arallel Video
eIvers:
Tutorial

In conventional
video-on-demand
(VoD) systems,
compressed digital
video streams are
stored in a video
server for delivery to
receiver stations over
a communication
network. This article
introduces a
framework for the
design of parallel
video server
architectures and
addresses three
central architectural
issues: video
distribution
architectures, server
striping policies, and
video delivery
protocols.

Jack Y.B. Lee
The Chinese University of Hong Kong

mong the many different types of
media available for retrieval, retriev-
ing full-motion, high-quality video
in real time—video-on-demand
(VoD)—poses the greatest challenges. Digital
video not only requires significantly more storage
space and transmission bandwidth than tradi-
tional data services, it must be delivered in time
for continuous playback. Many studies conduct-
ed in the last decade have addressed these issues.
One common architecture shared by most VoD
systems is a single-server model. The video servers
can range from a standard PC for small-scale sys-
tems to massively parallel supercomputers with
thousands of processors for large-scale systems.
However, this single-server approach has its limi-
tations.

Scalability

The first of these limitations is capacity. When
demand exceeds the server’s capacity, one may
need to replicate data to a new server. This dou-
bles the system’s storage requirements. To reduce
storage overhead in replication and to balance the
load among replicated servers, a number of studies
have proposed replication algorithms based on
video popularity as well as server heterogeneity,
for example different storage and bandwidth.»2 A
second approach partitions the video titles into
disjointed subsets and stores each subset on a sep-
arate video server. Although this approach does
not incur extra storage, it suffers from another
problem—Iload balancing. Studies have shown
that video retrieval is highly skewed in many
applications because some videos are more popu-
lar than others.® Furthermore, the skewness

1070-986X/98/$10.00 © 1998 IEEE

changes with time, particularly when most users
have seen a popular video and it becomes less
popular. This implies that some video servers
might become overloaded because of a popular
title, while other servers might be underused.

A third approach takes advantage of the scale
economy in large VoD systems by batching mul-
tiple users to share a single multicast video
stream.* Multicasting popular video titles into
multiple channels in a staggered manner means a
user requesting a popular video title can be
batched into one of these multicast channels and
share it with other users. However, this approach
does not support full VCR-like controls because
the client can only select preset multicast chan-
nels. In a more recent study, Li and Liao proposed
a way to merge users into a multicast stream that
supports full VCR-like controls.’

The effectiveness of the batching approach
depends on the video access pattern as well as the
scale of the system. Loosely speaking, batching is
most effective when a large portion of the users
view only a small portion of video titles.

Server fault tolerance

A second limitation of single-server VoD sys-
tems is that they cannot survive server failure.
While replication can improve reliability, the stor-
age requirement will multiply. Partitioning can
confine a server failure to avoid bringing down all
servers in the system, but it still suffers from the
load-balancing problem discussed earlier. Finally,
the batching approach is not intended to provide
server fault tolerance and is also susceptible to
server failure.

Parallel video server

The scalability and fault tolerance problems are
due to the fundamental limitations of the single-
server architecture. Researchers have begun to
investigate video server designs and implementa-
tions based on parallel video server architectures
where video data are striped (rather than replicat-
ed or partitioned) across multiple servers.
Designing video servers with parallel architectures
not only breaks through the capacity limit of a
single server, but also opens the way for server-
level fault tolerance. Unlike replication and parti-
tion, server-level striping in parallel video servers
achieves scalability without extra storage over-
head. Moreover, the servers are load-balanced
regardless of the skew in video popularities. This
of course assumes each video stream is striped
across all servers, which is likely because the stripe

size is significantly smaller than the video stream.

This article introduces a framework for design-
ing parallel video server architectures. I will
address three central architectural issues: video
distribution architectures, server striping policies,
and video delivery protocols for parallel video
servers.

Parallel video distribution architectures

The essence of parallel video servers is the strip-
ing of data across an array of servers. Since the
data receiver (such as a video decoder) expects a
single stream of video data, data streams from
each server must first be resequenced and merged.
The term proxy refers to the system module
responsible for resequencing and merging data
from multiple servers into a coherent video stream
for delivery to a client. In addition, the proxy can
use data redundancy to mask server failures and
achieve server-level fault tolerance.

