
Abstract - Recently, a server-less architecture has been
proposed for building video streaming systems which does not
need any costly dedicated video servers and yet is highly scalable
and reliable. However, due to the potentially large number of user
hosts streaming video data to a receiver for playback, the
aggregate network traffic can become very bursty, leading to
significant packet loss at the access routers. This study tackles this
problem by investigating a novel network-aware transmission
scheduling algorithm called Gradient-Descent Scheduler (GDS) to
reduce the traffic burstiness. Simulation results will demonstrate
that GDS can reduce the congestion-induced packet loss from
over 95% to 0.07% in a 500-host system. Moreover, GDS can
automatically adapt to the underlying network and does not
require hosts in the system to be synchronized. These are essential
for practical design of server-less architectures and peer-to-peer
systems.

Keywords – Transmission scheduling, video streaming, server-
less architecture.

I. INTRODUCTION
Peer-to-peer (P2P) systems have shown great promises in

building high-performance and yet low cost distributed
computational systems. By distributing the workload to a large
number of low-cost, off-the-shelve computing hosts such as
PCs and workstations, one can eliminate the need for a costly
centralized server and at the same time improve the system’s
scalability. Most of the current research on P2P and grid
computing is focused on computational problems [1-3], and on
the design of middleware [4-6]. In this work, we focus on
another application of P2P architecture – video streaming
systems, and in particular, investigate the problem of
transmission scheduling in such a distributed system.

Existing video streaming systems are commonly built
around the client-server architecture, where one or more
dedicated video servers are used for storage and streaming of
video data to video clients for playback. Recently, Lee and
Leung [7] proposed a new server-less architecture for building
video streaming systems that do not require dedicated video
servers at all. In this server-less architecture, video data are
distributed to user hosts and these user hosts cooperatively
serve one another’s streaming workload. Their early results
have shown that such a decentralized architecture is both
scalable [7] and reliable [8].

This work was funded in part by the RGC Earmarked Grant
CERG4211/03E, Direct Grant, and the UGC Area of Excellence in
Information Technology (AoE/E−01/99).

Nevertheless, there are still significant challenges in a
server-less video streaming system. In particular, with
potentially thousands of nodes streaming data to one another,
the aggregate network traffic can become very bursty and this
could lead to substantial congestion at the access network and
the user nodes receiving the video data. Our simulation results
revealed that packet loss due to congestion can exceed 95% if
one does not explicitly schedule the data transmissions to
avoid network congestion [9].

In a previous work [9] we also investigated the network
congestion problem in a server-less video streaming system.
We studied two transmission scheduling algorithms, namely
staggered scheduler and randomized scheduler, both not
making use of any knowledge of the network such as link
delay. These network-neutral schedulers are relatively simple
to implement and yet still manage to significantly reduce
congestion-induced packet losses. In this work, we investigate
a network-aware transmission scheduling algorithm called
Gradient-Descent Scheduler (GDS) to reduce the traffic
burstiness even further. Simulation results show that GDS can
reduce the congestion-induced packet loss from over 95% to
0.07% in a 500-host system, can automatically adapt to the
underlying network, and does not require hosts in the system to
be synchronized.

II. BACKGROUND
We review in this section the server-less architecture [7] and

then formulate the transmission scheduling problem.
A. Server-less VoD Architecture

A server-less video-on-demand (VoD) system comprises a
pool of interconnected user hosts, or called nodes in this paper
as shown in Fig. 1. Inside each node is a system software that
can stream a portion of each video title as well as playback
video received from other nodes in the system. A video title is
first divided into fixed-size blocks and then equally distributed
to all nodes in the cluster. This node-level striping scheme
avoids data replication while at the same time share the storage
and streaming requirement equally among all nodes in the
cluster.

To initiate a video streaming session, a receiver node will
first locate the set of sender nodes carrying blocks of the
desired video title, the placement of the data blocks and other
parameters (format, bitrate, etc.) through the directory service.
These sender nodes will then be notified to start streaming the
video blocks to the receiver node for playback.

