing 
delay by only 12%, i.e., 1.57 versus 1.38 ms, compared to 
CERA with the target queue length set to 25, but achieves 
near-100% bandwidth utilization regardless the number of 
iperf flows, e.g., near full bandwidth utilization for 1 iperf
flow, outperforming DCTCP by 40% as shown in Fig. 5,
while CERA with the target queue length set to 25 achieves
75% bandwidth utilization when the number of iperf flows 
is set to 1. To achieve near-100% bandwidth efficiency for 
any number of iperf flows we set 60 for the target queue 
length by default, which can be tuned for a different traffic 
distribution thus we will evaluate the sensitivity of the target 
queue length over different traffic distributions in one of our 
future works. The other approaches also achieve the near 
full bandwidth utilization but result in an even larger 
average queueing delay.  

386



Fig. 4. The cumulative distributions of queuing delays achieved by 
different approaches.  

Fig. 5. Total throughput comparison between DCTCP and CERA with two 
target queue lengths. 

V. RELATED WORKS

There are numerous recent works [3, 4, 5, 6, 11, 12, 13,
14] on improving in-network delay in datacenter networks, 
which can be classified into three categories: End-to-End 
approaches (E2E), active queue managements (AQM) and 
centralized approaches. In this section we literally introduce 
those works and compare them to CERA. 

E2Es such as DCTCP [4] generally employ a novel rate 
control at end-hosts. TIMELY [12] revisits RTT to detect 
the network congestion for datacenter networks. Specifically, 
TIMELY leverages NIC hardware to make RTT 
measurements with microsecond accuracy thus adjusts 
transmission rates with RTT gradients to keep packet 
latency low while delivering high bandwidth utilization. 
TIMELY achieves more accuracy of in-network RTT by 
only considering RTT between any two NICs, while CERA 
improves delay from VMs to NIC. D2TCP [13] adds 
deadline-awareness on the top of DCTCP, thus adjusts 
CWnds based on both ECN and deadline information to 
meet deadlines, thus they also suffer from the problems in 
DCTCP if it is used in VMs.  

AQMs such as CoDel [6] and ECN [14] that drops or 
marks queueing packets with congestion indicators such as 
the queue length and delay, and endpoints might also need 

to be modified to react to this signals to adjust their 
transmission rates. 
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VI. CONCLUSION AND FUTURE WORKS

This paper first reveals that VMs in a PM competing for 
bandwidth resources introduce a local delay as high as 13 
ms which results from the packet queueing at QDisc layer of 
that PM, and addresses this problem by proposing CERA 
that adjusts the transmission rate of every VM/flow by using 
a centralized approach. Extensive testbed experiments 
showed that CERA achieves the best the throughput-delay 
tradeoff compared to other existing approaches. In the future 
we plan to evaluate CERA over various traffic distributions, 
e.g., web search, data mining, etc., and further improve 
CERA implementations, e.g., multi-level weight 
assignments, and test it in a real datacenter network.  
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