

Sender-driven bandwidth differentiation for
transmitting multimedia flows over TCP

K. H. Lau and Jack Y. B. Lee

Department of Information Engineering
The Chinese University of Hong Kong

Hong Kong

ABSTRACT

Over the years the Internet has shown extraordinary scalability and robustness in spite of the explosive growth in
geographical reach, user population size, as well as network traffic volume. This scalability and robustness is, in no small
part, supported by the Internet’s transport protocols, the Transmission Control Protocol (TCP) in particular.
Nevertheless, with the rapid growth of multimedia-rich contents in the Internet, such as audio and video, the many
strengths of TCP in data delivery are slowly imposing bottlenecks in multimedia data delivery where different media
data flows often have different needs for bandwidth. As TCP’s congestion control algorithm enforces fair bandwidth
sharing among traffic flows sharing the same network bottleneck, different media data flows will receive the same
bandwidth irrespective of the actual needs of the multimedia data being delivered. This work addresses this limitation by
proposing a new algorithm to achieve non-uniform bandwidth allocation among TCP flows originating from the same
sender passing through the same network bottleneck to multiple receivers. The proposed algorithm, called Virtual Packet
Substitution (VPS), has four desirable features: (a) it allows the allocation of bottleneck bandwidth between a group of
TCP flows; (b) the resultant traffic flows as a whole, maintain the same fair bandwidth sharing property with other
competing TCP flows; (c) it can be implemented entirely in the sender’s TCP protocol stack; and (d) it is compatible
with and does not require modification to existing TCP protocol stack at the clients. Simulation results show that the
proposed VPS algorithm can achieve accurate bandwidth allocation while still maintaining fair bandwidth sharing with
competing TCP flows.

Keywords: TCP-friendliness, proportional fairness, video streaming, quality of service, packet substitution

1. INTRODUCTION

Over the years the Internet has shown extraordinary scalability and robustness in spite of the explosive growth in
geographical reach, user population size, as well as network traffic volume. This scalability and robustness is, in no small
part, supported by the Internet’s transport protocols, the Transmission Control Protocol (TCP)4 in particular. The flow
and congestion control algorithms in TCP ensure that network bandwidth is shared among competing traffic flows in a
fair manner5, and network congestions are automatically alleviated by throttling the sending rate at the source.

Nevertheless, with the rapid growth of multimedia-rich contents in the Internet, such as audio and video, the many
strengths of TCP in data delivery are slowly imposing bottlenecks in multimedia data delivery1-3. Specifically, TCP’s
congestion control algorithm enforces fair bandwidth sharing among traffic flows sharing the same network bottleneck.
Thus two multimedia flows going through the same network bottleneck will receive the same bandwidth irrespective of
the actual needs of the multimedia data being delivered.

For example, suppose a multimedia server is sending two streams of video data S1 and S2, of encoded video bit-rates
0.3 Mbps and 0.7Mbps respectively, through the same network bottleneck17, 18 to two different clients. Now if the
network bottleneck has 1Mbps available bandwidth, then in principle there is sufficient bandwidth to transport both
video streams. However, if the server simply send both video streams using TCP and rely on TCP’s flow and congestion
control algorithms to control the sending rates, then the fair bandwidth sharing property of TCP will ensure that each of
the video streams will get half the available bandwidth, i.e., 0.5Mbps. Obviously, this is too much for S1 at 0.3Mbps and
too little for S2 at 0.7Mbps.

Multimedia Computing and Networking 2006, edited by Surendar Chandra, Carsten Griwodz,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6071, 60710H, © 2005 SPIE-IS&T · 0277-786X/05/$15

SPIE-IS&T/ Vol. 6071 60710H-1

Apparently, if the server knows the video streams’ bit-rates and can control the transmission rates at the application
layer, then it seems the problem can be solved by sending the video at their playback rates instead of the rates allowed by
TCP. This approach, however, suffers from two limitations. First, while it is possible for the server application to send
data at a rate lower than the rate allowed by TCP, the opposite is simply impossible as the application will soon be
blocked from sending more data by the network programming API (e.g., sockets6) once the sender’s transport buffer is
full. Second, even if the server frees up bandwidth from a TCP flow by sending at a lower rate, the saved bandwidth may
not be fully transferred to another specific TCP flow.

