Redundant Array of Inexpensive Servers (RAIS)
for On-demand Multimedia Services

P.C. Wong and Y.B. Lee
Advanced Network Systems Laboratory
Department of Information Engineering
The Chinese University of Hong Kong, Hong Kong
{pcwong, yblee} @ie.cuhk.edu.hk

Abstract

In [1], we considered the design and implementation of a
server array system for delivering video-on-demand service on
a computer network. Data blocks are striped across an array of
autonomous servers, and each client station contacts the
servers one by one to retrieve blocks for constructing its own
video stream. The server array approach has the benefits of
(1) scalable storage capacity and throughput, and (2) load
sharing across the servers. In this paper, we study fault-
tolerance issues in a server array system and propose the
notion of Redundant Array of Inexpensive Servers (RAIS),
which is a server-level counterpart to Redundant Array of
Inexpensive Disks (RAID). While some concepts from RAID
may be applicable, we show that RAIS faces new challenges as
failure detection and recovery are handled by network
protocols, subjecting to error, loss, non-deterministic delay,
and bandwidth limitation. Through an implementation of
RAIS for delivering multimedia world-wide-web services, we
show that (1) server-level fault tolerance can be achieved, (2)
continuous playback of video and audio can be maintained in
spite of server failures, and (3) graceful service degradation
can be implemented using our Object Striping scheme.

1. Introduction

With the exploding success of the world-wide-web
(WWW), multimedia services (text, graphics, video, audio,
etc.) are becoming common place in both internet and intranet
applications. The ease of retrieving multimedia information
on-line using a client-server model becomes the norm of most
applications, and the design of network systems and servers for
delivering on-demand multimedia services becomes a hot topic
of research.

Nearly all of today’s servers run on a single machine
connected to the network. To achieve a higher server capacity,
one may use server clusters and distribute requests to
individual servers for a particular piece of information -
Service partitioning. This technique allows the loading to be
shared by several servers, but if many clients are accessing one
particular server for a specific object (e.g., a popular video),
the hot-spot server will still be overloaded. On the other hand,
server failures will render a subset of data inaccessible.
Another technique is to replicate data on several servers -
Service replication. This results in management complexity,
and the storage needed will be several times of the original
data. Given that multimedia objects like good quality video

0-7803-3925-8/97 $10.00 ©1997 IEEE 787

require vast amount of storage (e.g., a 90-minute MPEG 1
movie requires more than 1 GByte), service replication clearly
has its limitation.

In [1], we considered a server array for delivering video-
on-demand service on a local area network. Video blocks are
striped across an array of servers, and each client contacts the
servers one by one to retrieve the blocks for its own video
stream - Service striping. In this paper, we propose the notion
of Redundant Array of Inexpensive Servers (RAIS)
architecture such that server-level fault tolerance can be
achieved. Like RAID, a RAIS system achieves a scalable
system capacity and load sharing among servers. With server-
level fault-tolerant capability, the system can maintain a
continuous service (e.g., non-stop service to video and data
streams) to client stations despite one or more servers fail.

2. Redundant Array of Inexpensive Servers
(RAIS)

Figure 1 shows the network architecture of a general
server array system. Data blocks of each stream are striped
across the array of servers, for example block 1 on server 1,
block 2 on server 2, and so on. A fast packet switch is used to
connect server and client stations. Each server has a dedicated
network segment, and each client contacts the server one by
one for retrieving blocks of a particular stream, and
reconstructs back its own stream. Since each server has its
own storage, CPU, and network segment, the overall server
capacity increases with the number of servers. Furthermore,
one may increase the capacity at any time simply by adding
one more server and redistributing the data over the servers.

With an increased number of components, reliability
becomes an issue. In disk array, the increased number of disk
drives reduced the overall reliability as any disk failure can
render the entire disk array unusable. The solution in disk
array is to introduce error-correcting coding and store
redundant data to support fault tolerance - Redundant Array of
Inexpensive Disks (RAID) [2]. Similar problem also exists in
a server array and we propose extending the RAID concept to
the server level, forming a Redundant Array of Inexpensive
Servers (RAIS).