The proxy is a software or hardware module
that knows the system’s configuration. This
knowledge includes the number and addresses of
servers, data locations, and striping policy. There
are three ways to implement the proxy: at the
server computer—proxy-at-server; at an indepen-
dent computer—independent proxy; and at the
client computer—proxy-at-client. The term com-
puter in this context refers to the hardwate per-
forming the proxy function. In practice, this
hardware may or may not be a computer in the
general sense.

Proxy-at-server

Figure 1 shows the proxy-at-server architecture,
which includes N server computers, each pet-
forming as both storage server and proxy. Because
there are likely more clients than servers, each
proxy will have to serve multiple clients simulta-
neously. The servers are connected locally by an
interconnection network. The proxies combine
data retrieved from local storage and other servers
into a single video data stream for transmission to
the clients.

Under this architecture, system configuration
details can be completely hidden from clients. A
drawback of this approach is processing and com-
munications overhead. For example, to deliver B
bytes of video data from the video servers to a
client, B bytes of data must first be read from one
or more servers’ local storage. This data must then
be transmitted via network to the client’s proxy
(unless the proxy happens to share the same host
as the video server). Finally, the proxy processes

]
Server S, i

Proxy Py

ServerS; . Proxy P,

ServerS, . ProxyP,

ServerS; 1 Proxy P;

i

Server Sy_y 1 Proxy Py _; |

Combing storage serve with proxy server

the data and transmits to the client. Assuming all
N; servers evenly service requests, then on the
average B(2ZN; - 1)/N; bytes of data transmission
(server-to-proxy, proxy-to-client) and B(2N; - 1)/N;
bytes of data reception (proxy and client) are
needed for every B bytes of data delivered from
the storage servers to a client.

Independent proxy

Alternatively, separate computers can run the
proxies. Figure 2 shows the independent proxy
architecture using this approach. The back-end
storage servers and proxy computers are connected
locally by an interconnection network. Each proxy
connects to multiple clients via another external
network. Similar to the proxy-at-server architec-
ture, this independent proxy architecture also
hides server complexity from clients. Moreover,
separating the proxy from the server eliminates
interference between the two processes. This may
simplify the server and proxy implementations.

Server S

e |
s, |

Server S,

Server Sy g |L

Back-end
storage servers

Independent
proxies

Front-end clients

Figure 1. The proxy-at-
server architecture.

Figure 2. The
independent proxy
architecture.

Front-end
clients

s,

Server S; L

Figure 3. The proxy-at-
client architecture.

S
=
D
=
2
S
=
i
MLl
|

Back-end
storage servers

Front-end clients
with integrated proxy

Under the independent proxy architecture,
data is first retrieved from the back-end server’s
local storage and then transmitted to the proxy.
The receiving proxy then processes and transmits
the data to clients. Therefore, requesting B bytes
of data requires 2B transmission bytes and 2B
reception bytes. This approach requires even more
processing and network bandwidth than the
proxy-at-server architecture. Moreover, additional
hardware and network links are required to host
and connect the proxies.

Proxy-af—client

The third approach integrates the proxy into
the client, as shown in Figure 3. This can be done
by adding a proxy software module into the oper-
ating system or within the application. Under this
architecture, a proxy requests the servers to send
data directly to the client computer. After process-
ing by the proxy, video data goes directly to the
client application without further network com-
munications. Hence, retrieving B bytes from the
servers requires only B transmission bytes from the
servers and B reception bytes at the client.

Compared with the proxy-at-server and inde-
pendent proxy architectures, the proxy-at-client
architecture requires only half the amount of data
transfer and does not need separate hardware for
the proxies. The primary advantage of the proxy-
at-server and independent proxy architectures is
client transparency (the ability of the proxy to
hide the complexity of communicating with mul-
tiple servers). However, experimental results from
a study by Lee and Wong have shown that the
extra complexity involved is negligible, even
while running the client in moderate-speed hard-
ware such as a 60-MHz Pentium.®

On the other hand, if the computer running a
proxy fails under the proxy-at-server and the inde-
pendent proxy architecture, it will disrupt the ser-
vice of all clients served by the proxy. Conversely,
the same situation will only affect a single client
in the proxy-at-client architecture because each
proxy serves only one client and the proxy runs
at the client host.