To see why, suppose there are two other competing TCP flows S3 and S4 sharing the same bottleneck as the two
video streams S1 and S2, then any bandwidth, say C bps, freed up by the server (through sending S1 at a lower rate) will
be up for grab by the remaining three competing flows (S2, S3, and S4). Given TCP’s fair bandwidth sharing property this
means that each of the competing flows (S2, S3, and S4) will receive one-third of the freed bandwidth, i.e., C/3 bps. It is
easy to see that this dilution effect increases with more competing TCP flows sharing the same network bottleneck and in
the Internet it is not uncommon to have tens or hundreds of flows going through a network link.

We tackle this problem in this work by proposing a new algorithm to achieve bandwidth allocation among TCP
flows originating from the same sender passing through the same network bottleneck to multiple receivers. The proposed
algorithm, called Virtual Packet Substitution (VPS), has four desirable features: (a) it allows the allocation of bottleneck
bandwidth between a group of TCP flows; (b) the resultant traffic flows as a whole, maintain the same fair bandwidth
sharing property with other competing TCP flows; (c) it can be implemented entirely in the sender’s TCP protocol stack;
and (d) it is compatible with and does not require modification to existing TCP protocol stack at the clients.

2. RELATED WORK

The problem of bandwidth differentiation has been investigated by Mehra et al.7 and Crowcroft et al.8. Mehra et al.7
proposed a receiver-driven bandwidth allocation algorithm that can allocate bottleneck bandwidth among multiple TCP
flows. The principle is to adjust the receiver’s TCP advertised windows and the delays in sending acknowledgements
such that prioritized and weighted bandwidth sharing can be achieved. However, their algorithm can only allocate
bandwidth among flows destined to the same receiver, whereas in our study the focus is for flows originating from the
same sender to multiple receivers.

In another study, Crowcroft and Oechslin8 proposed the MulTCP congestion control algorithm to achieve
differentiated end-to-end service. The principle is to change the rate at which a TCP flow increases and decreases its
congestion window to make it behaves like N concurrent TCP flows. Bandwidth allocation can then be achieved by
setting the multiplier N for each flow. The protocol is simple and only limited coordination among multiple TCP flows is
required. However, as the objective of MulTCP is not to minimize the impact to other competing ordinary TCP traffic, it
will cause the competing ordinary TCP flows to lose some of their original share of bandwidth. We compare our
proposed protocol with MulTCP in more details in Section 4.

3. PROTOCOL ARCHITECTURE

We need to overcome two problems to support non-uniform bandwidth allocation in TCP. First, we need to modify the
congestion control algorithm such that credits received (via acknowledgement packets) for data transmission can be
reallocated from one flow to another flow. The goal is to allocate the bottleneck bandwidth to the TCP flows according
to application-specified ratios {w1, w2, …, wn}, i.e., flow i will be allocated a proportion of /i j

j
w w

∀
∑ of the bottleneck

bandwidth. Note that here the term bottleneck bandwidth refers to the total amount of bandwidth that would have been
received by n ordinary TCP flows passing through the network bottleneck, and so it will be smaller than the bottleneck
link capacity in the presence of other competing TCP flows. Second, we need to regulate the aggregate traffic flows such
that as a whole the group behaves in the same way as ordinary TCP flows so that other competing TCP flows (either
from other hosts or from the same hosts but managed by ordinary TCP) will neither receive more nor less bandwidth
than normal. The following sections present details of the proposed protocol architecture that achieves these two goals.

