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ABSTRACT 
 
Over the years the Internet has shown extraordinary scalability and robustness in spite of the explosive growth in 
geographical reach, user population size, as well as network traffic volume. This scalability and robustness is, in no small 
part, supported by the Internet’s transport protocols, the Transmission Control Protocol (TCP) in particular. 
Nevertheless, with the rapid growth of multimedia-rich contents in the Internet, such as audio and video, the many 
strengths of TCP in data delivery are slowly imposing bottlenecks in multimedia data delivery where different media 
data flows often have different needs for bandwidth. As TCP’s congestion control algorithm enforces fair bandwidth 
sharing among traffic flows sharing the same network bottleneck, different media data flows will receive the same 
bandwidth irrespective of the actual needs of the multimedia data being delivered. This work addresses this limitation by 
proposing a new algorithm to achieve non-uniform bandwidth allocation among TCP flows originating from the same 
sender passing through the same network bottleneck to multiple receivers. The proposed algorithm, called Virtual Packet 
Substitution (VPS), has four desirable features: (a) it allows the allocation of bottleneck bandwidth between a group of 
TCP flows; (b) the resultant traffic flows as a whole, maintain the same fair bandwidth sharing property with other 
competing TCP flows; (c) it can be implemented entirely in the sender’s TCP protocol stack; and (d) it is compatible 
with and does not require modification to existing TCP protocol stack at the clients. Simulation results show that the 
proposed VPS algorithm can achieve accurate bandwidth allocation while still maintaining fair bandwidth sharing with 
competing TCP flows. 
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1. INTRODUCTION 
 
Over the years the Internet has shown extraordinary scalability and robustness in spite of the explosive growth in 
geographical reach, user population size, as well as network traffic volume. This scalability and robustness is, in no small 
part, supported by the Internet’s transport protocols, the Transmission Control Protocol (TCP)4 in particular. The flow 
and congestion control algorithms in TCP ensure that network bandwidth is shared among competing traffic flows in a 
fair manner5, and network congestions are automatically alleviated by throttling the sending rate at the source. 

Nevertheless, with the rapid growth of multimedia-rich contents in the Internet, such as audio and video, the many 
strengths of TCP in data delivery are slowly imposing bottlenecks in multimedia data delivery1-3. Specifically, TCP’s 
congestion control algorithm enforces fair bandwidth sharing among traffic flows sharing the same network bottleneck. 
Thus two multimedia flows going through the same network bottleneck will receive the same bandwidth irrespective of 
the actual needs of the multimedia data being delivered.  

For example, suppose a multimedia server is sending two streams of video data S1 and S2, of encoded video bit-rates 
0.3 Mbps and 0.7Mbps respectively, through the same network bottleneck17, 18 to two different clients. Now if the 
network bottleneck has 1Mbps available bandwidth, then in principle there is sufficient bandwidth to transport both 
video streams. However, if the server simply send both video streams using TCP and rely on TCP’s flow and congestion 
control algorithms to control the sending rates, then the fair bandwidth sharing property of TCP will ensure that each of 
the video streams will get half the available bandwidth, i.e., 0.5Mbps. Obviously, this is too much for S1 at 0.3Mbps and 
too little for S2 at 0.7Mbps. 

Multimedia Computing and Networking 2006, edited by Surendar Chandra, Carsten Griwodz, 
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6071, 60710H, © 2005 SPIE-IS&T · 0277-786X/05/$15

SPIE-IS&T/ Vol. 6071  60710H-1



 

 

Apparently, if the server knows the video streams’ bit-rates and can control the transmission rates at the application 
layer, then it seems the problem can be solved by sending the video at their playback rates instead of the rates allowed by 
TCP. This approach, however, suffers from two limitations. First, while it is possible for the server application to send 
data at a rate lower than the rate allowed by TCP, the opposite is simply impossible as the application will soon be 
blocked from sending more data by the network programming API (e.g., sockets6) once the sender’s transport buffer is 
full. Second, even if the server frees up bandwidth from a TCP flow by sending at a lower rate, the saved bandwidth may 
not be fully transferred to another specific TCP flow.  

