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Abstract—Mobile video streaming is now ubiquitous among 
mobile users. This work investigated an often-neglected problem 
- data wastage where downloaded video data were not played 
back due to user early departure. Empirical measurements 
showed that data wastage is significant, e.g., around 20% of data 
downloaded were in fact wasted. Moreover, substantial data 
wastage exists not only in current commercial streaming 
platforms, but also in advanced adaptive streaming algorithms 
proposed in the literature. This work developed a new Post-
Streaming Wastage Analysis (PSWA) framework to tackle the 
problem by converting existing adaptive streaming algorithms 
into wastage-aware. PSWA enables the service provider to 
control the tradeoff between data wastage and streaming quality-
of-experience (QoE). Most remarkably, PSWA can achieve 
significant data wastage reduction (e.g., over 70%) even without 
negatively impacting QoE. PSWA can be applied to existing or 
future adaptive streaming algorithms and thus offers a practical 
solution to data wastage in current and future streaming services.  

Keywords—Video Streaming, Mobile Network, Data Wastage, 
Quality-of-Experience 

I. INTRODUCTION  
Mobile streaming has quickly become a key application in 

the mobile Internet [1]. For many mobile users, watching 
videos using their smartphone has become a daily activity. 
With so many sources of videos it is not surprising that not all 
videos were watched from start to finish. In fact, recent studies 
[2,3] as well as our own investigations revealed that a 
significant portion of videos were never watched completely - 
known as early departure. 

A side-effect of early departure is that some of the 
downloaded video data will be discarded upon departure and 
the bandwidth consumed in transferring them will be wasted – 
we call this data wastage in the rest of the study. At first 
glance such data wastage may not appear to be a significant 
issue. However, mobile video streaming has practically all 
migrated to some forms of HTTP-based transfer protocol (e.g., 
HLS [4], Android [5], DASH [6]). Common to these protocols 
is the use of progressive download where video data are 
requested from a HTTP server which then transfers data at a 
rate allowed by HTTP/TCP. If the HTTP/TCP throughput is 
higher than the video bitrate then the client will fetch video 
data ahead of their playback schedules and buffer them locally. 
This can improve streaming performance significantly as the 

buffered data can be used to absorb mobile networks’ 
bandwidth fluctuations. 

However, the same fetch-ahead buffering mechanism can 
also increase data wastage significantly in the presence of 
early departure. For example, using an empirical dataset 
obtained from a production mobile streaming service we 
found that early departure can result in as much as 20% data 
wastage. According to a study by Cisco [1], mobile video 
streaming will consume 75% of all mobile data usage in 2020. 
This translates into a loss of 15% of all mobile data delivered 
which has far-reaching consequences. 

First, many mobile data services nowadays either have a 
hard data cap after which additional data must be purchased, 
often at a much higher price, or impose a so-called fair-use 
policy where the bandwidth will be artificially lowered to a 
very low bitrate (e.g., 384 kbps even under LTE) if the usage 
has exceeded a given fair-use quota. A common fair-use quota 
is 5GB per month so the user in the above example will lose a 
significant portion of his/her data quota just for transferring 
video data which are never watched. 

Second, if the mobile operator offers unlimited data plan 
then data wastage will not directly impact the user. 
Nevertheless, wasted data still consume precious bandwidth 
from the operator’s network which otherwise can be used to 
deliver content to other users. Given the immense cost of the 
infrastructure, even a tiny percentage of wasted bandwidth can 
be financially significant to mobile operators. 

One method to reduce wastage is to limit the client buffer 
size. Taking it to the extreme, if the player only buffers at 
most one video segment then the worst-case data wastage will 
only be one segment (i.e., a few seconds’ worth of video data). 
However, the client buffer exists for an important reason – to 
buffer data such that video playback can be sustained during 
periods of low bandwidth so that playback interruption, also 
known as rebuffering, can be reduced. Too small a buffer will 
likely lead to frequent playback rebuffering which can be an 
even bigger problem than data wastage. This is especially 
important in mobile networks where rapid and substantial 
bandwidth fluctuations are the norm rather than the exception. 