 C. Y. Chan, Jack Y. B. Lee M. Hamdi

Gradient-Descent Scheduler − A Network-Aware
Transmission Scheduler for Server-less Video Streaming Systems1

 Department of Information Engineering Department of Computer Science
 The Chinese University of Hong Kong Hong Kong University of Science and Technology
 Shatin, N.T., Hong Kong Clear Water Bay, N.T., Hong Kong
 Email: jacklee@computer.org Email: hamdi@cs.ust.hk

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

Playback
Internet (N – 1) nodes

STB

STB

STB

STB

Access router

Fig. 1. A N-node server-less video-on-demand system.

Let N be the number of nodes in the cluster and assume all
video titles are constant-bit-rate (CBR) encoded at the same
bitrate Rv. A sender node in a cluster may have to retrieve
video data for up to N video streams, of which N−1 are
transmitted while the remaining one is played back locally.
Note that since a video stream is served by N nodes
concurrently, each node only needs to serve a bitrate of Rv/N
for each video stream. With a round-based transmission
scheduler, a sender node simply transmits one block of video
data to each receiver node in each round. The ordering of
transmissions for blocks destined to different nodes is the
transmission scheduling problem we investigate in this
research.
B. Network Congestion

In an ideal system, video data are transmitted in a
continuous stream at a constant bit-rate to a receiver node.
However, in practice data are always transmitted in discrete
packets and thus the data stream is inherently bursty. This
problem is insignificant in traditional client-server video
streaming systems because only a single video server will be
transmitting video data to a client machine and thus the data
packets will be transmitted at constant time intervals. By
contrast, in a server-less VoD system, video data are
distributed across all nodes and as a result, all nodes in the
system participate in transmitting video data packets to a node
for playback. If these data transmissions are not properly
coordinated, a large number of packets could arrive at the
receiver node’s access network in a short time interval, thereby
leading to network congestion and consequently packet loss.

For example, consider the straightforward transmission
scheduler - On Request Scheduler (ORS) [9], which
determines the transmission schedule based on the initial
request arrival time. Specifically, a node transmits video data
in fixed-duration rounds, with each round is further sub-
divided into N timeslots. The node can transmit one Q-byte
data packet in each timeslot of length Ts. Thus, the length of a
round can be computed from Tr=NTs=NQ/Rv.

When a node initiates a new video streaming session, it will
send a request to all nodes in the system. A node upon
receiving this request will reserve an available timeslot in a
first-come-first-serve manner to begin transmitting video data
for this video session. While this scheduler can smooth out the
traffic leaving the sender, the combined traffic from multiple
senders at the receiver becomes very bursty. In a simulation of
a 500-node system with Q=8KB and Rv=4Mbps, ORS can

result in over 95% packet losses due to congestion in the
access network.

The fundamental problem here is due to the very large
number of nodes in the system and the fact that data
transmissions are packetized. With the ORS algorithm, a new
video session will likely be assigned to timeslots that are
temporally close together. Thus once transmission begins, all
nodes in the system will transmit video data packets to the
receiver node in a short time interval, and then all cease
transmission for Tr seconds before transmitting the next round
of packets. While the average aggregate transmission rate is
still equal to the video bit-rate, the aggregate traffic is clearly
very bursty and thus leads to buffer overflows and packet
drops at the access network router connecting to the receiver
node.

III. NETWORK-NEUTRAL TRANSMISSION SCHEDULERS
One approach to tackle the congestion problem is to spread

out the arrivals of packets from different senders. We briefly
review in the following three network-neutral schedulers –
schedulers that do not make use of any knowledge of the
network.
A. Staggered Scheduler

The staggered scheduler spreads out the packet arrival times
by explicitly staggering (or offsetting) the timeslots in different
senders assigned to the same receiver. For example, data
packets transmitted from node i to node j will always be
transmitted in timeslot (j−i−1) mod N. Assuming the nodes are
clock-synchronized, then transmissions from different nodes to
the same receiver node will be separated by at least Ts seconds,
thus eliminating the traffic burstiness problem in ORS.
Simulation results show that SS can reduce the packet loss to
as low as 0.18% compared to ORS’s 95% packet loss.