Existing architectures

The proxy-at-server architecture has been con-
sidered by several researchers.”® In Tewari’s paper,
they called this the flat architecture. The same
studies also considered a two-tier architecture
equivalent to the independent proxy architecture.
They called the proxy a delivery node, which
retrieves video data from back-end storage nodes
and delivers a single video stream to the client. The
independent-proxy architecture was also consid-
ered in another study by Buddhikot et al.’® Unlike
previous works, the authors implemented the
proxy functionality in their custom asynchronous
transfer mode (ATM) port interconnect controller
(APIC), which also functions as the interconnec-
tion network linking the storage nodes and the
external network. Lougher et al. considered using
a striping server in a hierarchical network topolo-
gy to perform the proxy functions.!! Finally, the
proxy-at-client architecture has been considered
by several other researchers.%1>%

All three architectures are scalable in the sense
that more servers and proxies can be added to sup-
port more concurrent video sessions. However,
the proxy-at-server and independent proxy archi-
tectures suffer from the problem that a proxy fail-
ure will affect all connected clients. Conversely,
systems based on the proxy-at-client architecture
do not have the proxy reliability problem; only
back-end storage server failures need to be con-
sidered.

Server striping policies

Striping is a general technique for distributing
data over multiple devices to improve capacity (or
throughput) and potentially reliability. Disk array
and the Redundant Array of Inexpensive Disks
(RAID)™ are among the most successful applica-
tions. Other applications include network” and
tape striping.'® In a parallel video server, striping
video data over multiple servers increases the sys-
tem’s capacity and potentially improves its relia-
bility through data redundancy. This is called
server striping. Striping a video stream actoss all Ng
servers is commonly called wide striping. Striping

over a subset of the Nj servers is called short strip-
ing.® Unless stated otherwise, wide striping is the
method referred to in the following sections. .-

Time striping

A video stream can be viewed as a series of
video frames. Striping a video stream in units of
frames across multiple servers is called time strip-
ing. Figure 4 depicts one example of how video
units are striped using time striping. Assume that
a stripe unit contains L frames and the video plays
at a constant frame rate of F frames per second. In
each round of N(L/F seconds, L frames will be
retrieved from each setver and delivered to a
client. In general, the striping size L does not need
to be an integer equal to or larger than one. In
particular, if L < 1, then it is called subframe strip-
ing,'> where L > 1 is simply frame striping.

Studies by Biersack et al. considered time strip-
ing by using a granularity of one frame and also
one segment of a frame, or subframe striping.!>'
For subframe striping, they divided a frame into k
equal-size units and distributed the units across
the servers in a round-robin fashion. They argued
that subframe striping has perfect load balancing
for both constant bit-rate and variable bit-rate
video streams, as each frame is striped equally
across all servers. Conversely, a study by
Buddhikot et al. used a stripe unit of k (k = 1)
frames.!° They suggested solving the load balance
problem by grouping more frames into a stripe
unit to obtain a more uniform stripe unit size.

Space striping

Time striping divides a video stream into fixed-
length (in time) stripe units. A second approach
would be to divide a video stream into fixed-size (in
bytes) stripe units, called space striping. Space strip-
ing simplifies storage and buffer management at
the servers because all stripe units are the same size,
Moreover, the amount of data sent by each server
in a service round is also the same. A video stream
can be striped across the servers independent of the
encoding formats and frame boundaries.

This space striping approach is employed by
most of the studies already mentioned.61113-15
Depending on the system design, the stripe unit
size can range from tens of kilobytes to hundreds
of kilobytes. In most of the studies, a stripe unit is
assumed to play back in a constant time length.
However, under modern video compression algo-
rithms like MPEG, a fixed-size stripe unit will like-
ly contain a variable number of frames and partial
frames. Moreover, if the video is compressed using

“ vary and may cause playback starvation. To solve

Stripe unit m Vi1 Via

Vai

V22 ‘

<
N
S

v; is stripe unit i, containing frames ki to k(#1)-1

constant-quality compression algorithms, then
the video bit-rate will also vary. Consequently, the
decoding time for a stripe unit at the client will | striping.
this problem, designers can incorporate the
decoding time variation into the model to derive
the client buffer required to compensate for the
decoding time variations.