The fundamental question is whether a feasible tradeoff 
between Quality-of-Experience (QoE) and data wastage exists 
in today’s mobile networks and if so, how to achieve a desired 
tradeoff in a streaming platform. This work is the first attempt 
to provide an answer to these questions by applying the 
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principle of post-streaming analysis proposed by Liu and Lee 
[7,8] to incorporate the impact of data wastage into the design 
and optimization of adaptive streaming algorithms.  

We develop a new Post-Streaming Wastage Analysis 
(PSWA) framework where throughput trace data from past 
streaming sessions are analyzed to quantify the tradeoffs 
between data wastage and streaming QoE. The results are then 
used to automatically optimize streaming parameters such that 
the desired tradeoff between data wastage and QoE can be 
achieved. Our results show that while tuning the client buffer 
size alone can reduce data wastage substantially (e.g., 80%) 
with a small tradeoff in QoE (e.g., 5%), tuning both client 
buffer size and an internal parameter in the streaming 
algorithm can produce even better performances.  

Remarkably, by jointly tuning both parameters PSWA was 
able to achieve significant wastage reduction (e.g., 76%) with 
zero tradeoff in QoE. PSWA can be applied to and turn any 
existing adaptive streaming algorithm into wastage-aware, 
thus offering a practical solution to significantly reduce data 
wastage in current and future streaming platforms. 

The rest of paper is organized as follows: Section II 
reviews previous related works; Section III investigates data 
wastage in mobile streaming; Section IV presents the PSWA 
framework; Section V evaluates and compares the 
performance of PSWA; Section VI summarizes the study. 

II. RELATED WORK 
Much work has been done in mobile video streaming. A 

comprehensive review of the area is beyond the scope of this 
work. We refer the interested readers to the studies by Seufert 
et al. [9], Juluri et al. [10] and Kua et al. [11] for survey and 
comparison of existing streaming algorithms. 

Existing adaptive streaming algorithms were primarily 
designed to improve streaming quality. Much of the 
intelligence of an adaptation algorithm is in selecting the best 
video bitrate from the ones available at the server so that 
playback continuity can be maintained (or a given QoE metric 
optimized). Now as data wastage does not impact streaming 
QoE directly, it is no surprise that data wastage is often 
neglected in existing adaptive streaming algorithms. 

Nevertheless, with the almost ubiquitous deployment of 
HTTP-based video streaming, data wastage can no longer be 
an afterthought. An early measurement study by Finamore et 
al. [2] analyzed YouTube and found that users often abort 
playback early, resulting in data wastage of 25%-39% for PC 
players and 35%-48% for mobile users during peak hours. In 
another study, Plissonneau et al. [12] measured HTTP 
streaming traffic in an ISP and found that less than half of the 
videos were fully downloaded. 

A key reason to the high rate of early departure is due to 
the inherent nature of online contents where users often 
explore videos from a wide range of sources and watch only 
those they found interesting. Chen et al. in their measurement 
study [13] found that users spent the majority of time in video 
browsing mode and watch an entire video only around 20% of 
the time. In a separate work Chen et al. [14] proposed a model 
for user watch-time distribution based on a combination of 
exponential distribution and power law distribution.  

The above previous work all reported significant early 
departure behavior in mobile video services. In a recent study, 
Chen et al. [3] looked into the consequence of early departure 
- data wastage in a large video site (Tencent) and found that 
over 20% of bandwidth was wasted for delivering video data 
that were never watched. To address the problem, they 
developed a server-side Behavior-Based (henceforth called 
BB) streaming strategy to reduce wastage for non-adaptive 
video streaming. BB was designed for the scenario where the 
network is already fully utilized. It reduced wastage through 
limiting the transmission rate to 1.05 times the video bitrate 
(as opposed to as fast as TCP allows) during a user’s browsing 
phase [13]. The bandwidth saved can then be reallocated to 
other streams to improve their QoE. Their simulation results 
showed that BB can reduce data wastage by 28%. 

