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Abstract

Most video-on-demand (VOD) systems use a single,
powerful server to deliver video streams to users. In this
paper, we consider a novel server array approach for
delivering video services on networks.  Such an
approach has the benefits of (1) more system capacity,
as individual server has individual disk and network
channel, (2) scalable, as more clients can be supported
by adding more servers without data duplication, and
(3) fault tolerant, as server-level fault-tolerant and fauli-
recovery schemes can be devised. We describe our
experiences and results in the implementation of a
server-array-based VOD system. Qur system now has
Sfour P5-90 servers serving 40 PC-486 stations using a
10Mbps Ethernet switch. The system can deliver 40
simultaneous and independent 1.2Mbps, 30 fps, full TV
size, MPEG-1 video streams. Our results demonstrate
that with careful protocol designs, Ethernet can deliver
continuous video and audio services.

1. Introduction

Video-on-demand (VOD) service has many exciting
applications. Examples are movies-on-demand, music
video (karaoke) on-demand, video magazines, video
kiosks, computer-aided-training, and video library, etc.
With the advent of network and video technologies, there
has been tremendous interest in recent years on various
kinds of video distribution services and technologies [1-
6]. In this paper, we consider the delivery of 30 fps, TV
size and quality, MPEG-1 video streams on a local area
computer network (e.g., Ethernet).

Consider a VOD system which has only one video
server connecting to a number of client stations through a
network. The video server reads video blocks from the
disk storage, processes blocks into packets, and transmits
the packets to client stations through the network. The
server capacity is limited by three factors: disk
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throughput, CPU processing and I/O capability, and
network access bandwidth. To increase the system
capacity, one can use (1) a disk array instead of a single
disk, (2) a more powerful CPU, or (3) a high-speed
network such as ATM. Yet, these approaches are
expensive and possibly not cost-effective for small scale
multimedia systems. Another way is to duplicate video
storage on a number of servers. As video needs
enormous storage (~1 Gbyte per movie for MPEG-1
streams), video duplication is undesirable and yet
inevitable if we have to support a very large number of
users. In this paper, we consider a server array approach
where video blocks are interleaved across servers instead
of being duplicated. Server array is a counter-part of
interleaved memory banks and disk arrays [7], so is a
natural extension of load sharing at the server level.

Figure 1 shows the architecture of a server array
VOD system. A fast packet switch fabric is used to
connect video servers and client stations. As individual
server has its own disk subsystem and network segment,
the available network and disk capacity is scaled up with
the number of servers. In the following, we will discuss
the design issues one by one.

First, we note an asymmetric traffic requirement
between servers and clients. So the servers may be
assigned with one or more high-speed links, whereas
several clients may share a single low-speed link, as will
be illustrated later in our implementation. Second, we
see the need of a many-to-many communication protocol
between clients and servers. It can reduce server
processing overhead as compared with managing
multiple point-to-point connections. It can also
coordinate server transmissions so as to minimize
congestion when multiple servers transmit to the same
client at the same time. From our experience, the video
transport protocol must exhibit the following
characteristics. First, it must be able to deliver video
packets in time to ensure playback continuity. Second, it
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must be able to recover packet loss to avoid video
degradation, especially when error concealment
capability is not available. Third, it must reduce the
backward traffic from clients to servers. This can reduce
the server processing overhead and collisions on a
contention-based network such as Ethernet. Finally, the
protocol must be fast and efficient.

2. System design

We will discuss three aspects in system design: the
video transport protocol, the server, and the client.

2.1 Video transport protocol (VTP)

Our VTP consists of two parts: VTP Server and
VTP Client. Figure 2 shows how a server and a client
communicate. The client sends requests to the servers
one by one, and the server will transmit the video packets
with mechanisms for flow-control, and packet loss
recovery. Video data packets are transmitted using a fast
datagram protocol whereas control packets are
transmitted using a reliable datagram protocol [8].

2.1.1 Flow control

The video transport protocol use a credit-based
flow-control algorithm with prefetch-buffering. The
client buffer consists of Np video blocks, each of QO
packets. The blocks are managed as a circular buffer.
At connection setup time, the first (Np - 1) blocks are
prefetched from the servers before video playback is
started. We do not prefetch all Np blocks as the empty
buffer will always be used for accommodating the next
newly arrived video block. In this way, we avoid
memory copy when we submit a video block for
playback. The video block can still occupy the space in
the circular buffer during playback.