Nevertheless, the need for clock-synchronization has two
implications. First, as clocks in different nodes cannot be
precisely synchronized in practice, the performance of the
algorithm will depend on the clock synchronization accuracy.
Second, depending on the application, the assumption that all
nodes in the system are clock-synchronized may not even be
feasible.
B. Randomized Scheduler

Alternatively, we can also reduce the likelihood of burst
arrivals by randomizing the timeslot assignments on a round-
by-round basis – randomized scheduler. It is easy to see that
RS does not require clock synchronization among nodes in the
system and hence is easier to deploy. Each node simply
generates its own random schedule on a round-by-round basis.
Simulation results show that RS can achieve consistent
performance that is independent of network delay variations
and level of clock synchronization. However, the packet loss
rate generated by RS (9.3% under the same setting) is
significantly higher than SS.
C. Staggered on Request Scheduler

Both of the previous two schedulers are sender-driven.
Alternatively, we can also schedule the data transmissions by

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

the receiver – staggered on request scheduler (SORS). The
principle of SORS is to let the receiver schedule the
transmission timeslots to a staggered schedule. Specifically,
suppose a receiver node initiates a new video session in
timeslot k, then it will send out a request to node i at timeslot
k+i. When a sender node receives this request, it will reserve
an available timeslot in a first-come-first-serve manner as in
ORS. In this way, the staggered scheduling is implicitly
performed by the receiver node and the sender nodes can
operate without synchronization. Simulation results show that
SORS can reduce the packet loss to only 2.9%.

IV. NETWORK-AWARE MODEL
The three network-neutral transmission schedulers presented

in Section III can already reduce the congestion-induced
packet loss substantially. The question then, is whether we can
reduce the packet loss even further by exploiting some
knowledge of the underlying network.

To this end we need to address three problems. First, we
need to formulate the transmission scheduling problem in
terms of the network model. Second, we need to find a way to
obtain relevant properties of the underlying network. Finally,
armed with useful knowledge of the network, we need to
devise an algorithm to exploit the knowledge to further reduce
congestion-induced packet loss. We address the first two
problems in this section and present a network-aware
transmission scheduling algorithm in Section V.
A. A Matrix Representation

Despite the seeming complexity of the transmission
scheduling problem, we can devise a very concise
mathematical model to describe all the essential features of the
system. We first define three N-by-N matrices S, D and R,
where the (i, j)th element of S, D and R represents respectively
the schedule time, network delay, and arrival time of the
packet transmission from node i to node j. Next we introduce a
fourth matrix C with its (i, j)th element representing the clock
difference between node i and j. Using these four matrices, we
can then describe the system using the following equation:
 S+D−C≡R (mod N) (1)
where the +, −, and mod are matrix operations.

To interpret the model, consider a particular element, say (i,
j) in the equation. The receiving schedule ri,j is simply
computed from the transmission schedule si,j plus the network
delay di,j and the clock jitter ci,j between the sender node i and
the receiver node j.

In principle, elements in the matrix S must be integer
multiples of the length of a timeslot Ts in the round-based
scheduler, while elements in the matrices D, C, and R can take
on any real number values. We employ two modifications to
further simply this model.

First, we convert the real number matrices to integer
matrices by quantizing the matrix elements with the factor Ts.
In other words, we replace di,j, ci,j, and ri,j by round(di,j/Ts),
round(ci,j/Ts), and round(ri,j/Ts) respectively. Thus with N

timeslots in a round, the valid schedule time is
si,j∈{0,1,…,(N−1)}.

Second, we observe that in case the sum of network delay
and clock jitter is large, the packet arrival times for a particular
receiver may span over multiple rounds. We can compensate
for large delay variations by starting the transmission in
different rounds in different sender nodes to offset the delay
variations. With this technique we can always keep the arrival
time to within a round’s duration, i.e., ri,j∈{0,1,…,(N−1)}.

In this quantized model, we can formally define the
constraint and goal of the transmission scheduling problem.
Specifically, assuming that each node can send a packet in
each timeslot in each round, then the transmission schedule
defined by the matrix S must not have repeating elements in
any of the rows. Consider an example with N=5, a row
containing elements of values {0, 2, 3, 1, 4} is a valid schedule
representing the schedule of transmission to node 0 in timeslot
0, to node 1 in timeslot 2, to node 2 in timeslot 3, and so on.
This type of matrix is also known as row-latin matrix [10]. By
contrast, the schedule {0, 2, 2, 1, 4} is invalid because
transmissions to both node 1 and node 2 are scheduled in the
same timeslot number 2.