In comparison, the PSWA framework developed in this 
study offers three important contributions beyond the previous 
work. First, to the best of our knowledge, PSWA is the first 
solution for controlling data wastage in adaptive video 
streaming algorithms. Second, PSWA is designed to 
complement (as opposed to replace) adaptive streaming 
algorithms by turning them into wastage-aware and hence can 
be applied to streaming platforms already in service. Third, 
PSWA offers a tool for the service provider to control the 
tradeoff between data wastage and streaming QoE. For 
example, given an existing streaming algorithm a service 
provider can specify an acceptable tradeoff in QoE (e.g., 5%) 
and then PSWA will analyze the past throughput trace data to 
automatically tune parameters to minimize data wastage. 

III. DATA WASTAGE IN MOBILE STREAMING 
In this section, we first investigate the impact of user early 

departure on data wastage using a real-world dataset. Next, we 
employ trace-driven simulations to study the data wastage 
performance of five existing adaptive streaming algorithms. 

A. An Empirical Study 
Through collaboration with an anonymous mobile operator 

we were able to obtain the full packet-level capture (i.e., 
tcpdump) in one of their production video servers serving their 
mobile subscribers. The server supports adaptive streaming 
using Apple’s HLS protocol [4]. We collected three months’ 
data totaling over 60,000 streaming sessions. Among them 
40% requests have valid User-Agent field of which 59% are 
from Android devices while the remaining 41% from Apple 
iOS devices. From the trace data we can derive the total video 
duration (from the m3u8 playlist), denoted by Li, the 
amount/duration of video data downloaded, denoted by Di, 
and the estimated viewing duration (based on the session 
duration), denoted by Vi, for streaming session i, 0≤i<N. 

To quantify early departure we define the viewing ratio i 
as the ratio of video played to the total video duration, i.e., 

i i iV L                                      (1)                                        

Similarly we define the download ratio i as the ratio (in 
duration) of video downloaded to the total video duration, i.e., 

 i i iD L                                       (2)                                  
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TABLE I.    DATA WASTAGE IN MOBILE VIDEO STREAMING 
Video 

Duration 
Average 
Viewing 
Ratio (%) 

Average 
Download 
Ratio (%) 

Average 
Wastage 
Ratio (%) 

Average 
Wastage 

Amount (MB) 
≤5min 53.5 86.0 34.9 8.7 

5~50min 73.0 87.7 15.4 17.8 
>50min 9.2 10.8 13.8 16.2 

All 42.6 63.1 20.4 13.2 

TABLE II.    DATA WASTAGE IN EXISTING STREAMING ALGORITHMS 
Streaming 
Algorithm 

Buffer 
Size 

Wastage  
Ratio (%) 

/Amount (MB) 

Video 
Bitrate 
(Mbps) 

Buffer 
Occupancy 

(s) 

Rebuffering 
Probability (%) 
/ Frequency* 

QoE 
[17] 

LBG 126s 18.9 / 12.8 2.45 24.0 11.0 / 1.01 2216 
BBA 240s 43.7 / 28.1 1.23 91.4 0.01 / 1x10-4 960 

RobustMPC 30s 8.0 / 3.75 3.09 9.55 2.6 / 5x10-2 2793 
Stagefright 20MB 21.7 / 11.4 1.57 44.7 0.2 / 2x10-3 1522 

BB 30s 7.2 / 2.35 1.50 11.0 20.3 / 1.35 955 
* Rebuffering frequency is the mean number of rebuffering per session. 

To quantify data wastage due to early departure, we can 
compute the amount of data wastage in streaming session i, 
denoted by Wi, from the difference between total video data 
downloaded and estimated video data viewed: 
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                        (3) 

where di,j, si,j, li,j, vi,j are the actual data downloaded, segment 
size, full segment duration, estimated segment duration 
viewed for segment j respectively.  

Similarly we can compute the ratio of data wastage 
amount for streaming session i, denoted by Ri, from 
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                        (4) 

Table I summarizes the measurement results for the 
empirical dataset. First, the overall wastage ratio E[Ri|i] is 
20.4% which is clearly not negligible. Second, short videos 
(0~5 mins) exhibited significantly higher data wastage ratio 
but significantly smaller amount of data wastage than its 
longer counterparts. This is because current commercial 
adaptive streaming algorithms usually begin a streaming 
session with low-bitrate version of the video and then 
progressively increase the bitrate afterwards if bandwidth 
allows. Thus the client is more likely to download and buffer 
more low-bitrate video data ahead of the playback schedule, 
thereby leading to more wastage in case the user departs early. 