SPIE-IS&T/ Vol. 6071 60710H-2

Server Application

Virtual Packet
Substitution (VPS)

socket API

F1 Fn. . .F1 Fn. . . V1 Vn. . .V1 Vn. . .

s1 sn. . .s1 sn. . . sockets for
data transmission

Internet Protocol (IP)

Application
Layer

Transport
Layer

Network
Layer

Actual TCP flows
with congestion window
controlled by the VPS

Virtual TCP flows
for traffic regulation

The VPS controls actual
packet transmissions from

the actual flows {Fi} based on
traffic regulation from the

virtual flows {Vi}

Fig. 1. Protocol architecture and interfaces to application and network layers.

3.1. Operating principle
In ordinary TCP each flow is independent from all other TCP flows. The application will submit data to a TCP flow for
transmission using an application protocol interface such as sockets6. Upon receiving the application data, TCP will then
construct one or more TCP segments and submit them to the IP layer for transmission, subject to the control of the
congestion window and the receiver window of the TCP flow. The congestion window is computed by the sender using
the well-known Additive Increase Multiplicative Decrease (AIMD) algorithm9 and this window limits how much data
the sender can send while waiting for the receiver’s acknowledgements. Upon receiving data correctly, the receiver will
send acknowledgement packets back to the sender. The size of the congestion window and the highest sequence number
acknowledged by the receiver together determine whether the sender can send more data. The receiver window is also
sent as part of the acknowledgement packet, informing the sender of the receiver’s buffer availability for flow control
purpose. As our focus is on network bottleneck rather than the receiver buffer being the bottleneck so we will assume the
receiver window is not the limiting factor and only consider the congestion window in the following discussions. Future
work will look into the reallocation of unused bandwidth due to limited advertised window to other flows in the group.

Fig. 1 depicts the proposed protocol architecture. When the server application creates a new TCP flow through the
network programming API (e.g., by accepting an incoming connection through a stream socket), the transport will create
two flows internally – an actual flow denoted by Fi and a virtual flow denoted by Vi. The actual flow implements the
standard transport buffering functions and receives and buffers data from the application awaiting transmission. The
actual flow, however, does not implement congestion control or maintain its own congestion window. Instead, the
Virtual Packet Substitution (VPS) module is responsible for passing data from the actual flow to the IP layer for
transmission.

SPIE-IS&T/ Vol. 6071 60710H-3

3.2. Traffic regulation and bandwidth differentiation
On the other hand, the virtual flow implements the standard TCP congestion control algorithm such as the AIMD and
maintains its own congestion window in exactly the same way as ordinary TCP does. However, data transfer in a virtual
flow is simulated rather than physically implemented. When a virtual flow sends a new virtual TCP segment, it submits
the virtual TCP segment to the VPS for processing. The VPS does not actually send the virtual TCP segment, but instead
updates its internal counters to reflect the fact that one more TCP segment can be transmitted from the actual flows. In
other words, the virtual flows are used solely for the purpose of running the standard TCP congestion control algorithms
to compute how much data can be transmitted. This ensures that the outbound data traffic conforms to TCP’s fair-sharing
property.

Eventually, the VPS module replaces the virtual TCP segment by a physical TCP segment from one of the actual
TCP flows. This packet substitution process however, is not fixed in terms of the mapping between virtual TCP flows
and actual TCP flows. Instead, the substitution is performed dynamically to allocate the transmission quota to the actual
TCP flows according to their application-specified bandwidth ratios {w1, w2, …, wn}.

For example, consider the case of two flows with bandwidth ratio of w1:w2=1:2, i.e., flow 1 and flow 2 are to receive
1/3 and 2/3 of the bottleneck bandwidth respectively. Then for every three virtual TCP segments generated by the two
virtual TCP flows, the VPS will replace one of them with physical TCP segment from flow 1, and two of them with
physical TCP segments from flow 2. In this way the two actual TCP flows will receive bandwidth according to their
respective ratios.