On the other hand, the arrival time matrix R must not have
repeating elements in any of the columns, also known as
column-latin matrix [10]. As each column represents the
arrival time of packets transmitted from the N sender nodes,
repeating elements represent overlapping arrival times and
hence could induce congestion/packet loss.

Therefore our goal in the transmission scheduling problem
is, given D and C, to find a transmission schedule S that is
row-latin such that the arrival time matrix R is column-latin.
We note that although related matrix problems, latin squares in
particular, have been studied extensively in the literature [10-
14], to the best of our knowledge the specific problem in (1) is
new and no known solution exists.
B. Network Delay and Clock Jitter Estimation

The previous discussions assume that the network delay
matrix D and the clock jitter matrix C are known. Obviously
we cannot assume a priori knowledge of these properties in a
distributed system running on the Internet. Thus in this section
we address the second problem, namely how to obtain
estimates of the matrices D and C at run time.

For network delay estimation, a well-known technique is to
use echo messages. A node i will send an echo packet to
another node j, which then immediately replies node i with a
reply packet. The time from sending the echo packet to
receiving the reply is the round-trip time (RTT) and the one-
way delay can then be estimated from RTT/2.

However, this echo technique implicitly assumes that the
network path between the two nodes is symmetric, i.e., the
network delay is the same for both directions of the path.
Furthermore, previous studies [15-16] have shown that in
general network paths in the Internet are asymmetric, thus
reducing the accuracy of this network delay estimation
method.

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

One way to get around this problem is to measure the one-
way network delay directly, i.e., by comparing the
transmission time and the arrival time of a packet. However,
this method suffers from another problem – clock jitter
between different nodes. In particular, if the clocks in the
sender node and the receiver node are not precisely
synchronized, then we simply cannot obtain the one-way delay
by subtracting the transmission time, measured by the sender
node’s clock, from the arrival time, this time measured by the
receiver node’s clock.

While in principle we can implement and deploy distributed
clock-synchronization protocols [16-18] to reduce the clock
jitter so as to improve estimation accuracy, this nonetheless
will create an additional hurdle to deploying such a
decentralized system.

Interestingly, although it is not possible to measure the one-
way network delay without node synchronization, we do find
that we can measure the sum of one-way network delay and
clock jitter in a single step – Jitter-Adjusted Delay Estimation
(JADE).

First, we define a new apparent delay matrix, denoted by A,
which are computed from A=(D−C). Then we can rewrite the
system model in (1) in terms of A:
 S+A=R (mod N) (2)

Next, we consider the individual elements in A, denoted by
ai,j. We can express them in terms of di,j and ci,j:
 , , ,i j i j i ja d c= − (3)

In estimating the apparent delay ai,j, we need to at least send
out a control message between any two nodes. Suppose a
control message is sent from node i to node j at physical time
(i.e., the absolute time according to a given time reference) pi,j
and it reaches the destination at time qi,j=pi,j+di,j. Let δi be the
clock difference between node i and the physical time. Thus ci,j
can be computed from ci,j= δi−δj. Substituting pi,j, qi,j, δi and δj
into (3) we can obtain

, , ,

, ,

() ()

() ()
i j i j i j i j

i j j i j i

a q p
q p

δ δ
δ δ

= − − −
= + − + (4)

Note that (qi,j+δj) is simply the packet reception time as
measured by node j’s clock, and (pi,j+δi) is simply the packet
transmission time as measured by node i’s clock. Now both
entities can be measured independently by the sender node i
and the receiver node j. Thus we can compute ai,j directly from
(4) without the need for any clock-jitter adjustment.

V. GRADIENT-DESCENT SCHEDULER
With the system model being formulated and the network

parameters estimated, our goal then is to find a row-latin
schedule matrix S such that the resultant arrival time matrix R
is column-latin. The trivial method is to enumerate all
permutations of S until we find a solution. However, given that
a row-latin schedule matrix S can have (N!)N permutations, this
brute force approach is clearly not practical. For example,
enumerating S takes a few cpu clocks for N=3, 124
milliseconds for N=4, but 2.7 hours for N=5.

