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Abstract 

 

Recently, a new server-less architecture is proposed for 
building low-cost yet scalable video streaming systems. 
Compare to conventional client-server-based video 
streaming systems, this server-less architecture does not 
need any dedicated video server and yet is highly scalable. 
Video data are distributed among user hosts and these 
hosts cooperate to stream video data to one another. Thus 
as new hosts join the system, they also add streaming and 
storage capacity to absorb the added streaming load. This 
study investigates the data reorganization problem when 
growing a server-less video streaming system. Specifically, 
as video data are distributed among user hosts, these data 
will need to be redistributed to newly joined hosts to utilize 
their storage and streaming capacity. This study presents a 
new data reorganization algorithm that allows 
controllable tradeoff between data reorganization 
overhead and streaming load balance.  

 
 

1. Introduction 
 
Peer-to-peer and grid computing have shown great 

potentials in high-performance computing applications. 
Apart from computational problems, data and 
I/O-intensive applications can also benefit from the 
inherent scalability offered by grid-type architectures. One 
such architecture, called server-less video-on-demand 
architecture, recently proposed by Lee and Leung [1] 
adopted this completely decentralized approach to 
eliminate the need for costly high-capacity video servers. 

Unlike conventional video-on-demand (VoD) systems 
built around the well-understood client-server model, a 
server-less VoD system is built entirely from user hosts. 
Video data are distributed among these user hosts which 
then cooperate to stream video data to one another for 
playback. Lee and Leung [1] showed that this server-less 
architecture is easily scalable to hundreds of user hosts 

using off-the-shelf computers and network switches. 
Moreover, by incorporating data and capacity redundancy 
into the system, one can even achieve system-level 
reliability comparable to or even exceeding those of 
dedicated video servers [2]. 

The study by Lee and Leung [1] is focused on the 
scalability and feasibility of the server-less architecture. 
They did not, however, address the practical problem of 
system growth when new user hosts join the system. 
Specifically, as video data are distributed among user hosts, 
these data will need to be redistributed to newly joined 
hosts to utilize their storage and streaming capacity. We 
tackle this problem in this study by presenting a new data 
reorganization algorithm that allows controllable tradeoff 
between data reorganization overhead and streaming load 
balance.  

We first review the server-less VoD architecture and 
two previous works on data reorganization in Section 2, 
and then present the new data reorganization algorithms in 
Section 3 and 4; Section 5 compares the performance of 
the studied algorithms and Section 6 concludes the paper. 

 
2. Background 

 
In this section, we first give a brief overview of the 

server-less VoD architecture proposed by Lee and Leung 
[1] and then review two existing works on data 
reorganization.  

 
2.1 The server-less architecture 

 
A server-less VoD system comprises a pool of user 

hosts, henceforth called nodes, connected by a network as 
shown in Fig. 1. Each node has its own CPU, memory and 
disk storage. Inside each node is a mini video server 
software that serves a portion of each video title to other 
nodes in the system. Unlike conventional video server, this 
mini server software serves a much lower aggregate 
bandwidth and therefore can readily be implemented in 
today’s STBs and PCs. For large systems, the nodes can be 
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further divided into clusters where each cluster forms an 
autonomous system that is independent from other 
clusters. 

For data placement, a video title is first divided into 
fixed-size striping units (or called blocks) and then 
distributed to all nodes in the cluster in a round-robin 
manner. This node-level striping scheme avoids data 
replication while at the same time divides the storage 
requirement equally among all nodes in the cluster.  

To initiate a video streaming session, a receiver node 
will first locate the set of sender nodes carrying blocks of 
the desired video title, the striping policy and other 
parameters (format, bitrate, etc.) through the directory 
service. These sender nodes will then be notified to start 
transmitting the video blocks to the receiver node.  

Let N be the number of nodes in the cluster and assume 
all video titles are constant-bit-rate (CBR) encoded at the 
same bitrate Rv. For a sender node in a cluster, it may have 
to retrieve video data for up to N video streams, of which 
N−1 of them are transmitted while the remaining one 
played back locally. Note that as a video stream is served 
by N nodes concurrently, each node only needs to serve a 
bitrate of Rv/N for each video stream. With a round-based 
transmission scheduler, a sender node simply transmits 
one block to each receiver node in each round. Interested 
readers are referred to the study by Lee and Leung [1] for 
more details. 