Placement policies

In the previous discussions, I have assumed a
round-robin placement of the stripe units across
the servers in the system. If the stripe units of a
video stream are denoted using v,, v;, ..., and so
on, then stripe unit v; will be stored in server (i
mod Ny). However, a minor problem with this pol-
icy is that server i will likely store more stripe units
than server j, for i < j. This happens because the
video length is not always an integral multiple of
the stripe size. Therefore, the last stripe will likely
contain less than Nj stripe units filling from serv-
et zero. To balance the storage, the round-robin
policy can be modified to start striping a new
video stream from different servers. Apart from
round-robin placement, Tewari et al. also consid-
ered a random placement policy where the order
within a stripe is permuted pseudo-randomly.®
They suggested that the round-robin placement
policy can introduce a convoy effect when one
server becomes overloaded. That is, the overload-
ing condition will shift from one server to the
next due to the round-robin placement. This con-
voy effect can be avoided by permuting the order
of the stripe units in each stripe.

Issues in load balancing

In time striping, the frequency at which video
frames are retrieved is the same for all participat-
ing servers. However, the size (in bytes) of stripe

Figure 4. Striping a
video stream over five
servers using time

>
<
3.
I
c
=
m
—
Q
©
*®

Figure 5. Adding
redundant data to
support server-level
fault tolerance.

Figure 6. Recovering
stripe units lost due to
failure of server 2.

Stripe —&- Vo [
[

S3 S4 Parity calculations
I V3 ‘ Po ’ Po=Vo @ Vi@V, D vy
P 1 I V7J P1=vs@ Vs O v @ vy

i
e | L ||
Stripeunlt—m m | P |
[v [! \

L

Vi3

Pa=Vg® V@ vy ® vy,

P3=V12@ Vi3 D vi4 D vys

Parity unit —-

units may not be the same. This is especially sig-
nificant in video streams compressed using inter-
frame compression algorithms like MPEG-1 and
MPEG-2. Consequently, the amount of video data
retrieved from each server in a round depends on
the type of frames stored. Take MPEG-1 as an
example. There are three frame types, namely I, P,
and B, in order of decreasing average size. A serv-
er storing an I frame will store and send much
more data than a server storing a B frame in the
same round. Worse still, if the number of servers
N; is 2 multiple of the MPEG group of pictures
(GOP) size G, then the uneven load will be repeat-
ed for all future service rounds. This could lead to
load imbalance where some servers become over-
loaded while others are underused.

For frame striping, this load-balancing problem
can be reduced by selecting L equal to integral
multiples of the MPEG GOP size G. This can
reduce the size differences between the stripe
units. In practice, the size of each GOP differs
slightly even in fixed-GOP MPEG encoding.
Moreover, some encoders produce MPEG streams
having variable GOP sizes to improve visual qual-
ity, thereby defeating the discussed solution.

sO S,

[o |
]
[]

Ps=Vig@Vi; D VvigDvyg

Conversely, Biersack et al. proposed subframe
striping to achieve perfect load balancing.'%%
However, subframe striping suffers from the prob-
lem that the processing complexity at the proxy
will increase when more servers are added to the
system. This is because the proxy needs to com-
bine subframe data from all servers for each video
frame. On the other hand, space striping is bal-
anced by definition. To cope with variable play-
back duration for each stripe unit, additional
client buffering can be used.