The client then initializes the video decoder, and
submits the first video block to the decoder for playback.
At the same time, the client will send a request to one
server for a new video block of Q packets. When the
playback device finishes with a video block, the client
will submit the next block to the device, and at the same
time sends a request to the next server, and so on. In this
way, the servers will never transmit more video data than
a client can handle. At the client station, video packets
are inserted into the receiver buffer directly using a
packet pointer. So the sequence of packet arrivals is not
important as long as they arrive before the time of
playback. This direct-buffer-insertion technique is very
useful as a client has to retrieve video blocks from
several servers. Simply, video packets from different
stations may arrive out of sequence.
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As described earlier, we need to reduce the
backward control traffic to a minimum, We see that the
percentage of request traffic inside the network is
Pc/ (Pe+ Q Py ), where Pc and Py are the sizes of
control packets and video packets respectively. In our
implementation, we have (=15, P.=48 bytes and
Py=4110 bytes, so the percentage of request traffic in the
network is less than 0.1%. Such a small value can
greatly reduce server processing overhead and can
effectively avoid Ethernet collisions.

2.1.2 Packet loss recovery

In a local area network, there is a possibility of
packet loss at a client station even if the network
utilization is not high. This is because the client station
may be busy in other tasks (e.g., submitting video blocks
to the decoder) while video packets are arriving. Packet
loss can affect the video quality, and can be detrimental
if the lost packet contains control or time-stamp
information. In particular, we need a time-sensitive
retransmission scheme to recover the lost of video
packets. In our scheme, a client will scan through the list
of video packets whenever it sends a new video request.
If there are lost packets which can be recovered before
the playback time, retransmission requests will be
transmitted to the server. The server will retransmit the
lost packets accordingly. In this way, lost packets will
not block future packet reception, which is important to
ensure continual video reception. To protect
unnecessary retransmissions due to random delay in
packet arrivals, we set a minimum retransmission interval
Tx so retransmission requests will not be sent for packets
which have not exceeded Tk.

On the other hand, we need to limit the amount of
retransmission traffic on the network as well. This is to
protect the system from malfunctioning clients which
might overload the network with retransmissions. We
limit each control packet to request for at most Ni
retransmission packets, so the server will retransmit at
most Ng lost packets for every new block of Q video
packets. The ratio of retransmission traffic over actual
traffic is therefore R=Ng/Q. In our implementation, we
set Ng=3, and Q0=15, we have R=20%. Note that Ny
cannot be too small, otherwise the retransmission process
will be very slow. In reality, the packet loss percentage
is less than 1%.

2.2 Server Design

While large video block gives better efficiency, a
client may get congested if a server transmits to the client
the entire block of packets in a short time. We therefore
need traffic shaping algorithms to control the rate of



transmission. Many such algorithms proposed are
designed for single traffic source, and are concerned with
controlling the rate at the user-network interface. In the
server array architecture, each server serves multiple
video streams simultaneuosly. It is desirable to have a
single scheduling algorithm controlling all video streams
simultaneously.

We wuse a novel Batch-Round-Robin (BRR)
algorithm with queue-sharing at each server to perform
scheduling and traffic shaping. In a server, there is one
request queue, one shared queue and M send queues.
The incoming requests are stored into the request queue,
and video blocks are read from disk storage into the
shared queue. Whenever a send queue is empty, a block
from the shared-queue is moved into the send queue for
transmission. Each send queue therefore contains at
most one block of packets at a time and each send queue
can serve video blocks from any video streams.

Assume that M, out of the M send queues have
packets for transmission. These send queues are serviced
in a round-robin manner, with g packets transmitted in
each round. The parameter g controls the maximum
number of consecutive packets (hence burst size) from
each video stream. The instantaneous rate r, of packet
transmissions to a client will be Cs/M,, where Cs is the
per-segment network throughput in packets per second.

If the system is lightly loaded, most of the send
queues would be empty and 4 may be too large for a
client. To circumvent this we define a minimum
interleaving interval 7; (in packet times). If the time for
one round of transmission is less than T; i.e.,
2(M, -1)< T, the server will simply wait until 7; before
starting the next round. Therefore, the maximum
instantaneous transmission rate for any client will
become ry=gCs/(g+ Tp). Similarly, the minimum
transmission rate for a stream will be r,, = Cs /M, when
all send queues have packets for transmission.

To ensure that servers are not overloaded, we use a
simple admission control algorithm. A new stream is
admitted only if the aggregate rate is below the server

capacity, i.e., Zri < Cs, where r; is the average rate of

individual streams. Note that ry 2r,2 r,,, and r4 have
to be greater than r; to ensure that the clients can receive
video blocks at a rate faster than the blocks being
consumed by the video decoder.

The proposed BRR algorithm has advantages over
existing scheduling disciplines like FCFS and Round-
Robin (RR). In fact, BRR degenerates into FCFS and

RR schemes when M=1 and M equals to the number of
active stations respectively. FCFS cannot control the
transmission rate and burst size. RR has to manage a
varying number of send queues, thus is more complicated
if there is a large number of client stations. In BRR, we
can have a guaranteed minimum transmission rate 7,,
maximum transmission rate ry, and maximum burst size
g, which are controlled by the number of send queues M,
the minimum interleaving interval 7} and the service
granularity g respectively. In addition, the memory
requirement is fixed irrespective of the number of clients
and servers, as long as the client-server ratio is fixed.
This is important for the server array to be scalable for
supporting more clients.