 
2.2 Previous works on data reorganization 

 
The problem of data reorganization has been studied in 

the context of disk arrays [3-4]. The study by 
Ghandeharizadeh and Kim [3] is the earliest study on data 
reorganization known to the authors. They investigated the 
data reorganization problem in the context of adding disks 
to a continuous media server. They employed round-robin 
data striping common in disk arrays and investigated and 
analyzed techniques to perform data reorganization online, 
i.e., without disrupting on-going video streams. 

Due to the round-robin placement requirement, a large 
portion of the data blocks will need to be redistributed to 
maintain the data placement order when a new disk is 
added, thus incurring significant data reorganization 
overhead. Nevertheless, this approach has the distinct 
advantage of achieving perfect streaming load balance. 
When applied to the server-less VoD system, the 
round-robin placement policy enables nodes in the system 
to simply all transmit one block in each round to achieve 
streaming load balance. 

Given that the need to add new disks to a video server 
occurs only sparingly, the tradeoff in reorganization 
overhead to achieve perfect load balance is well justified. 
By contrast, in a server-less VoD system with hundreds of 

nodes, the frequency at which new nodes joining the 
system will be significantly higher. Thus the same data 
reorganization algorithm may incur too much overhead for 
use in a server-less VoD system. 

In a more recent study by Goel et al. [4], a 
pseudo-random algorithm called SCADDAR for data 
placement and data reorganization is proposed for use in 
disk arrays. In this algorithm, each data block is initially 
randomly distributed to the disks with equal probabilities. 
When a new disk is added to the disk array, each block will 
obtain a new sequence number according to their 
randomized SCADDAR algorithm. If the reminder of this 
number is equal to the disk number of the newly added 
disk, the corresponding block will be moved to this new 
disk. Otherwise, the block will reside at the original disk.  

As SCADDAR no longer needs to maintain a fixed 
round-robin placement order, it can reduce the 
reorganization overhead significantly to approach the 
theoretical lower bound. However, the authors did not 
consider streaming load balance. If we apply SCADDAR 
to the server-less VoD system that can grow to hundreds to 
thousands of nodes, our results reveal that it can result in 
significant streaming load imbalance, especially after a 
large number of nodes are added to the system. For 
example, in the same service round some nodes may need 
to transmit more than one block while some other nodes 
are idle. This load imbalance makes data transmission 
scheduling more difficult and may reduce the streaming 
capacity and/or the response time of the system.  

The previous two pioneering studies can be considered 
as two extremes of the tradeoff between data 
reorganization overhead and load balance. In particular, 
Ghandeharizadeh and Kim’s algorithm achieves perfect 
load balance at the expense of substantial data 
reorganization overhead; while the SCADDAR algorithm 
achieves near-minimal data reorganization overhead at the 
expense of load imbalance. In the next section, we present 
a new data reorganization algorithm that can achieve 
perfect streaming load balance and yet incurs significantly 
lower reorganization overhead than the round-robin 
algorithm, and in Section 4 we further generalize this 
algorithm to allow one to strike a balance between data 
reorganization overhead and streaming load balance. 
 
3. Row-permutated data reorganization 

 
We present a new row-permutated data reorganization 

(RPDR) algorithm in this section. Section 3.1 describes the 
placement policy while Section 3.2 explains the algorithm. 

 
3.1 Placement policy 

 
As Ghandeharizadeh and Kim’s study [3] showed, the 
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data reorganization overhead incurred in maintaining the 
round-robin data placement order is very high. Therefore 
we replace the round-robin placement policy in the 
original server-less VoD architecture by a row-permutated 
placement policy. 

Specifically, a video title is again divided into 
fixed-size blocks. With a N-node cluster, the first N video 
blocks will be distributed to all N nodes in random order, 
with each node storing exactly one of the N video blocks as 
shown in Fig. 2a. This process repeats for the next N video 
blocks and so on until all video blocks are distributed. 

It is easy to see that this row-permutated placement 
policy achieves perfect streaming load balance same as the 
original round-robin placement policy. Note that the 
receiver node does not need to know the exact placement 
order in each row as the sender nodes all stream video 
blocks to the receiver node concurrently [1]. As long as 
each video packet carries a sequence number relative to the 
video stream, the receiver node can then re-sequence the 
incoming packets for playback. 