Another problem arises when a video stream is
played at a different speed than normal playback
speed, like fast forward and fast backward. Two
approaches support fast forward: encode separate
streamis for fast forward and fast backward pur-
poses; and skip frames to achieve an apparent
faster playback rate. The first approach needs extra
storage space, but the system design and imple-
mentation are fairly straightforward. For the sec-
ond approach, the fast forward feature leads to
load-balancing problems for parallel video servers.
To see why, consider a system having four servers
and using time striping of one frame per stripe
unit. If double-speed fast forward is implemented

Recovering lost units

V2=V0®V1®V2®p0

Ve=V; BV D pr D vy,

Vi3= Vi @ P3 @ vy @ vys

V7= P4 @ Vig® Vi@ vig

simply by skipping every other frame in the video
stream, then two of the four servers will handle all
data transmissions while the other two sit idle.
This problem has been studied in detail by Wu et
al and Buddhikot et al.”!® They proposed algo-
rithms for the data layout, scheduling, and play-
out control to support fast forward and other
interactive features.

Issues in redundancy

As discussed earlier, parallel video servers open
the way to achieving fault tolerance at the server
level. Ideally, the system should be able to main-
tain continuous video playback for all active ses-
sions when one or more of the servers become
inoperable. As with the disk array and RAID archi-
tectures, data redundancy can be added to support
failure recovery in a parallel video server. The basic
idea is to introduce one or more parity units into
each stripe. As shown in Figure 5, the parity units
are computed using the rest of the stripe units in
the same stripe. When a server fails, the lost stripe
unit stored in the failed server can be recovered
from the parity unit together with the remaining
stripe units (Figure 6).

For single-failure protection, simple parity
computed from exclusive-or between the data
stripe units can be used. A higher level of redun-
dancy can be achieved by using more sophisticat-
ed erasure-correction codes such as the
Reed-Solomon code. Note that to perform erasure-
correction, stripe units within a stripe must be of
identical size. This requirement argues against
time-striping algorithms, which result in variable
stripe unit sizes. Conversely, space striping, by
definition, has fixed sttipe size and can easily
extend to incorporate redundancy.

For parallel video servers, the fault tolerance
issue has been studied by Wong et al. and Biersack
et al.>"2 Biersack’s system employs subframe strip-
ing, hence they can use error-concealment tech-
niques to partially mask a server failure.
Alternatively, they also suggested the possibility
of using forward ertror cotrrection (FEC) to recover
subframes lost in a failed server. The study by
Wong et al. employs space striping algorithms
similar to RAID to achieve server-level fault toler-
ance.® Their system can sustain nonstop video
playback for all clients when a server fails.

In another study, Bolosky et al. proposed using
mirroring to achieve server fault tolerance.'® In
particular, they used declustering to evenly dis-
tribute the extra load caused by a server failure to
the remaining active servers. Unlike the study by

Server Client Server

| <a— Start new video |
| Video data —__, |
| Video data— |
| Video data—__, |
[Video data —_, |
| Video data — .
| Video data — g

|~ Video data—_, |

Server push

(a) (b)

Wong et al., their system does not perform real-
time recovery when a server fails; it cannot sustain
nonstop video playback for existing users.

Parallel video delivery protocols

The parallel video delivery requirement poses
challenges in designing the application protocol’s
flow control, error control, and synchronization.
The following section focuses on the client-pull
versus the server-push service model, then dis-
cusses synchronization and fault-tolerance issues.

Client-pull versus server-push

VoD systems generally have two ways to
request and deliver video data from a server to a
client. Most VoD systems let the video server send
data to the client at a controlled rate. The client
receives and buffers the incoming video data for
playback through a video decoder. As shown in
Figure 7a, once the video session starts, the video
server continues the data transmissions until the
client specifically sends a request to stop it. Since
the server pushes video data to the client at a con-
trolled rate, this approach is called server-push.

In the traditional request-response model, the
video client sends a request to the server for a par-
ticular piece of video data. As shown in Figure 7b,
upon receiving the request the server retrieves the
data from the disk and sends it back to the client.
This approach is called client-pull for obvious rea-
sons. The studies by Lee and Wong employ this
client-pull service model .51

Interserver synchronization
Most studies on single-server VoD systems
employ the server-push delivery model. This

|« Start new video ™|

la—— Request

I Video data -, |

| Video data —_,
l.«—— Request
| Video data —__, |

|~ Video data_—_p,.|

Client

———

Client pull

Figure 7. Service model
for VoD systems:

(a) server-push;

(b) client-pull.