2.3 Client Design

At a client station, a circular buffer is used to absorb
variable delays to ensure video playback continuity. The
buffer also allows lost packets to arrive before playback.
Below, we analyze the system delay and derive the client
buffer requirement.

Figure 3 shows a typical statistics of the video
block playback time of an MPEG decoder. As a client
will send a request to the server array whenever a new
video block is submitted to the decoder, the same
statistics indicate the interarrival time for video requests
to the servers. We see that the distribution has a mean
T, which is the reciprocal of video rate (1.2 Mbps in our
case). We see a lower bound 7 and an upper bound of
Ty. Figure 4 shows the statistics of system delay for a
client to receive video packets after sending a video
request to a server. The waiting time has a maximum
value Dyux. From Section 2.2, the transmission time
required for the whole video block of packets will be
Q/rs, where ry 2r,2 r,. The maximum time required
Tr will be MQ/Cs. Consequently, the maximum time for
receiving a video block from a server is

Tp = Dyax + Tt M

As long as one video block is consumed by the
decoder, another block must be ready in the receive
buffer for video playback continuity. As the client starts
to play the (k+ Nj - 1) * block, the request of this block
must have been submitted (Np - 1) playback time earlier,
i.e., while the client started to play the k * video block.
So we must have

WNg-1)T,2Tp )]
or

Ng 21+ (DMAX + TT)/TL (3)
in order that all video blocks will be received in time for
playback.

1a.4.3
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In the above derivation, we have not considered
packet loss and retransmissions, so is in many studies
[9]. To incorporate delay in retransmission, we need to
know the characteristics of packet loss. With our traffic
shaping scheme implemented, the loss probability
becomes very small, and packet loss are in the form of a
burst of up to m packets. We observed that the loss
occurs when the client is busy in other tasks. But we
can safely assume that there will be no more than one
outstanding loss burst at a time. As each retransmission
request claims for Ni lost packets only, we need

5= [_m/ N R-l requests for recovering m lost packets.

Our experiments show that almost all lost packets can be
recovered in only one retransmission.

Let #, be the time the client sends out the
(k+ N - 1)* video request. At time t, + Dyuyx + Tr, the
client will have received the block and find that the block

has lost packets. Let v=[(DMAX +TT)/TL-| , then at

the worst case the client will be sending retransmission
requests at fryy 5 fpvss 5 s bepvass. Hopefully, the lost
packets for the last retransmission request will arrive at
time teoves-1+ Dyax + MNR/CS

Note that each retransmission request claims for Ng
packets only. To ensure video continuity, the last block
of retransmitted packets should be ready by the time the
client plays the (N - 1) video block. So we must have

(NB -V -5) TLZ Dyax +MNR/CS (4)
or

N Zv+s + (Dpax + MNRIC9) /T, (5)

Even if we continue with more retransmissions, the
resulting Ny would not be much different. On the other
hand, our results can be extended for networks with
longer delay (e.g., wide area networks) by using a large
value of Dyyx.

2.4 Interleave policy

In the server array, video duplication is avoided by
interleaving video blocks across the servers. Cnsider a
video file of length L packets. It can be divided into B
blocks of Q packets, with the last block smaller or equal
to Q. For simplicity, these blocks can be stored in the
servers in a round-robin manner as shown in Figure 5.
However, the storage and loading will not be evenly
distributed among the servers. Qur solution is to
randomly assign one server as a starting server for any
video stream, by placing the first video block in that
server. The other video blocks are stored in subsequent
servers in a round-robin manner. A database can be used
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System Parameters Empirical
and Variables Symbol Value
Network throughput
(per segment) Cs 320pps
Min retransmission interval

Ty 200ms
Min interleaving interval T; 20ms
Max system delay
for 10 active clients Diyiax 300ms
Min block playback time T, 160ms
Interleave Granularity g 1
Number of send queues M 5
Max # of retx packets
per requests Nr 3
Video block size (packets)

0 15
Maximum burst size of 6 (ISA)
lost packets m 3 (PCD)
Client buffer size Ng 9 blocks

Table 1: System parameter values

to store the information of all video files and the starting
server for each video stream.

2.5 Fault tolerance

Like disk array, server array can have reliability
problem. Specifically, failure in one server will render
the entire server array inoperable because there is no data
duplication. Fortunately, schemes operate at the server
level analogue to Redundant-Array-of-Inexpensive-Disks
(RAID) can be devised for the server array. Through
redundant servers and client data reconstruction, a server
array can have fault tolerant capability. We are
considering various architectures for Redundant-Array-
of-Distributed-Servers (RADS), and will report our
results in a later paper.