To see why, suppose there are two other competing TCP flows S3 and S4 sharing the same bottleneck as the two 
video streams S1 and S2, then any bandwidth, say C bps, freed up by the server (through sending S1 at a lower rate) will 
be up for grab by the remaining three competing flows (S2, S3, and S4). Given TCP’s fair bandwidth sharing property this 
means that each of the competing flows (S2, S3, and S4) will receive one-third of the freed bandwidth, i.e., C/3 bps. It is 
easy to see that this dilution effect increases with more competing TCP flows sharing the same network bottleneck and in 
the Internet it is not uncommon to have tens or hundreds of flows going through a network link. 

We tackle this problem in this work by proposing a new algorithm to achieve bandwidth allocation among TCP 
flows originating from the same sender passing through the same network bottleneck to multiple receivers. The proposed 
algorithm, called Virtual Packet Substitution (VPS), has four desirable features: (a) it allows the allocation of bottleneck 
bandwidth between a group of TCP flows; (b) the resultant traffic flows as a whole, maintain the same fair bandwidth 
sharing property with other competing TCP flows; (c) it can be implemented entirely in the sender’s TCP protocol stack; 
and (d) it is compatible with and does not require modification to existing TCP protocol stack at the clients. 
 
 

2. RELATED WORK 
 
The problem of bandwidth differentiation has been investigated by Mehra et al.7 and Crowcroft et al.8. Mehra et al.7 
proposed a receiver-driven bandwidth allocation algorithm that can allocate bottleneck bandwidth among multiple TCP 
flows. The principle is to adjust the receiver’s TCP advertised windows and the delays in sending acknowledgements 
such that prioritized and weighted bandwidth sharing can be achieved. However, their algorithm can only allocate 
bandwidth among flows destined to the same receiver, whereas in our study the focus is for flows originating from the 
same sender to multiple receivers.  

In another study, Crowcroft and Oechslin8 proposed the MulTCP congestion control algorithm to achieve 
differentiated end-to-end service. The principle is to change the rate at which a TCP flow increases and decreases its 
congestion window to make it behaves like N concurrent TCP flows. Bandwidth allocation can then be achieved by 
setting the multiplier N for each flow. The protocol is simple and only limited coordination among multiple TCP flows is 
required. However, as the objective of MulTCP is not to minimize the impact to other competing ordinary TCP traffic, it 
will cause the competing ordinary TCP flows to lose some of their original share of bandwidth. We compare our 
proposed protocol with MulTCP in more details in Section 4.  

 
 

3. PROTOCOL ARCHITECTURE 
 
We need to overcome two problems to support non-uniform bandwidth allocation in TCP. First, we need to modify the 
congestion control algorithm such that credits received (via acknowledgement packets) for data transmission can be 
reallocated from one flow to another flow. The goal is to allocate the bottleneck bandwidth to the TCP flows according 
to application-specified ratios {w1, w2, …, wn}, i.e., flow i will be allocated a proportion of /i j

j
w w

∀
∑  of the bottleneck 

bandwidth. Note that here the term bottleneck bandwidth refers to the total amount of bandwidth that would have been 
received by n ordinary TCP flows passing through the network bottleneck, and so it will be smaller than the bottleneck 
link capacity in the presence of other competing TCP flows. Second, we need to regulate the aggregate traffic flows such 
that as a whole the group behaves in the same way as ordinary TCP flows so that other competing TCP flows (either 
from other hosts or from the same hosts but managed by ordinary TCP) will neither receive more nor less bandwidth 
than normal. The following sections present details of the proposed protocol architecture that achieves these two goals. 
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Fig. 1. Protocol architecture and interfaces to application and network layers. 
 
 

3.1. Operating principle 
In ordinary TCP each flow is independent from all other TCP flows. The application will submit data to a TCP flow for 
transmission using an application protocol interface such as sockets6. Upon receiving the application data, TCP will then 
construct one or more TCP segments and submit them to the IP layer for transmission, subject to the control of the 
congestion window and the receiver window of the TCP flow. The congestion window is computed by the sender using 
the well-known Additive Increase Multiplicative Decrease (AIMD) algorithm9 and this window limits how much data 
the sender can send while waiting for the receiver’s acknowledgements. Upon receiving data correctly, the receiver will 
send acknowledgement packets back to the sender. The size of the congestion window and the highest sequence number 
acknowledged by the receiver together determine whether the sender can send more data. The receiver window is also 
sent as part of the acknowledgement packet, informing the sender of the receiver’s buffer availability for flow control 
purpose. As our focus is on network bottleneck rather than the receiver buffer being the bottleneck so we will assume the 
receiver window is not the limiting factor and only consider the congestion window in the following discussions. Future 
work will look into the reallocation of unused bandwidth due to limited advertised window to other flows in the group.  