>
©
=
L
=
3
m
—
0
0
oo

Figure 8. Extended
client-pull service model
for use in a parallel
video server.

8
T
O
2
=]
5
=
L
rm
=

Server Client
|« Start new video ™|

| «———Request (0) |

| Video dat
Server 0 v eO. A
| Video data— .|
| «——Request (1) |
| Video data — .|
Server 1

| Video data — .|

Client pull

model allows the system designer to devise peri-
odic schedules at the server for reading data off
the disk and then transmitting it to the client.
Extending the server-push model to a parallel
video server causes a new problem due to the par-
allel transmissions from multiple independently
running servers.

For example, consider a system with N; servers
using fixed-size space striping. To start a new
video session, a client sends a request to the
proxy, which in turn sends requests to all N
servers to start a new video session. Due to delay
variations in processing, networking, and sched-
uling, the servers will start transmitting data at
ditferent times. The first stripe unit might even
artive at the proxy later than the subsequent stripe
units. Consequently, the proxy has to buffer the
later stripe units to wait for the first stripe unit to
arrive for playback. This increases the client buffer
requirement and startup delay. ,

This synchronization problem has been studied
by Biersack et al.* For scenarios where network
delays between servers and a client is different,
they propose adding different delays to the start-
ing times of each server-to compensate for delay
differences. They also extended this model to
include bounded network delay jitters. In another
study by Buddhikot et al., they designed a closely
coupled system in which each storage node is con-
nected by a custom high-speed interconnection
network (APIC).*® The proximity of the storage
nodes enables them to be accurately synchronized
through the common APIC. Lee et al. extended the
client-pull service model for use in a parallel video
server (Figure 8).% Since a client explicitly sends a
request to a particular server for a specific piece of
video data, the synchronization is implicit and the
servers need not be separately synchronized.

Detecting and masking server failures

Earlier, I discussed how data redundancy can
be introduced among the servers to support setv-
er-level fault tolerance. The redundant data allows
the receiver to mask a server failure by computing
lost stripe units stored in the failed server from the
parity units together with the remaining stripe
units. In this section, I focus on ways to deliver
redundant data to the receivers.

Forward error correction. Network communi-
cations, generally offer two ways to recover pack-
ets lost in transit. The first way, called forward error
correction (FEC), sends redundant data along with
normal data to the receiver at all times. In this way,
the receiver can recover lost packets by using the
received data together with the redundant data.
This approach can extend to parallel video servers
to recover lost stripe units due to server fajlures.5%

FEC has the distinct advantage that the receiv-
er does not need to detect a server failure. Because
the receiver always receives redundant data, lost
stzipe units can readily be recovered in case a serv-
er fails. However, like the case in network commu-
nications, FEC incurs constant transmission
overhead even when no server fails. According to
coding theory, one redundant symbol is needed for
every lost symbol. Therefore, by using K to denote
the number of lost symbols we want to recover per
parity group (or stripe), the transmission overhead
will be K/(N;— K). This overhead could become sig-
nificant for systems having a small number of
servers or a high level of redundancies.

For a redundancy level of more than one (for
example, K> 1), Wong et al. proposed a progressive
redundancy transmission algorithm that transmits
less redundant symbols at startup.® A server failure
prompts a request for the setvets to start transmit-
ting one more redundant symbol per stripe. For
example, let K = 3. Then the system can transmit
only one redundant symbol at startup. When a
server fails, the system will be able to mask the fail-
ure immediately using the available redundant
symbol. At the same time, the receiver will request
the servers to start transmitting one more redun-
dant symbol per stripe, and so on. As servers sel-
dom fail simultaneously, this algorithm can keep
the transmission overhead low while still allowing
the system to survive multiple server failures.

On-demand correction. A second way to
recover lost packets in network communications
is retransmission. Unlike FEC, retransmission
requests extra transmission only when needed.

Table 1. Summary of designrchbicesfsmdied by various researchers.