 
3.2 Data reorganization 

 
Assuming the system has one cluster. Let B be the total 

number of fixed-size blocks of a video title, and N be the 
number of nodes in the system before the addition of a new 
node. We use n to denote the current system size and thus 
initially n=N. We denote block i of row j by vi,j, where 
i=0,1,…,(B/n)-1, and j=0,1,…,n-1, or simply the (in+j)th 
block of the video title. 

After adding a new node to the system, n is increased to 
N+1, and data reorganization is needed to redistribute 
video data and streaming load to the newly added node. 
We first re-index the video blocks vi,j, using n=N+1. For 
example, v1,0 and v1,1 will become v0,N and v1,0 respectively 
after re-indexing (see Fig. 2b for an example).  

Next, we consider the re-indexed blocks in a 
row-by-row manner to identify block overflows and block 
underflows. Block overflows occur in a node when more 
than one block from the same row resides in the node; and 
block underflows occur in a node when none of the blocks 
from the row resides in the node. 

When a block overflow is detected (e.g. block v0,4, for 
row 0 and blocks v1,3, v1,4 for row 1), then the overflow 
blocks will be redistributed to nodes experiencing block 
underflows (e.g. moving block v0,4 to node n4). Note that 
the choice of target nodes to receive an overflow block can 
be arbitrary as we no longer need to maintain a 
round-robin data placement order. It is easy to see that the 
number of overflows equal to the number of underflows 
and thus after reorganization each node will store exactly 
one block from a row as shown in Fig. 2d. As a result, this 
row-permutated reorganization algorithm can achieve 

perfect storage balanced and streaming load balance. 
Compared to the round-robin placement policy, this 

algorithm has significantly lower reorganization overhead 
and at the same time, can still achieve perfect load balance. 
In the next section, we relax the perfect load balance 
constraint to further reduce the reorganization overhead. 

 

4. Multi-row-permutated data reorganization 
 
While perfect streaming load balance is desirable, the 

cost of data reorganization, which itself consumes system 
resources, can still be substantial. Depending on the 
particular system configuration (e.g. disk throughput, 
network bandwidth, system utilization, etc.), it may be 
desirable to tradeoff some streaming load balance to 
reduce the data reorganization overhead. 

To tackle this challenge, we generalize the 
row-permutated data reorganization algorithm into a 
multi-row-permutated data reorganization (mRPDR) 
algorithm. Specifically, a window size, denoted by w, is 
used to configure the number of rows to consider when 
identifying block overflows and underflows. Block 
overflows are redefined to occur only if more than w 
blocks from the w rows under consideration reside in the 
same node; and block underflows are redefined to occur 
only if fewer than w blocks from the w rows under 
consideration reside in the same node. 

Similarly, the overflow blocks in an overflow node will 
be moved to the underflow nodes. However, unlike the 
RPDR algorithm, the choice of which overflow blocks to 
redistribute and which underflow nodes to receive the 
overflow blocks will affect the streaming load balance of 
the system. Fig. 3 illustrates this issue by comparing 
different choices of overflow blocks and underflow nodes 
with w=2.  

Fig. 3a shows the placement of blocks after re-indexing. 
The overflow nodes are n0 and n2 while the underflow 
nodes are n1 ,n3 and n4. Fig. 3b shows one example of poor 
selection of underflow nodes. Note that blocks vi,4 and vi,1 
belonging to the same row are stored to the same node n1, 
thus forcing this node to stream out both these two blocks 
in a round. Fig. 3c shows another example of poor 
selection of overflow blocks. Note that blocks vi,0 and vi,1 
belonging to the same row are again stored to the same 
node n0. By contrast, the case in Fig. 3d can achieve better 
streaming load balance as blocks belonging to the same 
row are now evenly distributed to all the nodes. Note that 
the order of the blocks within a node is not important as the 
node will independently retrieve a block from the disk for 
transmission in each service round (c.f. Section 2.1). 