While RAID and RAIS are similar in concept, we find that
most RAID configurations are not feasible to work at the
server level. First, RAID-2, and RAID-3 stripe data on bit and
byte levels. Since data is reassembled at the client, probably
using a software module, reassembling multiple interleaved bit
or byte streams into a single stream would require too much
processing. Secondly, we may want to use different stripe size

for different media type to optimize the I/O efficiency.
Finally, we may want to assign different levels of redundancy
to different media type to allow graceful service degradation
during server failures. All these cannot be supported using the
RAID schemes. We propose in the following an Object
Striping scheme for RAIS to meet all these requirements.

3. Object Striping

Object striping does striping at the data object level. In
other words, striping is performed on each individual object,
such as a text page, an image, audio, or video file.

We propose a Dynamic Object Striping (DOS) scheme to
optimize striping for various kinds of media data. In DOS, all
storage is divided into small stripe units (e.g. 1KB), called
micro-blocks, and objects can be represented as a multiple of
micro-blocks. Using small stripe units solves the problem of
internal fragmentation. Under DOS, each object has its own
striping policy consisting of three attributes:

{START_UNIT, UNIT_SIZE, REDUNDANCY}

The DOS policy is created whenever an object is created
and stored into the server array. The DOS policy may be
changed if necessary, but the data will have to be redistributed
over the servers. START_UNIT records the starting stripe
unit of the particular data object; UNIT_SIZE records the
number of micro-blocks of that object to be striped on one
server as a macro-block. 1In this way, each object is striped
across the servers in terms of macro-blocks instead of micro-
blocks, and different objects may have a different size of
macro-block (i.e., stripe unit size). REDUNDANCY records
the level of redundancy employed in storing the object. A
larger value of REDUNDANCY means a higher level of
redundancy.

We see that different types of objects can be striped in a
different manner. Figure 2 shows that large objects can be
assigned DOS policy with large UNIT_SIZE (e.g. 64 micro-
blocks for video streams) for optimizing the disk I/O
efficiency. Each client request will retrieve 64 micro-blocks
from one server at a time. Smaller objects or infrequently
accessed data objects can be assigned a DOS policy with small
UNIT_SIZE (e.g. one or two micro-blocks). On the other
hand, video objects can be assigned REDUNDANCY of 1,
graphics with REDUNDANCY of 2, and texts with
REDUNDANCY of 3. In this way, video service survive
single-server failures, whereas graphics and texts will survive
double and triple-server failures respectively. This flexibility
allows multimedia services to degrade gracefully under
multiple server failures.

4. Failure Detection and Recovery

Analogous to RAID, we classify RAIS operation into five
modes [3): normal mode, failure mode, reconstruction mode,
reconfigured mode, and restoration mode. In normal mode, all
servers are operational. The system enters failure mode once a
server failure is detected. Redundant blocks are retrieved by
the client for lost data recovery. The system then commences
the reconstruction mode to reconstruct the lost data of the

788

failed server into a spare server. When the reconstruction is
completed, the system enters the reconfigured mode in which
the spare server replaces the failed server. When the failed
server is replaced, the system begins restoration mode to bring
the system back into normal configuration. In this paper, we
focus only on how a client can recover the lost data blocks to
maintain a continuous stream service. Interested readers are
referred to [3] for details on lost-data reconstruction.

4.1 Lost Data Recovery

When a server fails, the client needs redundant blocks
from the remaining operating servers to recover the lost blocks
at the failed server. In this respect, we propose two possible
approaches: Forward-Erasure-Correction (FEC) and On-
Demand-Correction (ODC).

Under FEC, redundant data are always transmitted to the
clients, even when no server fails. As a client always receives
the redundant data, no actions need to be taken during server
failure. The downside is increased system utilization during
normal-mode operation. Specifically, the extra overhead in
server, network, and client bandwidth is k/(N-k), where N is
the number of stripe units in each stripe for that object, and k is
the redundancy level for that object. For example, with a
(15,11) RS-code, we have N=15, k=4, the redundancy
overhead is 4/11 =36%. To reduce this overhead, we propose
a scheme called Progressive Redundancy Transmission (PRT).