3.3. TCP ACK translation
There is a subtle problem with the previous packet substitution algorithm. Specifically, when TCP acknowledgements
are received from the clients, these acknowledgement (ACK) packets will be acknowledging TCP segments of the actual
TCP flows because the transmitted TCP segments are really from the actual TCP flows rather than the virtual TCP flows.
However, without proper acknowledgement information, the virtual TCP flows will not be able to run their congestion
control algorithm to update the congestion window, which in turns control the transmission quota used by the VPS
module.

To tackle this problem, we need to keep track of the mappings between the virtual TCP segments generated by the
virtual TCP flows and the physical TCP segments transmitted from the actual TCP flows. Every time the VPS performs a
packet substitution, it creates a packet substitution record (PSR) with fields {VA, VSeq, FA, FSeq} where VA, VSeq are the
virtual TCP flow’s transport address (i.e., source and destination IP addresses and port numbers) and TCP segment
sequence number; and FA, FSeq are the actual TCP flow’s transport address and TCP segment sequence number. The new
PSR entry is then appended to the corresponding actual TCP flow’s PSR list.

Now when an ACK packet arrives from a client, the VPS will lookup the PSR entry in the corresponding actual TCP
flow’s PSR list, using the fields FA and FSeq as matching criteria. Next the VPS will generate a virtual ACK packet by
substituting the actual address FA by the virtual address VA, and the actual ACK sequence number FSeq by the virtual
sequence number VSeq. In other words the VPS performs a reverse substitution to translate the received actual ACK
packet to a virtual ACK packet and sends it to the virtual TCP flow for running the congestion control algorithm. In
practice, the PSR table can be implemented as a circular array of PSR entries. Given that the maximum receiver window
is relatively limited (e.g., 128), the amount of memory consumed is insignificant. Moreover, as the sequence numbers of
adjacent TCP segments are often offset by the same amount (i.e., one MTU), the VPS can lookup a PSR entry simply by
using the ACK’s sequence number to index directly into the PSR circular array, thereby reducing the processing
complexity significantly.

There is, however, one more complication - most of today’s Internet hosts run a variant of TCP called Reno with the
SACK option11 enabled by default * . With the SACK option the ACK packet may also include additional
acknowledgements on discontinuous ranges of sequence numbers. The VPS in this case will generate, as needed,
separate ACK packets for the virtual TCP flows. Finally, the processed PSR entries are then removed from the PSR list
of the actual TCP flows.

* According to the statistics13, about 90% of the host in the Internet use Windows 98, 2000, XP and Linux as the operating system and
all these operating systems enable the SACK option by default14-16.

SPIE-IS&T/ Vol. 6071 60710H-4

4. PERFORMANCE EVALUATION

In this section we use simulation to evaluate performance of the proposed protocol and compare it with the standard TCP
Reno5, 12 and the MulTCP8, of which the latter also supports bandwidth differentiation. To ease description we will use
the name VPS flows to refer to traffic flows using the proposed bandwidth differentiation protocol and TCP flows to refer
to traffic flows using the standard TCP protocol.

4.1. Performance metric
To facilitate comparison, we define a metric to quantify the protocols’ accuracy in allocating bandwidth according to the
specified ratios. Let there be N flows with application-specified ratios {w1,w2,…,wN}. Let {r1,r2,…,rN} be the actual
throughput measured in the simulation. Then for each flow we compute its allocation accuracy, denoted by Ai, from

 1

1

/

/

N
i kk

i N
i kk

r r
A

w w
=

=

= ∑
∑

 (1)

where the numerator is the actual proportion of bandwidth received and the denominator is the proportion as specified by
the bandwidth ratios. Therefore if the protocol performs perfectly the two will be the same and the allocation accuracy
will be equal to 1. A value smaller/larger than 1 implies that the actual bandwidth received is less/more than that
specified by the bandwidth ratios.

To evaluate the overall accuracy for all flows we compute the overall allocation accuracy, denoted by A, from

()21

2
1

N
ii

N
ii

A
A

N A
=

=

=
∑
∑

 (2)

with a range from 0 to 1, with 1 indicating perfect allocation and lower values indicating larger deviations from the
specified bandwidth ratios.