Fig. 1 depicts the proposed protocol architecture. When the server application creates a new TCP flow through the 
network programming API (e.g., by accepting an incoming connection through a stream socket), the transport will create 
two flows internally – an actual flow denoted by Fi and a virtual flow denoted by Vi. The actual flow implements the 
standard transport buffering functions and receives and buffers data from the application awaiting transmission. The 
actual flow, however, does not implement congestion control or maintain its own congestion window. Instead, the 
Virtual Packet Substitution (VPS) module is responsible for passing data from the actual flow to the IP layer for 
transmission. 
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3.2. Traffic regulation and bandwidth differentiation 
On the other hand, the virtual flow implements the standard TCP congestion control algorithm such as the AIMD and 
maintains its own congestion window in exactly the same way as ordinary TCP does. However, data transfer in a virtual 
flow is simulated rather than physically implemented. When a virtual flow sends a new virtual TCP segment, it submits 
the virtual TCP segment to the VPS for processing. The VPS does not actually send the virtual TCP segment, but instead 
updates its internal counters to reflect the fact that one more TCP segment can be transmitted from the actual flows. In 
other words, the virtual flows are used solely for the purpose of running the standard TCP congestion control algorithms 
to compute how much data can be transmitted. This ensures that the outbound data traffic conforms to TCP’s fair-sharing 
property. 

Eventually, the VPS module replaces the virtual TCP segment by a physical TCP segment from one of the actual 
TCP flows. This packet substitution process however, is not fixed in terms of the mapping between virtual TCP flows 
and actual TCP flows. Instead, the substitution is performed dynamically to allocate the transmission quota to the actual 
TCP flows according to their application-specified bandwidth ratios {w1, w2, …, wn}.  

For example, consider the case of two flows with bandwidth ratio of w1:w2=1:2, i.e., flow 1 and flow 2 are to receive 
1/3 and 2/3 of the bottleneck bandwidth respectively. Then for every three virtual TCP segments generated by the two 
virtual TCP flows, the VPS will replace one of them with physical TCP segment from flow 1, and two of them with 
physical TCP segments from flow 2. In this way the two actual TCP flows will receive bandwidth according to their 
respective ratios. 

3.3. TCP ACK translation  
There is a subtle problem with the previous packet substitution algorithm. Specifically, when TCP acknowledgements 
are received from the clients, these acknowledgement (ACK) packets will be acknowledging TCP segments of the actual 
TCP flows because the transmitted TCP segments are really from the actual TCP flows rather than the virtual TCP flows. 
However, without proper acknowledgement information, the virtual TCP flows will not be able to run their congestion 
control algorithm to update the congestion window, which in turns control the transmission quota used by the VPS 
module. 

To tackle this problem, we need to keep track of the mappings between the virtual TCP segments generated by the 
virtual TCP flows and the physical TCP segments transmitted from the actual TCP flows. Every time the VPS performs a 
packet substitution, it creates a packet substitution record (PSR) with fields {VA, VSeq, FA, FSeq} where VA, VSeq are the 
virtual TCP flow’s transport address (i.e., source and destination IP addresses and port numbers) and TCP segment 
sequence number; and FA, FSeq are the actual TCP flow’s transport address and TCP segment sequence number. The new 
PSR entry is then appended to the corresponding actual TCP flow’s PSR list. 

Now when an ACK packet arrives from a client, the VPS will lookup the PSR entry in the corresponding actual TCP 
flow’s PSR list, using the fields FA and FSeq as matching criteria. Next the VPS will generate a virtual ACK packet by 
substituting the actual address FA by the virtual address VA, and the actual ACK sequence number FSeq by the virtual 
sequence number VSeq. In other words the VPS performs a reverse substitution to translate the received actual ACK 
packet to a virtual ACK packet and sends it to the virtual TCP flow for running the congestion control algorithm. In 
practice, the PSR table can be implemented as a circular array of PSR entries. Given that the maximum receiver window 
is relatively limited (e.g., 128), the amount of memory consumed is insignificant. Moreover, as the sequence numbers of 
adjacent TCP segments are often offset by the same amount (i.e., one MTU), the VPS can lookup a PSR entry simply by 
using the ACK’s sequence number to index directly into the PSR circular array, thereby reducing the processing 
complexity significantly. 