In PRT, we take advantage of the fact that a server fails
with very low probability, and the probability of two or more
servers failing in a short time interval is negligible.. During
normal mode, we transmit only (N—k+1) out of the N symbols
in the (N, N-k) code. When one server fails, all data symbols
can still be recovered from the remaining (N-k) symbols. At
the same time, we start transmitting one more symbol along
with the remaining (N—k) symbols, resulting in again (N—k+1)
symbols. The system can then tolerate another server failure
and the process repeats again. The server, network, and client
overhead will be reduced to 1/(N-k) instead of k/(N—k). In the
(15,11) RS code example, this translates into only 9%
overhead compared to the original 36% overhead.

We can generalize the above PRT scheme to transmit
(N—k+r) symbols at normal operation, where 0<r<(N-k). Then
the system will be able to tolerate at most r simultaneous
server failures. In this case, the transmission overhead will be
r/(N—k). Therefore the PRT scheme allows a system designer
to trade-off between redundancy overhead and system
reliability.

Under On-Demand-Correction (ODC), redundant data are
not transmitted during normal-mode operation. When a client
detects a server failure, it initiates failure-mode operation and
starts requesting redundant data to reconstruct the lost data.
This approach does not require extra bandwidth during
normal-mode operation but increases the delay for receiving a
block when a server fails. We study this delay in the following
and derive the buffer size required for continuous- playback of
stream-type services.

4.2 Continuity in Stream-type Services

For stream-type services like video and audio, the
additional system delay means extra client buffer requirement
to maintain service continuity. We consider a simple credit-
based model to illustrate this additional client buffer
requirement. In this model, the client has Np blocks of buffer
prefilled with data before playback commences. Whenever the
client finishes using one block from the buffer for playback, it
submits a new request to a server for a new block to fill up the
emptied buffer. In this way, the client buffer will never be
overflown. If the client can always receive a block before it
empties its buffer, the stream will maintain its continuity.

We assume that the server response time (i.e. time from
sending a request to the server to the time a complete response
is received) is bounded by an upper limit D,,,,. Figure 3 shows
an empirical server response time distribution and such a
bound. We further assume that requests are generated quasi-
periodically with a minimum period of T seconds.

First consider the case of no server failure. We see that
the request time is coupled with the playback time for each
block. Let T be the minimum playback time of any block of
the stream, which is also the minimum time interval between
requests. When a client begins to play the (k+Nz—1)" block,
the request of this block must have been submitted (Nz—1)
block times earlier, i.e., while the client was starting to play the
K* video block. In order that the block is available before its
playback, we must have

(Ng = 1) T2 Dpux ¢y
or

Np 2 Dp/T) + 1)
which is the client buffer needed to ensure that all data blocks
will be received in time for playback.

When one or more servers fail, we need extra buffers for
(i) storing at least a full stripe of units for erasure-correction
and (ii) absorbing the additional delay for retrieving the parity
units.

For a (N, N-k) RS-code encoded data stripe, at least (N-k)
out of N stripe units are required to reconstruct the original
data. Hence we need to completely receive the first (N-k)
stripe units in the prefetch buffer every time a stripe unit is
consumed for playback. Let n be the number of buffer units
used for storing data stripe units, then we can extend Equation
(1) as follows:

(n=(N=k)T 2 Dy 3
However, we have not included buffers for storing incoming
parity units. Under PRT, r parity units are transmitted along
with data units, therefore we need a total of

Np2 nH (n/(N=k) Ir @
buffer units to maintain stream continuity under the FEC
scheme.

In the ODC case, the worst-case failure-detection time
occurs when the server fails immediately after acknowledging
a request packet without servicing it. This scenario is depicted
in Figure 4. Under this worst-case scenario the server failure
will be detected when retransmission requests are sent to the
failed server after a time D,,. Incorporating this into

789

Equation (1), we have the condition for the lost stripe unit to
arrive on-time:

(Ng =(N=K)) T 2 Dpax + Dipax + Tpgreer (5)
or

Ng 2 (2Dpax + Tpgreen)!/T + (N - k) (6)

5. Implementation Results

To demonstrate the feasibility of the RAIS architecture,
we developed a WebArray system to deliver on-demand
multimedia world-wide-web services. Alongside of WWW
requests, the system supports high quality video (MPEG 1) and
audio streams. The system runs on Pentium-90 PCs with
Windows NT 4.0 operating system. Figure 5 depicts the
access to our WebArray using a WWW browser (Netscape
Navigator), displaying text, graphics, and streaming video
simultaneously.