B. Trace-Driven Simulation Study 
In addition to commercial streaming platforms, we 

employed trace-driven simulations to evaluate data wastage 
performance of recent adaptive streaming algorithms proposed 
in the literature. The simulator replicated mobile network 
behavior by replaying throughput trace data captured in a 
production mobile network over 3 months in three different 
locations. Video characteristics (i.e., duration) and user 
departure behavior are derived from the same trace data as 
described in Section III-A. The available video bitrates for 
adaptive algorithms followed the Apple profile [4], ranging 
from 200 kbps to 8600 kbps. This trace-driven simulator can 
offer evaluation of streaming algorithms in a realistic network 
environment and at the same time allow measurement of more 

detailed performance metrics such as playback rebuffering and 
QoE which are otherwise difficult, if not impossible, to 
achieve in a production network. 

We implemented five streaming algorithms, namely LBG 
[15] – a bandwidth-based adaptive streaming algorithm; BBA 
[16] – a buffer-based adaptive streaming algorithm; Robust-
MPC [17] – a hybrid bandwidth-buffer-based algorithm; 
Stagefright [5] – the hybrid bandwidth-buffer-based algorithm 
as implemented in the Android operating system, and BB 
(Behavior-Based) [3] – a server-side non-adaptive algorithm 
designed to reduce data wastage. Note that the client buffer 
size varies across different algorithms. We adopted the buffer 
size of 240s for BBA and 30s for Robust-MPC/BB as in their 
original studies. Stagefright has a maximum client buffer size 
not in duration but in bytes - 20MB [5]. In the case of LBG 
[15] the buffer size is adjusted dynamically according to the 
bitrate selected for each video segment. In our simulations we 
measured an average buffer size of 126s for LBG. In all 
algorithms the player prefetches 4 seconds video data at the 
lowest bitrate before commencing playback. 

For BBA, LBG, Robust-MPC and Stagefright we 
replicated the adaptation algorithm as in their original 
studies/implementation. For BB we followed the principle in 
the original study [3] to select the video bitrate to be half of 
the estimated available bandwidth (nearest bitrate in Apple 
profile not higher than the calculated bitrate) by means of 
measuring the average throughput achieved in the previous 
200 seconds (we also tested measurement duration from 20 
seconds to 400 seconds which produced similar results).  

In addition to data wastage we also measured four other 
performance metrics, namely video bitrate – defined as the 
average bitrate selected; buffer occupancy – defined as the 
average buffer level; rebuffering probability – defined as the 
proportion of sessions encountering at least one rebuffering 
event; rebuffering frequency – defined as the mean number of 
rebuffering events per session; and QoE – calculated from the 
QoE function proposed by Yin et al. [17], reproduced below: 

1

1
1 1

1 3000 3000
K K

k k k p s
k j

Q r r r T T
K




 

 
       

 
   (5) 

where Tp is the total rebuffering duration, Ts is the startup 
delay, rk is the bitrate selected for segment k and K is the total 
number of segments. The coefficients for Tp and Ts (i.e., 3000) 
follows Yin et al. [17]. This QoE function not only accounts 
for video bitrate and rebuffering, but also incorporates the 
impact of video quality variations due to bitrate adaptations 
(i.e., the second term in (5)). 

Table II summarizes the simulation results. BBA exhibited 
the highest wastage ratio (43.7%) which is a result of its large 
client buffer (240s) and its relatively conservative adaptation 
algorithm as reflected by the lower video bitrate (1.23 Mbps) 
and QoE numbers. In contrast, its streaming performance as 
measured by rebuffering probability is the best as the large 
client buffer and conservative adaptation algorithm tended to 
buffer more video data to prevent playback buffering. 

By contrast, LBG achieved substantially lower data 
wastage (18.9% vs 43.7%) but at the expense of significantly 
more rebuffering (11.0% vs 0.01%). Nevertheless its overall 
QoE is still higher than that of BBA as LBG’s more 
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aggressive adaptation algorithm selected higher video bitrates. 
As the buffer occupancy shows, LBG on average buffered far 
less video data than BBA which reduced data wastage in case 
a user departs early. 