To evaluate the protocols’ bandwidth sharing property, we define a fairness ratio, denoted by F, from
 i j

i j

F r s
∀ ∀

= ∑ ∑ (3)

where the numerator is the aggregate bandwidth of all VPS flows and the numerator is the aggregate bandwidth of all
standard TCP flows. In our simulation the number of VPS flows and standard TCP flows are the same so a value of F=1
implies perfect fair sharing of bandwidth with competing TCP flows, and higher/lower values of F indicates that the VPS
flows receive more/less bandwidth than the competing TCP flows.

4.2. Simulation setup
The simulator is developed using the NS2 version 2.28 simulator10 using the network topology shown in Fig. 2. There
are three types of network traffic, including N VPS flows, N Reno TCP flows and a UDP flow generating exponential
background traffic at a rate of 40×2×N kbps. All flows pass through the same bottleneck with 4N Mbps bandwidth, 50ms
delay, and using the droptail queueing discipline. All other links have 100Mbps bandwidth and 10ms delay. Unless
specified otherwise, we use N=3 VPS flows with application-specified bandwidth ratios of {1, 4, 8} and three competing
TCP Reno flows. For both TCP Reno and VPS flows we assume the sender always has data to send, and all senders and
receivers have the SACK option enabled. Each simulation run lasts for 1 hour of simulated time.

4.3. Performance over different time scales
We first investigate the protocols’ allocation accuracy in Fig. 3 with results computed over different time scales, i.e.,
with bandwidth averaged over different time windows. The results show that VPS flows have perfect allocation accuracy
of 1 as the VPS module assigns transmission quota to the VPS flows strictly according to the specified bandwidth ratios.
In comparison, MulTCP also achieves good allocation accuracy of about 0.85 but the accuracy decreases (with larger
coefficient-of-variation) over shorter time scales. Fig. 4 shows the throughput against time when the time scale is 1s. We
observe that while there are short-term variations due to TCP’s congestion control algorithm, all three VPS flows
maintain the specified bandwidth ratio at all times, including periods of slow start and congestion avoidance.

SPIE-IS&T/ Vol. 6071 60710H-5

VPS

UDP

RenoN

Reno1

UDP_sink

Reno_sinkN

Reno_sink1

VPS_sinkN

VPS_sink1

…

…
…

100Mbps
10ms

4N Mbps
50ms

100Mbps
10ms

0

1000

2000

3000

4000

0 5 10 15 20 25 30
Time /s

Th
ro

ug
hp

ut
 /k

bp
s

Fig. 2. The simulation topology.

Fig. 4. Throughput of VPS flows against time.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 5 10 20 50 100 200 500 1000
Time Scale /s

M
ea

n
of

 A
cc

ur
ac

y

VPS

MulTCP

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 5 10 20 50 100 200 500 1000
Time Scale /s

C
oV

 o
f A

cc
ur

ac
y

MulTCP

VPS

Fig. 3. Mean (left) and CoV (right) of allocation accuracy over different time scales.

0

0.5

1

1.5

2

2.5

3

1 2 5 10 20 50 100 200 500 1000
Time Scale /s

M
ea

n
of

 F
ai

rn
es

s MulTCP

Reno

VPS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 5 10 20 50 100 200 500 1000
Time Scale /s

C
oV

 o
f F

ai
rn

es
s

MulTCP

VPSReno

Fig. 5. Mean (left) and CoV (right) of fairness over different time scales.

0

0.2

0.4

0.6

0.8

1

1.2

3 6 9 12 15
n

A
cc

ur
ac

y

0

1

2

3

4

Fa
irn

es
s

MulTCP Fairness

MulTCP Accuracy

VPS Fairness

VPS Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10
d

A
cc

ur
ac

y

0

0.5

1

1.5

2

2.5

3

Fa
irn

es
s

VPS Accuracy

VPS Fairness

MulTCP Accuracy
MulTCP Fairness

Fig. 6. Scalability to more traffic flows. Fig. 7. Scalability to wider bandwidth ratios.