- Video Distribution

Server Striping

Video Delivery
Researchers ‘ Architecture Policy Protocol
Biersack et al. . Proxy-at-client Time Server path . Stiping w/parity; FEC
(Video serverarray) . ‘ ' o . ‘
Bolosky et al. ‘ Proxy-at-client Space . Serverpath Mirroring with declustéring
- (Tiger video fileserver) k : ‘ ,
Buddihikot et al. Independent proxy Time Server path
(MARS)
Freeman et al. : Proxy-at-client Space e
(SPIEED)
Leeetal, Proxy-at-client Space . Client pull Striping w/parity; FEC and ODC
(Server array & RAIS) ,
Lougher et al. ‘ Independent proxy Space —
Reddy et al: Proxy-at-client, Space Server push
Independent proxy
Tewari et al. Proxy-at-client, Space Server push
(Clustered video server) Independent proxy
Wu and Shu Proxy-at-client, Space & Time Server push

Independent proxy

While retransmission cannot recover packets lost
in failed servets, this on-demand principle can be
extended for the delivery of redundant data. This
approach is known as on-demand correction
(ODC). Specifically, the system does not send
redundant data until the system detects a server
failure. This method completely avoids the trans-
mission overhead in FEC and the system can still
recover from server failures.

The challenge in ODC is to devise a way to de-
tect server failures quickly and reliably. The detec-
tion method must be quick enough to ensure that
video playback continuity can be sustained while
the system requests redundant data for recovery.
On the other hand, the detection method must
not generate too many false alarms or risk causing
the system to send redundant data anyway.

Wong et al. designed a new video transfer pro-
tocol together with a new network protocol to
detect and mask server failure.® They successfully
implemented both FEC and ODC in a LAN envi-
ronment where network delay is relatively short
and constant.

Future research directions

Many of the studies reviewed here have shown
that a scalable video server can be built from a
cluster of cheaper, less powerful servers. Table 1
summarizes the design choices studied by various
researchers. In addition, some of the studies have
exploited parallelism to support server-level fault

tolerance. The early results have demonstrated the
feasibility of maintaining nonstop video services
despite server failures.

Despite its brief history, parallel video server
research has obtained many encouraging results.
As discussed in this article, many architectural and
design alternatives with many combinations
remain unexplored. In the future, the following
issues will need study: ‘

1. Server synchronization issues for loosely-cou-
pled, push-based parallel video servers. The
synchronization scheme must be efficient, yet
accurate enough to avoid server asynchrony.
Furthermore, the scheme must be able to sur-
vive server failures.

2. Push-based transmission scheduling for loose-
ly-coupled parallel video servers. The schedul-
ing policy must tolerate the clock jitter
inherent among loosely coupled servers.
Moreover, the scheduling policy must handle
the case when one or mote server fails and be
able to sustain nonstop video playback for
existing users.

3.Scheduling issues for delivering VBR video
streams in a parallel video server.

4.Extensions of the server striping principle to
implement parallel multimedia servers. MM

>
e
=
L
=
S
o
—
\0
0
0

.8
")
d
=
=
5
=
L
o
w

Acknowledgments

I thank the reviewers for their constructive com-

ments in improving this article to its final form.

References

1. N. Venkatasubramanian and S. Ramanthan, “Load
Management in Distributed Video Servers,” Proc.
17th Int'l Conf. on Distributed Computing Systems,
IEEE Computer Society Press, Los Alamitos, Calif.,
1997, pp. 528-535.

2. C.C. Bisdikian and B.V. Patel, “Issues on Movie
Allocation in Distributed Video-on-Demand
Systems,” Proc. ICC95, IEEE Press, Piscataway, N.J.,
1995, pp. 250-255.

3. C. Griwodz, M. Bar, and L.C. Wolf, “Long-term
Movie Popularity Models in Video-on-Demand
Systems or, the Life of an On-Demand Movie,” Proc.
Multimedia 97, ACM Press, New York, 1997, pp.
349-357.

4, A. Dan, D. Sitaram, and P. Shahabuddin,
“Scheduling Policies for an On-Demand Video
Server with Batching,” Proc. 2nd ACM Multimedia
Conf., ACM Press, New York, 1994, pp. 15-24.