There is, however, one more complication - most of today’s Internet hosts run a variant of TCP called Reno with the 
SACK option11 enabled by default * . With the SACK option the ACK packet may also include additional 
acknowledgements on discontinuous ranges of sequence numbers. The VPS in this case will generate, as needed, 
separate ACK packets for the virtual TCP flows. Finally, the processed PSR entries are then removed from the PSR list 
of the actual TCP flows. 
 

                                                           
* According to the statistics13, about 90% of the host in the Internet use Windows 98, 2000, XP and Linux as the operating system and 
all these operating systems enable the SACK option by default14-16. 
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4. PERFORMANCE EVALUATION 
 
In this section we use simulation to evaluate performance of the proposed protocol and compare it with the standard TCP 
Reno5, 12 and the MulTCP8, of which the latter also supports bandwidth differentiation. To ease description we will use 
the name VPS flows to refer to traffic flows using the proposed bandwidth differentiation protocol and TCP flows to refer 
to traffic flows using the standard TCP protocol. 

4.1. Performance metric 
To facilitate comparison, we define a metric to quantify the protocols’ accuracy in allocating bandwidth according to the 
specified ratios. Let there be N flows with application-specified ratios {w1,w2,…,wN}. Let {r1,r2,…,rN} be the actual 
throughput measured in the simulation. Then for each flow we compute its allocation accuracy, denoted by Ai, from 

           1

1

/

/

N
i kk

i N
i kk

r r
A

w w
=

=

= ∑
∑

   (1) 

where the numerator is the actual proportion of bandwidth received and the denominator is the proportion as specified by 
the bandwidth ratios. Therefore if the protocol performs perfectly the two will be the same and the allocation accuracy 
will be equal to 1. A value smaller/larger than 1 implies that the actual bandwidth received is less/more than that 
specified by the bandwidth ratios. 

To evaluate the overall accuracy for all flows we compute the overall allocation accuracy, denoted by A, from 

           
( )21

2
1

N
ii

N
ii

A
A

N A
=

=

=
∑
∑

   (2) 

with a range from 0 to 1, with 1 indicating perfect allocation and lower values indicating larger deviations from the 
specified bandwidth ratios.  

To evaluate the protocols’ bandwidth sharing property, we define a fairness ratio, denoted by F, from  
           i j

i j

F r s
∀ ∀

= ∑ ∑    (3) 

where the numerator is the aggregate bandwidth of all VPS flows and the numerator is the aggregate bandwidth of all 
standard TCP flows. In our simulation the number of VPS flows and standard TCP flows are the same so a value of F=1 
implies perfect fair sharing of bandwidth with competing TCP flows, and higher/lower values of F indicates that the VPS 
flows receive more/less bandwidth than the competing TCP flows. 

4.2. Simulation setup  
The simulator is developed using the NS2 version 2.28 simulator10 using the network topology shown in Fig. 2. There 
are three types of network traffic, including N VPS flows, N Reno TCP flows and a UDP flow generating exponential 
background traffic at a rate of 40×2×N kbps. All flows pass through the same bottleneck with 4N Mbps bandwidth, 50ms 
delay, and using the droptail queueing discipline. All other links have 100Mbps bandwidth and 10ms delay. Unless 
specified otherwise, we use N=3 VPS flows with application-specified bandwidth ratios of {1, 4, 8} and three competing 
TCP Reno flows. For both TCP Reno and VPS flows we assume the sender always has data to send, and all senders and 
receivers have the SACK option enabled. Each simulation run lasts for 1 hour of simulated time.  

4.3. Performance over different time scales 
We first investigate the protocols’ allocation accuracy in Fig. 3 with results computed over different time scales, i.e., 
with bandwidth averaged over different time windows. The results show that VPS flows have perfect allocation accuracy 
of 1 as the VPS module assigns transmission quota to the VPS flows strictly according to the specified bandwidth ratios. 
In comparison, MulTCP also achieves good allocation accuracy of about 0.85 but the accuracy decreases (with larger 
coefficient-of-variation) over shorter time scales. Fig. 4 shows the throughput against time when the time scale is 1s. We 
observe that while there are short-term variations due to TCP’s congestion control algorithm, all three VPS flows 
maintain the specified bandwidth ratio at all times, including periods of slow start and congestion avoidance. 
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Fig. 2. The simulation topology. 