SPIE-IS&T/ Vol. 6071 60710H-6

VPS

VPS_sink3

VPS_sink2

VPS_sink1

100Mbps
10ms

4N Mbps
50ms

100Mbps
10ms

10+x ms

10+2x ms

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45
Propagation delay x /ms

 A
gg

re
ga

te
 th

ro
ug

hp
ut

 /k
bp

s

VPS

Reno

Fig. 8. Heterogeneous network Fig. 9. Aggregate throughput of VPS and Reno flows in

heterogeneous network

In the same experiment we also measured the fairness ratio of VPS, MulTCP, and TCP Reno and plotted the results

in Fig. 5. We observe that both VPS flows and Reno TCP flows achieve a fairness of close to 1, suggesting that the
proposed protocol can maintain fair bandwidth sharing with ordinary TCP flows. In comparison, fair bandwidth sharing
is not part of the MulTCP protocol design goal and therefore MulTCP flows are substantially more aggressive than
ordinary TCP flows.

All three protocols, including TCP Reno, show increased variation in fairness over shorter time scales. We
conjecture that this is due to the short-term dynamics of TCP’s congestion control algorithm in exploring the available
network bandwidth and in reacting to short-term congestions triggered by packet loss.

4.4. Scalability
To investigate the protocols’ scalability to more traffic flows, we re-run the experiments by varying the number of flows
N from 3 to 15 and plot the results in Fig. 6 showing simultaneously both the allocation accuracy and fairness ratio using
two vertical axes. In terms of allocation accuracy both VPS and MulTCP performs consistently when the number of
flows is increased from 3 to 15. However, while VPS flows maintain consistent fairness, MulTCP flows become
increasingly more aggressive when the number of flows is increased.

In another experiment, we vary the bandwidth ratios to investigate the protocols’ performance when the bandwidth
ratios are wider apart. We define a ratio difference, denoted by d, to set the bandwidth ratio for flow i to equal to
wi=1+d(i−1). Thus larger values of d will widen the difference of bandwidth ratios between successive flows.

Fig. 7 plots the allocation accuracy and fairness for VPS and MulTCP. Again, the VPS flows perform consistently
over the entire parameter range with negligible variations in both allocation accuracy and fairness. By contrast, the
allocation accuracy of MulTCP decreases with wider bandwidth ratios as the higher-ratio MulTCP flows generate more
bursty traffic, thus leading to more frequent packet loss.

4.5. Heterogeneous network
In the above simulations all the receivers have the same round trip time (RTT) to the sender. To investigate the effect of
receivers with different RTTs, we conducted another set of simulations using the network topology shown in Fig. 8.
Specifically, we vary the propagation delay difference x from 0ms to 45ms to implement heterogeneous RTTs. For
example, when x is equal to 45ms, the RTT of the three receivers are equal to 140ms, 230ms and 320ms respectively.
 Fig. 9 compares the aggregate throughput of the three VPS flows with the aggregate throughput of ordinary TCP
flows under the same network setup. We observe that despite the differences in RTT for the three receivers, VPS can still
maintain aggregate throughput similar to ordinary TCP. The authors are currently investigating the performance of VPS
in even more complex network topologies to further evaluate its strengths and limitations.