On the other hand, the problem in general may not even
have a solution at all. Thus instead of finding only the schedule
matrix S that results in column-latin matrix R, we generalize
the goal to finding the schedule matrix S that reduces the
number of colliding arrival times in the arrival time matrix R.

In the following, we present a Gradient-Descent Scheduler
that employs a probabilistic local search algorithm [19-21] to
find S that minimizes the number of collisions in R.
A. Performance Metric

The key performance metric in evaluating a schedule matrix
S is the number of collisions in the arrival time matrix R. To
define the metric precisely, we consider how the computations
are performed in a particular node, say, node j. When more
than one packet arrives at node j at the same timeslot, they will
collide and may cause congestion if the router buffer is full. In
the matrix representation, collision occurs if the same integer
appears more than once in the same column j of the matrix R.

Let count be a function that returns the number of elements
in a finite set. Therefore, the number of the integer k appearing
in column j, denoted by σj,k, can be obtained from
 , ,{ , {0,1, ..., 1}}j k i jcount r k i Nσ = = ∀ ∈ − (5)

Since there is no collision if σj,k≤1, we compute the number
of collisions at node j and timeslot k from
 , ,max(1, 0)j k j kb σ= − (6)

and form an N-by-N collision matrix B with bj,k as the
matrix elements. Finally, we can obtain the total number of
collisions, denoted by Ω, from summing all the collisions:

1 1

,
0 0

N N

j k
j k

b
− −

= =

Ω = ∑∑ (7)

B. Optimization Algorithm
Fig. 2 lists the pseudo-code of GDS. First, the schedule

matrix S is initialized with the staggered schedule generated by
the Staggered Scheduler because of its good performance. As
SS only converges to the randomized case when the network
variation is large, the staggered pattern should provide a better,
or at worst similar, initial condition than the randomized
instances. Then, using the initialized matrix S and the matrix A,
the collision matrix B and the total number of collisions Ω are
computed in the function compute_collisions.

After the initialization process, GDS starts searching the
local solution space through a swapping heuristic as defined in
lines 14-16 in Fig. 2. The basic idea is to swap two scheduled
timeslots of a sender to reduce the number of collisions. The
algorithm first performs a local search to find out a pair of
scheduled timeslots such that either one is collided. Next, it
swaps the pair and if Ω is reduced, the swapping will be
committed. Otherwise, the swapping will be rolled back. This
process loops for every pair of scheduled timeslots of each
sender and repeats until no swapping action is committed (i.e.,
cannot reduce Ω any further).

To speed up the algorithm, the collision matrix B and the
integer Ω are updated in the function update_collisions after

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

each swapping. When a scheduled timeslot si,j is about to
change such that the arrival timeslot changed from x to y, only
two elements of b, i.e. bj,x and bj,y, are affected. Thus, a swap
will require changes to only four elements in B. These changes
in the matrix B can be directly added to Ω, which eliminates
the need to recompute (7).

Similar to other local search algorithms, GDS does not
guarantee finding the global optimal solution. To obtain better
solutions, we can repeat the whole searching process with
different initial matrix S. There are also other methods, such as
k-change heuristic [20] and simulated annealing [21], to tackle
this problem. It is beyond the scope of this study to address
this optimization issue. Nevertheless, our experiments show
that reasonably good results can be obtained from even a
single iteration using the staggered schedule as the initial
schedule matrix S.

Finally, we note that the GDS algorithm has a theoretical
time complexity of O(N3) due to the three levels of loops. For
example, the algorithm requires 0.421, 11.7 and 70 seconds of
computation time for N=100, 300 and 500 respectively. Thus
further optimization may be needed for systems with a huge
number of nodes.

VI. PERFORMANCE EVALUATION

In this section, we evaluate and compare GDS with other
scheduling algorithms using simulation. The simulator is
developed using CNCL and it simulates a network with 500
nodes. To generate a realistic network topology, we implement
the extended BA (EBA) model proposed by Barabási et al. [22]
as the topology generator, using parameters measured by
Govindan et al. [23].

To model access routers in the network, we assume an
access router to have separate buffers for each connected node.
These buffers are used to queue up incoming data packets for
transmission to the connected node in case of bursty traffic.
When the buffer is full, then subsequent arriving packets for
the node will be discarded and thus resulting in packet loss.