To ensure that video and audio streams can maintain
continuity irrespective of data trafficc we implemented
scheduling algorithms at both the disk and the network to give
a higher priority to stream-type trafficc. WWW requests are
generated by traffic generators on client PCs based on
WebStone 2.0 [5] and the standard test-file size distribution
shown in Figure 6. Requests for video data are generated by
actual video connections. Each client PC establishes an active
video connection for viewing a 1.2Mbps MPEG-1 video,
which is a 30 fps, near TV quality video through a web page.
The detailed design of this project is given in [4]. Here, we
focus our results on the server capacity and fault tolerant
capability.

5.1 RAIS Capacity and Scalability

We benchmarked the WWW service and the video service
separately. The results are shown in Figure 7, comparing the
WWW and video capacities versus the number of servers. We
see that the capacity in both cases scales up with the number of
servers almost in a linear fashion. This demonstrated the
scalability of the RAIS architecture.

On the other hand, video service achieves higher capacity
than WWW service under the same configuration. This is
because video objects are significantly larger than data objects.
As a result, video service requires significantly less connection
and delivery overhead.

5.2 RAIS Server Utilization During Normal and
Failure Mode

We conduct experiments to obtain the server utilization
before and after a server failure. The test is run with four
servers using distributed single-parity coding. In all cases,
client video continues playback without interruption during
and after server failure.

Figure 8 shows the test result for four servers with 10
concurrent video sessions. Fault tolerance is supported using
On-Demand-Correction (ODC). Server 3 is terminated
(disruptively) after 3 minutes. The fault is detected by all
clients and subsequently all clients enter failure-mode
operation. The extra retrieval of parity data results in

increases in server throughput after the fault. In this test,
transmission overhead for parity data is 1/(4-1) or 33%, which
agrees with our results.

Figure 9 shows a similar test where we transmit redundant
data continuously even under normal operating mode
(Forward-Erasure-Correction). Same as the pervious case,
Server 3 is terminated (disruptively) after 3 minutes. While the
fault is detected by the clients, no special action needs to be
taken because parity data are always transmitted. Hence there
is no increase in server throughput after failure. Rather, the
transmission overhead (33%) exists before and after server
failure.

The above tests show that our RAIS system can perform
lost data recovery and maintain video service continuity in the
midst of server failures. We also see that by using On-
Demand-Correction, there is no need to transmit redundant
data during normal operating condition. Rather, redundant
data transmissions are needed only after a server failure is
detected. Consequently, the system loading during normal
operating condition is lower, giving a better delay response to
all services before a server failure which is supposed to be a
rare case.

5.3 RAIS Client Utilization During Normal and
Failure Mode

In the same tests described in the previous section, we also
collected the network and CPU utilization at the client stations.
Figure 10 compares the client receive data rate for FEC and
ODC mode operations. As expected, FEC requires more
network bandwidth during normal operation. After the failure,
both FEC and ODC use the same amount of bandwidth.

Figure 11 shows the client CPU utilization for FEC and
ODC mode operations. At normal-mode, FEC requires more
CPU utilization because more data are received and processed.
After server failure, they have similar CPU utilization. Note
that the CPU utilization for ODC is roughly the same before
and after a server failure. This shows that the processing
overhead for data reconstruction (after a server failure) is
negligible as only simple parity operation is needed.

790

6. Conclusion

We proposed the Redundant Array of Inexpensive Servers
(RAIS) architecture for developing scalable and fault tolerant
servers. We compared and contrasted the differences between
RAIS and RAID. We studied the challenges in designing a
practical RAIS system and proposed our solutions. Our
implementation demonstrated that our architecture can achieve
fault tolerance at the server level, and support an uninterrupted
audio and video services during and after server failure.

References

[1] Y.B. Lee, P.C. Wong, "A Server Array Approach for
Video-on-demand Service on Local Area Networks, "
IEEE INFOCOM 96, San Francisco, USA, March 25-
28.