Interestingly, although Stagefright has a higher wastage 
ratio (21.7%) than LBG (18.9%), its average amount of data 
wastage per session is lower (11.4MB vs 12.8MB) due to the 
lower video bitrate selected by Stagefright. This shows that it 
is important to compare not only wastage ratio but the amount 
of data wastage as well. Compared to LBG, Robust-MPC 
exhibited even lower data wastage (8.0% vs 18.9%). Robust-
MPC also achieved the highest video bitrate leading to the 
best QoE among all algorithms tested.  

Finally, the BB algorithm was specifically designed to 
reduce data wastage. The results in Table II show that BB’s 
strategy is effective in reducing data wastage (7.2%), which is 
the lowest among all algorithms tested. However, the low 
initial transmission rate significantly increased rebuffering 
probability at 20.3%. Note that BB was designed for non-
adaptive streaming so may not be directly applicable to 
today’s adaptive streaming platforms. Moreover it was 
designed for the scenario where the bottleneck network (e.g., 
between the content provider and mobile operator) is shared 
by a large number of multiple streaming sessions and this may 
be the reason why it does not work well in the simulated 
mobile network where the last leg is the bottleneck. 

Overall the results demonstrated that different adaptation 
algorithms were designed with different tradeoffs but two 
factors clearly impact data wastage, namely client buffer size 
and adaptation aggressiveness. The challenge is to find a way 
to turn an adaptive streaming algorithm into wastage-aware 
and automatically optimize it to achieve a desired tradeoff 
between data wastage and streaming QoE. 

IV. WASTAGE-AWARE VIDEO STREAMING 
In this section, we propose a new Post-Streaming Wastage 

Analysis (PSWA) framework to enable the explicit control of 
tradeoff between data wastage and QoE. We first develop two 
ways to turn existing adaptation algorithms into wastage-
aware and then apply post-streaming analysis to automatically 
tune the wastage-aware adaptation algorithms. 

A. Wastage Awareness 
Except for BB [3] none of the existing streaming 

algorithms were designed to incorporate the impact of data 
wastage. Therefore the first challenge is to develop a general 
mechanism to turn an adaptive streaming algorithm into 
wastage aware while keeping their original adaptation logic 
intact. We exploit two insights we gained from Section III-B.  

First, we found that data wastage ratio is highly correlated 
with the average client buffer occupancy. Intuitively the more 
data the client buffers the more data will be wasted when user 
departs early. This motivates us to introduce a mechanism to 
control the buffer occupancy.  

Specifically, ignoring network latency, let ti and fi be the 
beginning and completion time for transferring video segment 
i to the client. Let bi be the buffer occupancy at time fi. Then 
to maintain a target buffer occupancy of  we can schedule the 
start time to transmit the next video segment at ti+1 given by 

 
Fig. 1. The two phases in Post-Streaming Wastage Analysis. 

TABLE III.    INTERNAL PARAMETER TO BE OPTIMIZED BY PSWA 
Algorithms Internal Parameter Range of γ 

LBG Video segment duration over  
segment fetch time [15] 

0~5 

BBA Bitrate selection slope [16] 0~15 
Robust-MPC Estimated bandwidth [17] 0~5 
Stagefright Estimated bandwidth [5] 0~5 
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                   (6) 

Note that (6) is orthogonal to the adaptation logic. The 
latter determines the bitrate to request for the next segment 
and (6) controls the time to begin the transfer. If we set = 
then it is the same as the original adaptation algorithm. 

Second, our experiments also revealed that the 
aggressiveness of bitrate adaptation also affect data wastage. 
Most existing bitrate adaptation algorithms have one or more 
internal parameters which can affect their bitrate selection 
aggressiveness. For each of the four algorithms tested we 
picked a specific internal parameter (see Table III) and applied 
a multiplier γ to it to enable control of their bitrate selection 
aggressiveness. The choice of the internal parameter depends 
on the algorithm’s design but is usually quite obvious. 
Interested readers are referred to the work by Liu and Lee [7]. 

The above modifications can be easily applied to most 
adaptive streaming algorithms. The next challenge is to find a 
way to optimize the two parameters to achieve the desired 
tradeoff between data wastage and QoE. 