End-to-end delay of network links is separated into
propagation delay in the link and queueing delay at the router.
While the propagation delay is primary determined by physical
distance, queueing delay at a router depends on the utilization
of the outgoing links and the queue size. We model the
propagation delay and queueing delay as normally-distributed
and exponentially-distributed random variables respectively
[24]. The link delay data used in the GDS algorithm are
obtained from (simulated) measurement using the JADE
algorithm.

To model the clock synchronization protocol, we assume
that the clock jitter of a node, defined as the deviation from the
mean time of all hosts, to be normally-distributed with zero
mean. We can then control the amount of clock jitter by
choosing different variances for the distribution.

01. si,j is the scheduled timeslot for packet
transmission from node i to node j

02. Ω is the total number of collisions
03. for(int i=0 to N-1){
04. for(int j=0 to N-1){
05. si,j = j-i-1;
06. }
07. }
08. compute_collisions()
09. do{
10. swapped = 0;
11. for(int i=0 to N-1){
12. for(int j=0 to N-1){
13. for(int k=j+1 to N-1){
14. if(either si,j or si,k is collided){
15. if(swap(si,j, si,k) reduces Ω){
16. perform_swap(si,j, si,k);
17. update_collisions();
18. swapped ++;
19. }
20. }
21. }
22. }
23. }
24. while (swapped > 0)

Fig. 2. Pseudo-code for the Gradient-Decent Scheduler

TABLE 1
DEFAULT SYSTEM PARAMETERS

Parameters Values
Video block size 8KB
Video bitrate 4Mbps
Access network bandwidth 1.1Rv
Router buffer size (per node) 32KB
Mean propagation delay 0.005s
Variance of propagation delay 10-6

Mean router queueing delay 0.005s
Variance of clock jitter 10-6
Video length 7200s
System Utilization 0.95

To model the dynamic activities of the system, we allow

nodes to initiate videos in a stochastic process. Specifically,
when a node initiates a video title, its stream will last for a
video length, denoted by tvideo. When the video stops, the node
will be idle for some time, which is an exponentially random
variable with mean tidle. Thus by adjusting the two parameters
tvideo and tidle we can control the system utilization,
ρ=tvideo/(tvideo+tidle).

Table I summarizes the default values of various system
parameters. We investigate in the following sections the effect
of four system parameters, namely cluster size, router buffer
size, queueing delay, clock jitter on the performance of the five
scheduling algorithms in terms of packet loss rate. Each set of
results is obtained from the average results of 10 randomly
generated network topologies.

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

0.000001

0.0001

0.01

1

0 100 200 300 400 500 600

Cluster Size (nodes)

Pa
ck

et
 L

os
s R

at
e

ORS

RS

SORS

SS
GDS

0.000001

0.0001

0.01

1

0 100 200 300 400 500 600

Cluster Size (nodes)

Pa
ck

et
 L

os
s R

at
e

ORS

RS

SORS

SS
GDS

Fig. 3. Packet loss rate versus cluster size.

A. Sensitivity to Cluster Size
Fig. 3 plots the packet loss rate versus cluster size ranging

from 5 to 500 nodes. There are two observations. First, the loss
rates of all schedulers decrease rapidly at smaller cluster size
and become negligible for very small clusters. For example,
for a 10-node cluster the loss rate is only 6.6% for ORS. This
confirms that the traffic burstiness problem is unique to a
server-less VoD system where the number of nodes is typically
large.

Second, comparing the five algorithms, ORS performs
extremely poorly with loss rates as high as 95%, which is
clearly not acceptable in practice. RS and SORS perform
significantly better, with the loss rates approaching 9.3% and
2.9% respectively when the cluster size is increased to 500. SS
performs best among the four network-neutral algorithms, with
0.18% packet loss regardless of the cluster size when the nodes
are clock synchronized. By exploiting knowledge of the
network, the GDS algorithm performs best with a loss rate of
0.07% for a cluster size of 500 nodes.
B. Sensitivity to Router Buffer Size

To investigate the effect of the buffer size at the access
router on the packet loss rate, we plot in Fig. 4 the packet loss
rate against router buffer sizes ranging from 8KB to 80KB.
With a video packet size of Q=8KB this corresponds to the
buffer space for one to ten packets. As expected, the loss rates
for all five algorithms decrease with increases in the router
buffer size. The reduction in loss rate however, decreases more
rapidly for SS, SORS, and GDS. By contrast, ORS and RS
exhibit substantial packet loss even for buffer size as large as
80KB. Thus one cannot rely on simply increasing router buffer
size to solve the congestion problem.