Fig. 4 lists an algorithm to perform this load balanced 
data reorganization. The algorithm proceeds in iterations, 
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each time considering one excess block. For each excess 
block in each overflow node, the algorithm will first find 
the row, denoted by Ai,y, containing the largest number of 
blocks inside this node (Step 12). Then it locates an 
underflow node (Step 13) and move one overflow block to 
the underflow node (Step 14). If there are more than one 
underflow nodes satisfying the criteria, it will be chosen 
randomly. This process then repeats for each overflow 
block in each overflow node. 

Clearly increasing the window size w will decrease the 
reorganization overhead at the expense of streaming load 
imbalance. The RPDR algorithm presented in Section 3 is 
a special case of the mRPDR algorithm with a window size 
of w=1. At the other extreme, setting w to B/n will result in 
minimal reorganization overhead but with significant 
streaming load imbalance. We investigate in the next 
section tradeoff between reorganization overhead and 
streaming load balance. 

 
5. Performance comparisons 

 
In this section, we evaluate and compare the proposed 

multi-row-permutated data reorganization algorithm with 
the round-robin [3] and the SCADDAR [4] algorithms 
originally proposed for disk arrays. The primary 
performance metrics used for comparison are data 
reorganization overhead and streaming load balance.  

The results are computed numerically for a video title 
with B=4,000 blocks. Unless stated otherwise the system 
begins with a single node and then incrementally grows to 
200 nodes by adding new nodes one by one. Each data 
point is averaged over 50 results obtained from using 
different random seeds for the random number generator 
(used in SCADDAR and the mRPDR algorithms). 

 
5.1 Data reorganization overhead 

 
Data reorganization overhead is defined as the number 

of data blocks that need to be redistributed during data 
reorganization. This metric can reflect the time, memory 
and bandwidth requirement incurred by the reorganization 
process.  

First, for a system with B blocks already evenly 
distributed to n-1 nodes, the minimum number of blocks 
that need to be redistributed when a new node is added is 
simply equal to B/n, provided that perfect storage balance 
is to be maintained. It is possible to achieve even lower 
reorganization overhead (e.g. in SCADDAR) but then 
some of the nodes will store and serve more data blocks 
than others. 

Next we derive the reorganization overhead for 
round-robin placement. We observe that the ith block and 
the (i+LCM(n-1,n))th block, where the function 

LCM(n-1,n) computes the least common multiple of n-1 
(original cluster size) and n (new cluster size), must reside 
on the same node for all i so these blocks do not need to be 
redistributed. As only one node is added each time, we 
have LCM(n-1,n)=n(n-1). The overhead of round-robin 
reorganization is thus approximately equal to 
B(1–(1/LCM(n-1,n)))=B(n2–n–1)/(n2–n).  

For the SCADDAR algorithm the reorganization 
overhead must be measured but it has been shown to 
approach the theoretical lower bound of B/n [4]. Similarly 
the reorganization overheads of the proposed algorithms 
are also measured and the results are plotted in Fig. 5. 

There are three key observations. First, the round-robin 
algorithm and the SCADDAR algorithm have the highest 
and lowest reorganization overhead respectively. 
Moreover, the differences increase when the system grows 
larger. Second, the reorganization overhead of the mRPDR 
algorithm varies within the top (round-robin) and the 
bottom (SCADDAR) curves depending on the parameter 
w, showing the tunable range of the mRPDR algorithm. 
Third, for mRPDR with w=1, which achieves perfect 
streaming load balance, the reorganization overhead is still 
significantly lower than the round-robin algorithm. As 
maintaining the round-robin placement order offers no 
advantage in a server-less VoD system (c.f. Section 2.1), 
the RPDR algorithm should be used in place of 
round-robin when perfect streaming load balance is 
required.  

Another shortcoming of SCADDAR is the 
unpredictable streaming imbalance. In particular, we can 
determine the worst case streaming load imbalance for a 
video stored using SCADDAR only after the 
reorganization is completed. This may incur additional 
complexity in scheduling as the amount of load imbalance 
is unpredictable. By contrast, the mRPDR algorithm 
simply guarantees that the load imbalance will always be 
bounded from the above by w. Thus enabling a system 
designer to incorporate this streaming load imbalance into 
the system’s admission policy and scheduling algorithm.  