B. Post-Streaming Analysis 
Post-streaming analysis [7,8] is a way to provide 

predictable streaming performance in adaptive video 
streaming. The idea is to exploit past throughput trace data 
captured as a by-product of streaming to automatically tune an 
internal parameter in the adaptation logic for future streaming 
sessions to achieve the desired streaming performance target, 
e.g., target rebuffering probability.  

Drawing on the post-streaming analysis principle we 
developed a new Post-Streaming Wastage Analysis (PSWA) 
framework to use streaming trace data to automatically tune 
the target buffer occupancy  and the adaptation multiplier γ 
to control data wastage. Specifically, PSWA comprises 
repeating cycles of two phases, namely the analysis phase and 
the prediction phase as depicted in Fig. 1. 
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Fig. 2. Tradeoffs between data wastage and QoE (optimize buffer only). 

 
Fig. 3. Comparison of data wastage and QoE performance. 

The analysis phase is executed periodically, e.g., daily, to 
compute the target buffer occupancy  and multiplier γ for use 
in the prediction phase (e.g., one day). In addition to 
throughput trace data captured during past streaming sessions, 
PSWA also records past sessions’ video duration and viewing 
duration, both of which impact data wastage performance. 
PSWA then makes use of a sliding window of past streaming 
trace data (e.g., 7 days) to simulate streaming sessions using a 
range of values for  and γ respectively in the analysis phase.  

PSWA records the streaming performance metrics 
including selected video bitrates, playback rebuffering events, 
etc., to compute the overall streaming QoE, denoted by  
Qi(, γ), using (5) for each simulated streaming session i. 
Concurrently, PSWA also records the amount of data wastage 
for each streaming session, denoted by Wi(, γ). These metrics 
captured the relations between QoE and data wastage w.r.t. the 
target buffer occupancy  and the adaptation multiplier γ. 

Not surprisingly, QoE and data wastage are conflicting 
metrics so we need a way for the service provider to specify 
the desired tradeoff between them. One possibility is to 
combine QoE and data wastage into a unified utility function 
such that the problem becomes a utility-maximization problem. 
However such utility function does not exist in the literature 
and it is unclear how the utility can be normalized between 
QoE and data wastage. In fact their relative significance could 
vary depending on type of content, data subscription plan, user 
preference, and so on. 

Therefore we adopted a different approach whereby the 
service provider specifies a target QoE reduction (e.g., 5%), 
denoted by , for the purpose of reducing data wastage. Let o 
be the client buffer size in the original adaptive streaming 
algorithm. Then the mean QoE in the analysis phase for 
streaming sessions using the unmodified adaptive streaming 
algorithm, denoted by Qori, is given by:       

  E ( ,1) |ori i oQ Q i                            (7)                      

The analysis phase is then aimed at minimizing the amount 
of data wastage subject to the QoE reduction target , i.e., 

,

[ ( , ) | ]min ( , )    . .   1 i
i

i ori

E Q iW s t
Q 

   


    
 
         (8)                  

The optimized parameters, denoted by {*, γ*}, are then 
applied to all future streaming sessions in the prediction phase 
during which trace data will be captured as a by-product of 
actual streaming sessions for use in the next analysis phase 
and the process repeats. The insight behind PSWA is that 
mobile networks do exhibit consistent properties over a 
timescale of days so that one can make use of past trace data 
to optimize the streaming parameters for future streaming 
sessions. Through the use of a sliding window (e.g., 7 days) of 
past trace data in the analysis phase and a short prediction 
phase (e.g., 1 day) PSWA can also adapt to evolution in the 
mobile network infrastructure. 

V. PERFORMANCE EVALUATION 
In this section we evaluate PSWA’s effectiveness in 

reducing data wastage for four adaptive streaming algorithms 
and analyze the tradeoffs between data wastage and QoE 
using trace-driven simulation.  

A. Simulation Setting 
We employed the same simulation setup as described in 

Section III-B for the experiments in this section. We applied 
PSWA to four existing adaptive streaming algorithms, namely 
LBG [15], BBA [16], Robust-MPC [17], and Stagefright [5], 
to turn them into wastage-aware. In addition, we also 
simulated the wastage-aware BB algorithm [3] for non-
adaptive video streaming for comparison. 

