
 
Abstract—The efficient scheduling of streaming data delivery 

in a peer-to-peer (P2P) network is a hard problem due to the 
Internet’s lack of support for resource allocation and 
performance guarantees. In particular, the bandwidth resources 
available to a peer is constantly in flux and the future bandwidth 
availability is very difficult, if not impossible, to predict 
accurately. This work proposes to tackle this problem from a 
different angle. We investigate the use of erasure codes to encode 
the media data and then schedule multiple peers to stream the 
encoded data simultaneously to a receiver. By exploiting the 
order-invariant property of erasure codes this approach enables 
the sending peers to fully utilize their available bandwidth 
resources and yet does not need to estimate or predict their 
bandwidth availability. Moreover, we develop distributed 
scheduling algorithms to juxtapose the data transmissions from 
multiple peers so that the coding and storage complexities can be 
kept at practical level in scaling up the system. This paper 
describes the motivation, architecture, and design of the proposed 
coding/scheduling algorithms; develops a performance model to 
characterize the algorithms’ performance bounds; and evaluates 
them through simulation as well as experiments. 
 

Index Terms—Erasure codes, media streaming, multi-source, 
peer-to-peer, scheduling 
 

I. INTRODUCTION 
HE rapid growth of multimedia contents in the Internet has 
put much strain on the content providers. In particular, the 

conventional centralized server architecture has increasingly 
becoming the bottleneck in larger-scale content distribution due 
to the immense bandwidth required. The recent developments 
in distributed content delivery systems such as peer-to-peer 
(P2P) and hybrid P2P open up new ways to tackling this 
bandwidth-scaling problem. 

Common to these new architectures are the use of peers, 
distributed across the Internet, individually capable of serving 
whole or part of the content, and together can provide sufficient 
bandwidth to serve a huge number of concurrent users. This 
distributed approach can achieve far better scalability by 
recruiting peers to serve as servers. 

As a result, P2P have grown tremendously over the past 
decade, enabling the distribution of large files efficiently across 
the Internet. Beyond file download, the next frontier is in 
streaming contents such as audio and video. Unlike file 
download, streaming media is often decoded and played back 
while the data are being transferred. Thus, hiccups in data 
distribution may lead to playback interruption, often in the form 
of sudden playback pauses or in some cases, audio-visual 

degradation of the decoded media. 
Fundamentally, if data delivery failure is a result of 

insufficient bandwidth (across the whole system), then the only 
solution would be to adapt the contents to fit the amount of 
bandwidth available using techniques such as scalable video 
codec [1], [2] or real-time transcoders [3], [4]. However, even if 
there is sufficient bandwidth available across the system the 
required media data may still fail to be delivered to the client in 
time for playback. Specifically, given a number of peers 
available for streaming media data, the client will need to 
determine which peers to employ and what part of the media 
stream each should transmit and at what time. Given that the 
Internet does not guarantee bandwidth availability nor is there a 
reliable way to predict future bandwidth availability, this task is 
far from trivial. 

This work tackles this resource allocation problem from a 
different angle. Instead of attempting to predict bandwidth 
availability and then developing algorithms to adaptive to it, we 
propose the use of erasure codes to encode the media data and 
then transmit them from multiple peers simultaneously to the 
client. By exploiting the order-invariant property of erasure 
codes this approach completely eliminates the need of 
estimating or predicting the bandwidth availability in the data 
transfer process. The peers simply transmit data at the 
maximum rate allowed by the transport protocol, the network 
path, and any other arbitrary constraints, and the client can 
simply wait until sufficient amount of encoded media data are 
received, irrespectively of which peers they came from, and 
then decode the data to obtain the original media data for 
playback. This approach also solves the problem of peer churn 
common in P2P systems as the bandwidth void created from 
peers leaving the system will automatically be filled up by the 
extra transmission from the remaining peers. 

Nevertheless, two challenges remain when scaling up 
multi-source erasure-coded streaming to a large user population 
over P2P networks. First, the computational complexity of 
many erasure-correction codes such as Reed-Solomon (RS) 
codes [5] increases super-linearly with the size of the coding 
space, i.e., the size of the peers’ population. For large systems 
with potentially hundreds, if not thousands, of source peers, the 
erasure encoding process will become the system bottleneck. 
Second, to guard against malicious peers from injecting bogus 
data into the data stream it is essential to have a way to verify 
the data fragments as they are received from the many different 
peers.  
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Fig. 1.  The process of the erasure-correction coding. 