SPIE-IS&T/ Vol. 6071 60710H-7

5. CONCLUSIONS AND FUTURE WORK

This work presented a Virtual Packet Substitution (VPS) algorithm for the allocation of bandwidth among TCP flows
originating from the same sender passing through the same network bottleneck to multiple receivers. As the VPS
algorithm assigns transmission quota strictly according to the specified bandwidth ratios, it can achieve perfect
bandwidth allocation accuracy over time scales as short as one second. Moreover, VPS can maintain excellent fairness
with competing TCP flows by computing the transmission quota from virtual flows running the standard TCP Reno
congestion control algorithm. The capability to allocate non-uniform bandwidth between TCP flows opens many new
possibilities for network services. For example, a service operator may use bandwidth differentiation to provide different
quality of service to users of different subscription levels (i.e., more bandwidth for premium subscribers). A media server
may dynamically adjust the bandwidth ratios to react to quality feedbacks from clients, and so on. This work merely
introduces a new tool and more works are needed to explore the applications and optimization of the newfound tool to
various network applications and services.

ACKNOWLEDGEMENT

This work was funded in part by a Direct Grant, an Earmarked Grant (CUHK4211/03E) from the HKSAR Research
Grant Council, and the UGC Area of Excellence in Information Technology Scheme (AoE/E-01/99). This work is
affiliated with the Microsoft-CUHK Joint Laboratory for Human-centric Computing and Interface Technologies.

REFERENCES

1. H. Balakrishnan, H. S. Rahul and S. Seshan, “An Integrated Congestion Management Architecture for Internet

Hosts,” ACM SIGCOMM Computer Communication Review, Vol.29, Issue 4, pp.175-187, Oct. 1999.
2. V. N. Padmanabhan, “Coordinating Congestion Management and Bandwidth Sharing for Heterogeneous Data

Streams,” Proc. NOSSDAV 99.
3. H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm and R.H. Katz, “TCP Behavior of a Busy Internet

Server: Analysis and Improvements,” Proc. IEEE INFOCOM, pp.252-262, Mar. 1998.
4. W. R. Stevens, TCP/IP Illustrated, Vol. 1, Addison-Wesley, New York, 1994.
5. V. Jacobson, “Congestion Avoidance and Control,” Proc. of ACM SIGCOMM, 1988.
6. W. R. Stevens, UNIX Network Programming, Prentice-Hall, Inc., Upper Saddle River, NJ, 1990.
7. P. Mehra, A. Zakhor and C. Vleeschouwer, “Receiver-driven Bandwidth Sharing for TCP,” Proc. IEEE INFOCOM,

pp. 1145-1155, Mar. 2003.
8. J. Crowcroft and P. Oechslin, “Differentiated End-to-End Internet Services Using a Weighted Proportional Fair

Sharing TCP,” Computer Communication Review, Vol.28(3), pp.53-67, Jul. 1998.
9. D. M. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for Congestion Avoidance in Computer

Networks,” Computer Networks and ISDN Systems, Vol.17, pp.1-14, 1989.
10. S. McCanne, S. Floyd, “ns-2 Network Simulator” – http://www.isi.edu/nsnam/ns/.
11. M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP selective acknowledgement and options,” RFC2018, IETF,

Oct. 1996.
12. V. Jacobson, “Modified TCP Congestion Avoidance Algorithm,” Technical report, 30 Apr. 1990.

ftp://ftp.ee.lbl.gov/email/vanj.90apr30.txt.
13. OS Platform Statistics, http://www.w3schools.com/browsers/browsers_stats.asp.
14. SACK Support for Various Operating Systems, http://www.psc.edu/networking/projects/tcptune/.
15. SACK Support for Windows .NET, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

wcetcpip/html/cmcontcpselectiveacknowledgment.asp.
16. SACK Support for Linux 2.4 and after, http://www.linuxpakistan.net/man.php?query=tcp&apropos=0

§ion=0&type=2.
17. D. Katabi, I. Bazzi and X. Yang, “A Passive Approach for Detecting Shared Bottlenecks,” Proc. IEEE Computer

Communications and Networks, pp.174-181, Oct. 2001.
18. O. Younis and S. Fahmy, “On Efficient On-line Grouping of Flows with Shared Bottlenecks at Loaded Servers,”

Proc. IEEE Int. Conf. Network Protocols, pp.175-184, Nov. 2002

SPIE-IS&T/ Vol. 6071 60710H-8