0.000001

0.0001

0.01

1

0 20 40 60 80 100

Router Buffer Size (KB)

Pa
ck

et
 L

os
s R

at
e

ORS

RS

SORS

SS

GDS

0.000001

0.0001

0.01

1

0 20 40 60 80 100

Router Buffer Size (KB)

Pa
ck

et
 L

os
s R

at
e

ORS

RS

SORS

SS

GDS

Fig. 4. Packet loss rate versus router buffer size.

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10

Mean of Queueing Delay (sec.)

Pa
ck

et
 L

os
s R

at
e

ORS

RS

SORS

SS

GDS

0.0001

0.001

0.01

0.1

1

0.001 0.01 0.1 1 10

Mean of Queueing Delay (sec.)

Pa
ck

et
 L

os
s R

at
e

ORS

RS

SORS

SS

GDS

Fig. 5. Packet loss rate versus mean queueing delay of a single router.

C. Sensitivity to Delay Fluctuation
On the other hand, delay fluctuations in the network can also

affect performance of the schedulers. To study this effect, we
vary the mean queueing delay of a single router from 0.005 to
5 seconds and plot the corresponding packet loss rate in Fig. 5.
We note that queueing delay is modeled by an exponential
random variable, where the variance is equal to the square of
the mean. Thus the result also shows the effect of delay
variations.

There are two interesting observations from this result. First,
performance of the RS algorithm is not affected by changes in
the mean queueing delay. This is because packet transmission
times under RS are already randomized, and thus adding
further random delay to the packet transmission times has no
effect on the resultant traffic burstiness.

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

0.0001

0.001

0.01

0.1

1

0.000001 0.0001 0.01 1 100

Variance of Clock Jitter (sec.)

Pa
ck

et
 L

os
s R

at
e

ORS

SORS

GDS

RS

SS

0.0001

0.001

0.01

0.1

1

0.000001 0.0001 0.01 1 100

Variance of Clock Jitter (sec.)

Pa
ck

et
 L

os
s R

at
e

ORS

SORS

GDS

RS

SS

Fig. 6. Packet loss rate versus the variance of clock jitter.

Second, the performances of all five algorithms converge
when the mean queueing delay is increased to 5 seconds. This
is because when the mean queueing delay approaches the
length of a service round (i.e. Tr=8.192 seconds), the random
queueing delay then effectively randomizes the arrival times of
the packets at the access router and hence performances of all
algorithms converge to the performance of the RS algorithm.
Nevertheless the average delay in the current Internet is
significantly shorter than 5 seconds and thus the presented
SORS, SS, and GDS algorithms can still be applied to reduce
the congestion-induced packet losses.
D. Sensitivity to Clock Synchronization

Finally, we study in Fig. 6 the effect of clock jitter on the
algorithms’ performance. As expected, only the SS algorithm
is affected by the magnitude of the clock jitter between nodes
in the system. When the clock jitter is increased to beyond a
variance of 0.0001, performance of the SS algorithm quickly
deteriorates. This result clearly shows that although SS can
perform well in a clock-synchronized system, the network-
neutral algorithm SORS and the network-aware algorithm
GDS are far more reliable in practice as accurate clock-
synchronization is difficult, if not impossible, to achieve in a
decentralized system running over the Internet.

VI. CONCLUSION AND FUTURE WORKS
In this work, we investigated the transmission scheduling

problem in a server-less video streaming system. Specifically,
we first addressed the problem of clock-synchronization in the
existing staggered scheduling algorithm by presenting a new
staggered-on-request scheduler that does not require clock
synchronization at all and yet can still achieve robust
performance across a wide range of network parameters. Next,
by formulating the transmission scheduling problem as a
matrix mathematical model, we discovered that it is possible to
perform one-way network delay estimation with clock jitter
accounted for in a single step. This discovery led to the
development of the Gradient Descent Scheduler that exploits
knowledge of the network properties to further reduce the
congestion-induced packet loss to negligible levels.
Nevertheless, the current GDS algorithm assumes that the
network properties are stationary. The next step is to

investigate dynamic algorithms to allow GDS to automatically
adapt to the changing network conditions as well as system
configurations.