PSWA was configured to use the past 7 days’ trace data in 
the analysis phase to optimize one or both of the two 
streaming parameters {, γ} for each streaming algorithm and 
then apply them in the prediction phase for new streaming 
sessions in the next 24 hours. The process then repeats and the 
simulation last for a total of 70 days with a total of sixty-
thousand streaming sessions. 

B. Tuning Target Buffer Occupancy Only 
We first investigate the effectiveness of tuning only the 

target buffer occupancy on data wastage reduction. Fig. 2 
plots the tradeoffs between QoE and amount of data wastage 
for the algorithms tested by varying the target QoE reduction . 
In this and subsequent figures we normalized the QoE results 
against the highest one achieved (by the original Robust-MPC, 
normalized to 100) to ease comparisons.  

We observe that LBG and Stagefright showed significant 
reduction (80.3% and 54.9% respectively) in data wastage 
with a QoE reduction as small as 5%. By contrast, BBA and 
Robust-MPC exhibited a more linear tradeoff between the two 
metrics. In all cases PSWA enables one to control the tradeoff 
between data wastage and QoE. 

In comparison, BB being a wastage-aware design did 
achieve relatively low data wastage. However due to its 
conservative transmission rate control and lack of bitrate 
adaptation its resultant QoE is relatively low as well. 
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TABLE IV.  WASTAGE REDUCTION (%) UNDER DIFFERENT QOE FUNCTIONS 
Algorithms LBG BBA RobustMPC Stagefright 
QoE1 [17] 83.3 39.5 59.7 76.4 
QoE2 [18] 93.2 77.0 71.7 89.1 

C. Jointly Tuning Buffer and Streaming Parameter 
One advantage of PSWA lies in its ability to jointly 

optimize multiple parameters of an adaptive streaming 
algorithm for the given objective function, i.e., (8). We 
repeated the experiments in Section B by applying PSWA to 
optimize both  and γ and plot the actual data wastage versus 
normalized QoE in Fig. 3. The wastage-aware version of the 
streaming algorithms is indicated by the “-γ” suffix. 

All four γ-optimized adaptive streaming algorithms can 
achieve significant data wastage reduction compared to the 
original algorithms. Surprisingly, the γ-optimized algorithms 
managed to reduce data wastage from 33% to 76% even 
without any QoE degradation. This is clear from Fig. 4 where 
at 0% actual QoE reduction all 4 modified adaptive streaming 
algorithms still achieved substantial wastage reduction. 

This counter-intuitive result is due to PSWA framework’s 
ability to optimize the internal streaming parameter via γ. As 
demonstrated by Liu and Lee [7] the optimal internal 
parameters in existing adaptive streaming algorithms often 
depend on the network and system configurations. Therefore 
by jointly optimizing γ along  PSWA can improve a 
streaming algorithm’s QoE beyond its original version. The 
increased QoE thus provides the QoE margin for PSWA to 
reduce data wastage without degrading streaming QoE. 

In addition to the above results, we also conducted 
simulations for different QoE functions, e.g., Hoßfeld, et al. 
[18] in Table IV (with target QoE reduction of 5%) which also 
shows substantial reduction in data wastage. Consistent 
wastage reduction is also observed over trace data obtained 
from different geographical locations and different user early-
departure behaviors, confirming PSWA’s performance 
consistency over a wide range of networks. 

VI. SUMMARY AND FUTURE WORK 
This work reveals that current adaptive streaming 

algorithms can result in substantial data wastage due to user 
early departure. Exploiting the principle of post-streaming 
analysis, the proposed PSWA framework can be used to 
reduce data wastage with little to no impact on streaming QoE 
performance. PSWA not only can turn an existing adaptive 
streaming algorithm into wastage-aware, it can also be applied 
to the design of new adaptation algorithms with wastage-
control built-in for further performance optimization. On the 
other hand, in the presence of different subscription plans, e.g., 
fixed quota vs unlimited, throttled vs unthrottled, etc., the cost 
of data wastage can be different for different users as well. 
Much work needs to be done to address these and many other 
data-wastage-related open problems. 
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Fig. 4. Data wastage reduction versus QoE reduction. 
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