 
Fig. 4. Throughput of VPS flows against time. 
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Fig. 3. Mean (left) and CoV (right) of allocation accuracy over different time scales. 
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Fig. 5.  Mean (left) and CoV (right) of fairness over different time scales. 
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Fig. 6. Scalability to more traffic flows. Fig. 7. Scalability to wider bandwidth ratios. 
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Fig. 8. Heterogeneous network Fig. 9. Aggregate throughput of VPS and Reno flows in 

heterogeneous network 
 
 
In the same experiment we also measured the fairness ratio of VPS, MulTCP, and TCP Reno and plotted the results 

in Fig. 5. We observe that both VPS flows and Reno TCP flows achieve a fairness of close to 1, suggesting that the 
proposed protocol can maintain fair bandwidth sharing with ordinary TCP flows. In comparison, fair bandwidth sharing 
is not part of the MulTCP protocol design goal and therefore MulTCP flows are substantially more aggressive than 
ordinary TCP flows.  

All three protocols, including TCP Reno, show increased variation in fairness over shorter time scales. We 
conjecture that this is due to the short-term dynamics of TCP’s congestion control algorithm in exploring the available 
network bandwidth and in reacting to short-term congestions triggered by packet loss. 

4.4. Scalability 
To investigate the protocols’ scalability to more traffic flows, we re-run the experiments by varying the number of flows 
N from 3 to 15 and plot the results in Fig. 6 showing simultaneously both the allocation accuracy and fairness ratio using 
two vertical axes. In terms of allocation accuracy both VPS and MulTCP performs consistently when the number of 
flows is increased from 3 to 15. However, while VPS flows maintain consistent fairness, MulTCP flows become 
increasingly more aggressive when the number of flows is increased. 

In another experiment, we vary the bandwidth ratios to investigate the protocols’ performance when the bandwidth 
ratios are wider apart. We define a ratio difference, denoted by d, to set the bandwidth ratio for flow i to equal to 
wi=1+d(i−1). Thus larger values of d will widen the difference of bandwidth ratios between successive flows. 

Fig. 7 plots the allocation accuracy and fairness for VPS and MulTCP. Again, the VPS flows perform consistently 
over the entire parameter range with negligible variations in both allocation accuracy and fairness. By contrast, the 
allocation accuracy of MulTCP decreases with wider bandwidth ratios as the higher-ratio MulTCP flows generate more 
bursty traffic, thus leading to more frequent packet loss. 

4.5. Heterogeneous network 
In the above simulations all the receivers have the same round trip time (RTT) to the sender. To investigate the effect of 
receivers with different RTTs, we conducted another set of simulations using the network topology shown in Fig. 8. 
Specifically, we vary the propagation delay difference x from 0ms to 45ms to implement heterogeneous RTTs. For 
example, when x is equal to 45ms, the RTT of the three receivers are equal to 140ms, 230ms and 320ms respectively. 
 Fig. 9 compares the aggregate throughput of the three VPS flows with the aggregate throughput of ordinary TCP 
flows under the same network setup. We observe that despite the differences in RTT for the three receivers, VPS can still 
maintain aggregate throughput similar to ordinary TCP. The authors are currently investigating the performance of VPS 
in even more complex network topologies to further evaluate its strengths and limitations. 
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5. CONCLUSIONS AND FUTURE WORK 
 
This work presented a Virtual Packet Substitution (VPS) algorithm for the allocation of bandwidth among TCP flows 
originating from the same sender passing through the same network bottleneck to multiple receivers. As the VPS 
algorithm assigns transmission quota strictly according to the specified bandwidth ratios, it can achieve perfect 
bandwidth allocation accuracy over time scales as short as one second. Moreover, VPS can maintain excellent fairness 
with competing TCP flows by computing the transmission quota from virtual flows running the standard TCP Reno 
congestion control algorithm. The capability to allocate non-uniform bandwidth between TCP flows opens many new 
possibilities for network services. For example, a service operator may use bandwidth differentiation to provide different 
quality of service to users of different subscription levels (i.e., more bandwidth for premium subscribers). A media server 
may dynamically adjust the bandwidth ratios to react to quality feedbacks from clients, and so on. This work merely 
introduces a new tool and more works are needed to explore the applications and optimization of the newfound tool to 
various network applications and services. 
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