So far we have assumed that the system is reorganized 
whenever a new node joins the system. Clearly this is 
inefficient for systems where new nodes are frequently 
added. Instead, we can wait until there are a number of 
nodes, say k, added before performing reorganization. Fig. 
6 shows the per-node reorganization overhead for w=1 and 
k ranging from 1 to 5. We observe that the per-node 
reorganization overhead does decrease significantly for 
larger value of k. However, this is done at the expense of 
resource utilization as resources in the newly added nodes 
cannot be utilized until data reorganization is completed. 
Thus there is a tradeoff between reorganization overhead 
and resource utilization, and further investigation is 
warranted to quantify the tradeoff in terms of the other 
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system parameters. 
 

5.2 Streaming load balance 
 
To evaluate streaming load balance, recall that the 

sender nodes transmit one video block per round per video 
stream (c.f. Section 2.1). Thus if there are more than one 
block of a row residing in a node, this node may 
experience scheduling overflow during transmission, 
depending on the utilization of the system. Therefore 
counting the number of such overflow blocks will give an 
indicator on the degree of load imbalance. 

Fig. 7 plots the proportion of blocks that are overflow 
blocks for the various data reorganization algorithms. As 
expected, both round-robin and RPDR achieve zero 
overflow, i.e., perfect streaming load balance. Surprisingly, 
the SCADDAR algorithm results in over 35% overflow 
blocks. By contrast, the mRPDR algorithm can achieve 
different levels of block overflow using different window 
size. This enables the system designer, knowing the system 
configurations, to choose the best tradeoff between 
reorganization overhead and streaming load balance. 

 
6. Conclusion and future works 

 
In this study, we investigated the problem of data 

reorganization when growing a server-less VoD system. 
We found that the round-robin and the SCADDAR 
algorithms are two extremes in the tradeoff between 
reorganization overhead and streaming load balance. We 
presented a new RPDR algorithm that can achieve perfect 
streaming load balance as the round-robin algorithm and 
yet required significantly less reorganization overhead. We 
then generalize this to a multi-row-permutated data 
reorganization (mRPDR) algorithm that can further allow 
 

the system designer to control the tradeoff between 
reorganization overhead and streaming load balance. 

This study is a small step in studying the larger problem 
of data reorganization in grid-based storage systems in 
general, and server-less VoD system in particular. Some of 
the open problems include how to integrate the cost of data 
reorganization and the cost of streaming load imbalance 
into a unified optimization framework to determine the 
optimal configuration of the mRPDR algorithm; how to 
transparently perform data reorganization without 
disrupting on-going video streams; how to perform data 
reorganization with heterogeneous nodes with varying 
storage and streaming capacity; how to support node-level 
fault tolerance to improve system reliability; and how to 
shrink a system when nodes leave the system. 
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Figure 1. A server-less architecture for video streaming. 

Figure 2. The row-permutated data reorganization algorithm. 
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Figure 3. The multi-row-permutated data reorganization algorithm. 

 

Step 01: R0, R1, …, Rw-1 is the rows under consideration
Step 02: n0, n1, …, nn-1 is the nodes in the system
Step 03: Ax,y is the number of blocks of row Rx in node ny
Step 04: Y is the set of overflow nodes
Step 05: Y�φ
Step 06: for (int y=0 to n-1) {

Step 07: if
1

,
0

w

x y
x

A w
−

=
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Step 08: then add node ny to the set Y
Step 09: }
Step 10: for each ny∈Y {
Step 11: for each overflow block in ny {
Step 12: Ai,y �max(A0,y, A1,y, …, Aw-1,y)

Step 13: find y’ such that (Ai,y’ < Ai,y) AND ( , 'x y

x

A w<∑ )

AND (Ai,y’ is minimum within underflow nodes)
Step 14: Move one block of Ri in ny to ny’
Step 15: Ai,y � Ai,y – 1
Step 16: Ai,y’ � Ai,y’ + 1
Step 17: }
Step 18: }

Figure 4. Pseudo-code for the multi-row-permutated data reorganization algorithm. 
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Figure 5. Comparison of reorganization 

overhead versus system size. 

 

Figure 6. Comparison of per-node 

reorganization overhead versus system size. 

 

 

 

 

 

Figure 7. Comparison of overflow blocks 

proportion versus system size. 
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