REFERENCES
[1] A. Oram, Peer-to-Peer: Harnessing the Power of Disruptive

Technologies, O’Reilly Press, USA, 2001.
[2] C. Padgett, and K. Kreutz-Delgado, “A grid algorithm for autonomous

star identification,” IEEE Transactions on Aerospace and Electronic
Systems, Vol.33(1), Jan. 1997, pp.202-213

[3] SETI@home. http://setiathome.ssl.berkeley.edu/.
[4] M. Baker, R. Buyya, and D. Laforenza, “The Grid: International Efforts

in Global Computing,” International Conference on Advances in
Infrastructure for Electronic Business, Science, and Education on the
Internet, Rome, Italy, 31 July, 2000.

[5] Condor Project. http://www.cs.wisc.edu/condor/.
[6] The Globus Project. http://www.globus.org/.
[7] Jack Y. B. Lee, and W. T. Leung, “Study of a Server-less Architecture

for Video-on-Demand Applications,” Proc. IEEE International
Conference on Multimedia and Expo., Lausanne, Switzerland, 26-29 Aug
2002.

[8] Jack Y. B. Lee, and W. T. Leung, “Design and Analysis of a Fault-
Tolerant Mechanism for a Server-Less Video-On-Demand System,”
Proc. 2002 International Conference on Parallel and Distributed
Systems, Taiwan, 17-20 Dec, 2002.

[9] C. Y. Chan, and Jack Y. B. Lee, “On Transmission Scheduling in a
Server-less Video-on-Demand System,” Proc. International Conference
on Parallel and Distributed Computing, Klagenfurt, Austria, August 26-
29, 2003.

[10] C. F. Laywine, and G. L. Mullen, Discrete Mathematics Using Latin
Squares, New York: Wiley, 1998.

[11] J. Denes, and A. D. Keedwell, Latin Squares: New Developments in the
Theory and Applications, New York: North Holland, 1991.

[12] D. Donovan, “The Completion of Partial Latin Squares,” Australasian
Journal of Combinatorics, 22, 2000, 247-264.

[13] G. G. Chappel, “A Matroid Generalization Of A Result On Row-Latin
Rectangles,” Mathematics Subject Classification, 1991.

[14] B. D. McKay, and I. M. Wanless, “Most Latin squares have many
subsquares,” J. Combinatorial Theory (A), vol.86, 1999, pp.323-347.

[15] K. Claffy, H.-W. Braun, and G. Polyzos. “Measurement considerations
for assessing unidirectional latencies,” Internetworking: Research and
Experience, vol.4(3), September 1993, pp. 121-132.

[16] A. Wolman, G. Voelker, and C. A. Thekkath, “Latency Analysis of TCP
on an ATM Network,” Proceedings of the USENIX Winter '94 Technical
Conference, San Francisco, CA, Jan. 1994, pp.167-179.

[17] D. L. Mills, “Internet Time Synchronization: The Network Time
Protocol”, IEEE Transaction on Communications, vol.39(10), Oct. 1991,
pp.1482-1493.

[18] Simple Network Time Protocol. http://www.faqs.org/rfcs/rfc2030.html.
[19] C. H. Papadimitriou, and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity, New York: Dover, 1998.
[20] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-

Spaccamela, and M. Protasi, Complexity and Approximation, New York:
Springer, 1999.

[21] S. Russell, and P. Norvig, Artificial Intelligence, New Jersey: Prentice-
Hall, 1995.

[22] R. Albert, and A.-L. Barabási, “Topology of Evolving Networks: Local
Events and Universality,” Physical review letters, vol.85, 2000, p.5234.

[23] R. Govindan, and H. Tangmunarunkit, “Heuristics for Internet Map
Discovery,” IEEE Infocom 2000, Tel Aviv, Israel, Mar. 2000, pp.1371-
1380.

[24] D. Gross, and C. M. Harris, Fundamentals of Queueing Theory, 3rd ed.
New York: Wiley, 1998.

0-7803-8939-5/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