3. Implementation results

To demonstrate the feasibility of the server array
architecture, we implemented a video-on-demand system
on top of a 16x16 Ethernet Switch, each segment running
at 10 Mbps. Our server array consists of 4 independent
servers. Each is a P5-90 with two 10Mbps Ethernet links
and 4GB harddisk for video storage. So there are
altogether 16GB video storage (~1800 minutes of
1.2Mbps MPEG video). Eight network segments are
used for connecting client stations. Each switch port is
connected to a multiple-port repeater serving five client
stations. So a total of 40 client stations can be
supported. The client-server ratio is 10, and the



utilization of both server and client segments are around
66% (~6.6 Mbps with protocol overhead included). We
are in the process of ordering a Fast Ethernet switch.
Our preliminary evaluation shows that a P5-90 server can
deliver over 40Mbps throughput using a 100Mbps Fast
Ethernet adapter. This means that the client-server ratio
can be greatly increased. When the Fast Ethernet switch
arrives, we will be using Fast Ethernet adapters at the
servers, and client stations will still be sharing a 10Mbps
segment. Table 1 shows all the system parameters unless
otherwise defined.

3.1 Protocol performance

An experiment was set up to compare VIP with
three existing transport protocols (TCP, NetBIOS, SPX)
on a shared Ethernet segment with five video client
stations. The network utilization is obtained with a
protocol analyzer, and the server CPU utilization is
obtained from the Windows NT performance monitor.
Figure 6 shows that the network utilization of VTP
increases linearly with the number of clients. It also
shows that the network overhead is minimal. The
overhead includes protocol header, control traffic, and
packet retransmissions. Using VTP, five clients can be
supported with full frame rate and continuity. For the
other three protocols, we observe significant packet loss,
and the video becomes jerky if there are more than 2
video streams. Note that the network utilization for
TCP, NetBIOS, and SPX all decrease for more than 2
clients. This is due to collisions at the Ethernet which
reduce the network utilization. Figure 7 shows similar
result for server CPU utilization. Clearly, VTP has a
much better performance than the three protocols we
tested for video transmission.

3.2 Packet loss recovery

The packet loss probability at the client stations
depends on the instantaneous rate and burst size of video
packets transmitted by the server. The packet loss
probability also depends on the network adapter used.
Table 2 summarized the packet loss probabilities for
various network cards and interleave granularity g.
Clearly, ISA-bus network adapter loses more packets
than PCI-bus network adapter, and the loss probability
increases with g. However in all cases, all packet loss
can be recovered by the TCR scheme, resulting in a
smooth video playback. From our statistics, nearly all
packet loss are recovered in one retransmission, and the
amount of duplicate retransmission is negligible.

Netcards g Packet loss | Packet loss

(10 Mbps) | (packets) | w/o TCR w/ TCR
ISA-bus 1 ~10% 0%
PCI-bus 5 2% 0%
PCI-bus 2 1% 0%
PCI-bus 1 <0.5% 0%

Table 2: Packet loss probabilities

3.3 Client buffer

From system parameters, we have Np 2 4 if there
were no packet loss.  Incorporating packet loss
calculations, we obtained v=4 and s=2 in the case of
ISA-bus adapter. The client buffer size is therefore
Np 2 9 blocks (540KB) according to (§5). This confirms
with our experimental results that using 9 or more blocks
of buffer, we do not observe any video discontinuity. The
logging of the client buffer occupancy shows that the
derived buffer size is in fact more than sufficient
(Figure 8), as our derivation is a worst-case calculation.
The video prefetch delay is around 3 seconds under full
system loading.

3.4 Server array utilization

To demonstrate the scalability of server array, we
run a test to benchmark the server CPU utilization for
server arrays with 1, 2, and 4 servers. Figure 9 shows
that a single P5-90 server can support up to 10 client
stations on two Ethernet segments, and the server CPU
utilization is roughly proportional to the number of
active clients. On the other hand, the CPU utilization is
reduced in a linear fashion when more servers are added.
Note that the system capacity is CPU limited in this case.
We believe that similar result applies with other
configurations where the system is network or disk
limited.

4. Conclusion

In this paper, we considered a novel server array
approach in designing a video-on-demand system. We
described in detail the design and implementation of a
working VOD system. While other traffic control
schemes focused on network aspects, our results applied
at the application level and on an end-to-end basis. We
demonstrated that even the underlying network
(Ethernet) is unreliable and with no QOS control, a
careful design of higher layer protocols can result in a
successful application. Further work is in progress on
the fault tolerant issues, and on the extension to wide
area VOD network.
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Figure 7: Server CPU utilization comparisions
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