5. W. Liao and V.O.K. Li, “The Split and Merge
Protocol for Interactive Video-on-Demand,” IEEE
MultiMedia, Vol. 4, No. 4, Oct. 1997, pp. 51-62.

6. P.C. Wong and Y.B. Lee, “Redundant Array of
Inexpensive Servers (RAIS) for On-Demand
Multimedia Services,” Proc. ICC 97, |EEE Computer
Society Press, Los Alamitos, Calif., 1997, pp. 787-
792.

7. A. Reddy, “Scheduling and Data Distribution in a
Multiprocessor Video Server,” Proc. Second IEEE Int’|
Conf. on Multimedia Computing and Systems, IEEE
Computer Society Press, Los Alamitos, Calif., 1995,
pp. 256-263.

8. R. Tewari, R. Mukherjee, and D.M. Dias, “Real-Time
Issues for Clustered Multimedia Servers,” IBM
'Research Report RC20020, June 1995.

9. M. Wu and W. Shu, “Scheduling for Large-Scale
Parallel Video Servers,” Proc. Sixth Symp. on the
Frontiers of Massively Parallel Computation, \EEE
Computer Society Press, Los Alamitos, Calif., 1996,
pp. 126-133.

10. M.M. Buddhikot and G.M. Parulkar, “Efficient Data
Layout, Scheduling and Playout Control in MARS,”
Proc. NOSSDAV 95, Springer-Verlag, Berlin, 1995,
pp.318-329.

11.P. Lougher, D. Pegler, and D. Shepherd, “Scalable
Storage Servers for Digital Audio and Video,” Proc.

IEE Int'l Conf. on Storage and Recording Systems 1994,
IEE Press, London 1994, pp. 140-3.

12.C. Bernhardt and E. Biersack, “The Server Array: A
Scalable Video Server Architecture,” High-Speed
Networks for Multimedia Applications, Kluwer Press,
Boston, 1996.)

13. W.J: Bolosky et al., “The Tiger Video Fileserver,”
Proc. Sixth Int’l Workshop on Network and Operating
System Support for Digital Audio and Video, IEEE
Computer Society Press, Los Alamitos, Calif., 1996.

14.C.S. Freedman and D.]. DeWitt, “The SPIFFI Scalable
Video-on-Demand System, ” Proc. ACM Sigmod 95,
ACM Press, New York, June 1995, pp. 352-363.

15.Y.B. Lee and P.C. Wong, “A Server Array Approach
for Video-on-Demand Service on Local Area
Networks,” IEEE Infocom 96, IEEE Computer Society
Press, Los Alamitos, Calif., 1996, pp. 27-34.

16.D.A. Patterson et al., “Introduction to Redundant
Array of Inexpensive Disks (RAID),” Compcon Spring
89, IEEE Computer Society Press, Los Alamitos, Calif.,
1989, pp. 112-17.

17.C. Brendan, S. Traw, and J.M. Smith, “Striping
Within the Network Subsystem,” IEEE Network, IEEE
Press, Piscataway, N.|., 1995, pp. 22-32.

18.A.L. Drapeau and R.H. Katz, “Striped Tape Arrays,”
Proc. 12th IEEE Symp. on Mass Storage Systems, |EEE
Press, Piscataway, N.J., 1993, pp. 257-65.

19.E. Biersack, W. Geyer, and C. Bernhardt, “Intra- and
Inter-Stream Synchronization for Stored Multimedia
Streams,” Proc. IEEE Intl Conf. on Multimedia
Computing Systems, IEEE Computer Society Press,
Los Alamitos, Calif., 1996, pp. 372-381.

Jack Lee is a visiting assistant pro-
fessor in the Information
Engineering Department at the
Chinese University of Hong Kong.
He received his PhD and Beng

= degrees from the same department
in 1997 and 1993. His research interests include distrib-
uted multimedia systems, fault-tolerant systems, and
Internet computing.

Readers may contact Lee at the Department of
Information Engineering, The Chinese University of
Hong Kong, Shatin, N.T., Hong Kong, email
yblee@ie.cuhk.edu.hk.