[2] D. Patterson, G. Gibson, R. Katz, "A Case for
Redundant Arrays of Inexpensive Disks (RAID),"
Proceeding of the ACM SIGMOD Conference, June,
1988, pp. 109-116.

[3] Y.B. Lee, P.C. Wong, “Storage Reconstruction in a
Video Server Array,” CUHK Technical Report TR-VL-
03, 1995.

[4] Y.B. Lee, P.C. Wong, “Designing a Server Array
System for Multimedia World-Wide-Web Services,”
CUHK Technical Report TR-WA-01, 1996.

[51 WebStone 2.0, Silicon Graphics Inc.,
http://www.sgi.com/Products/WebFORCE/WebStone.

12 =
EE =

Client Stations

i

i

{

1 i Packet Switch
! = sevr2 (Ethernet,
]

]

1

]

H

t

FastEthernet,
ATM, etc.)

Multimedia Server Array

Figure 1 - Server Array Architecture

. > Macro-blocks

haliniintiog |

Large Object A (UNIT_SIZE = 4)

Micro-blocks

Small Object B (UNIT_SIZE = 2)

0.03

0.025

0.02

0.015

Probebility

0.01 D max

§ 3888388888823 ¢8¢8

Time (ms)

Figure 3 - Distribution for server response time at peak
loading

Replies: *

]
Regquests: : % %

]

1

Request Declare
ReTx failure

Figure 4 - Worst-case scenario

791

Advanced Network Systems Lab

artasnt of Ixfermatien Enginesring
The Chinese Wniversity of NKems Eoma

eIntroduction

‘WebArmay is a mukimedia server developed using the Redundant Array of
Tnespeasive Servers (RALS) architectire. The RALS archesctare allows scalable

Hegver 1o be Funhsrmore,
pirearipliton kvl y s 10 opy ndidual verver
fadores.

eMultimedia Services

In addiion to s conventionst WWW secvices, our WebArray symtemn also prowdes
cotinsous-media seswices ke video and audio. What's more. ove advanced

Inegued

enmures the
quality-of-service of video and mudic iespacive of other data iralics snd services.

Fawered by

Figure 5 - Accessing WebArray through a WWW
browser

> Time

at server failure

i
a 400000 : —— S0 1
% ! Server3fails 0 je..... s,::: 2
£ |' =« v = Sever3
& 300000 1 i |——serer4]
[.
1
200000 + .
1 !
100000 .!
0.009 0.001 !
" 4 . ° ; : . gm0 N
500 5000 50000 500000 5000000 6 5 10 15 20 26 30 3 40 4 50 55 60 65
Objoct Size (Bytes) Time (5x seconds)
Figure 6 - WebStone standard retrieval distribution. Figure 9 - Test run for single-server failure in a 4-servers
RALIS system using FEC fault tolerant
250000 T |
25000000 T FEC :
) . 200000 + !
. »
;—Ezooooooo T .",. ‘ %’
g s & 150000 7 obc l
& 15000000 1 L s .
g 8 t
E e 100000 + |
£ 10000000 g 1 Server 3 fails
H 0@ L i
§ 50000 1 '
5000000 “- |
|
0 4 |
0 + ! — °° oS EEReYSBEERLE8RE882
o 2 4 L] 8 10 12 14 16 e -
Number of Servers Time (x3 seconds)
Figure 7 - Aggregate server throughput for WWW and Figure 10 - Client network receive rate before and after
Video services server failure
700000
600000 181 .
16+ FEC '
500000 -+
14 +
§ oo [ORPE: |
% | € Server 3 fails sl ooc !
: § 3
9 300000 + =
£ ! ¢ ! 0N
pe] "
!. g 67 : Server 3 fails
! 4t '
100000 “ lll 2 4 :
i_ [+] +—t 1 + Jl t t t ot -t —t
0 bl I XL L AL LT LA T] °ewo®wowugoweYIBEBeLgy g 888 e
0 s 10 15 20 2 3 35 40 45 50 55 60 M A ® o~ ~ 3 ® @ 2 2 C
Time (x5 veconds) Time (x3 seconds)
Figure 8 - Test run for single-server failure in a 4-servers Figure 11 - Client CPU utilization before and after server

RAIS system using ODC fault tolerant failure

792