 
This is most commonly done by creating a hashed key for 

each data fragment and distributing the hash key from a trusted 
server. The client can then verify the authenticity of the data 
fragments received by comparing its hash with the hash key 
from the trusted server. While this works well in existing 
systems such as Bit-Torrent (BT) [6], our study revealed that 
the hash-generation process’s computational complexity and 
storage requirement increases exponentially when applied in 
the erasure-coded environment, thereby limiting the system’s 
scalability. 

This paper tackles these two challenges by introducing a 
novel scheduling algorithm to decouple the dimension of the 
coding space from the number of source peers in the system. 
This enables the use of small coding space which are both 
computationally efficient and storage efficient. The underlying 
principle is to allow data duplications in the encoding process, 
which reduces the coding space size, and then schedule the 
peers’ data transmission in such a way to reduce the amount of 
collisions (i.e., transmission of duplicate data). Our initial 
findings confirmed that using multi-source scheduling it is 
possible to reduce the coding space size from the number of 
sources to three and yet maintain an average collision rate of 
less than 1%. 

The rest of the paper is organized as follows: Section II 
reviews some previous related works; Section III presents the 
details of our proposed scheduling algorithm; Section IV 
analyzes the performance of the proposed scheduling 
algorithm; Section V presents the simulations and experimental 
results; Section VI summarizes our work and outlines some 
future work. 

II. BACKGROUND AND RELATED WORK 
In a conventional media streaming system, the encoding of 

media data (e.g., video compression) is typically orthogonal to 
the way data are delivered over the network to the client. Given 
the media encoded data rate, the streaming protocol will need to 
ensure that media data can be delivered to the client in time for 
playback. As discussed in Section I, the Internet’s inherent 
bandwidth fluctuations is a major challenge to this end and 
most of the existing solutions rely on pull-based protocols. The 
client react to bandwidth and peer quality fluctuations by 
dynamically rescheduling the data delivery process among 
multiple peers to compensate for any bandwidth deficiencies 
[7]-[10] or exploit path diversities in streaming data over 
multiple network paths [11]-[12]. 

Pull-based protocols can and do work well in practice for file 
sharing applications, e.g., BT. However, extending these 
protocols to media streaming is more challenging due to the far 

more stringent time constraints of streaming media. As 
pull-based protocols work by reacting to network resource 
fluctuations, it is essential to first detect such fluctuation and 
then react to it by reconfiguring the system accordingly. 
However, despite more than a decade of research, the challenge 
of bandwidth estimation along a network path is still not yet 
fully resolved. The nature of the Internet and the dynamics of 
competing traffics severely limit the accuracy of bandwidth 
measurement tools, especially over a short time scale. 

In this paper, we explore an alternative approach to the 
problem by combining erasure codes with scheduling. The 
principle is to substitute bandwidth estimation and prediction 
by erasure codes and multi-source media streaming. This 
enables the system to utilize the available network resources 
fully without a priori knowledge of their availability. 

A. Erasure-Correction Coding 
Fig. 1 illustrates the process of erasure-correction coding. 

We first divide a segment of data into n data blocks. These n 
data blocks are then fed into an erasure-code encoder (e.g., RS 
codes encoder) which produces as output n/r encoded data 
blocks. The parameter r (r<1) is called the code rate and it 
controls the amount of redundancy in the encoded data. The key 
idea is that the client can recover the original n data blocks 
whenever any n blocks out of the n/r encoded data blocks are 
successfully received. 

This last property can be exploited to solve the network 
resource estimation problem. Specifically, a segment of data is 
first distributed to k different peers. Upon receiving a request 
from the client, each peer encodes its data into n/r encoded data 
blocks and begins transmitting the encoded data blocks to the 
client. Thus, all k peers transmit data to the client 
simultaneously at a rate determined by their respective network 
resource availability. In other words, peers with more resources 
(i.e., fast peers) will transmit more data at a given time 
compared to slow peers. Moreover, the client can simply 
perform erasure correction to obtain the original n data blocks 
once it receives exactly n encoded data blocks from any 
combination of the peers. The exact number of encoded data 
blocks received from each of the peers no longer matters, thus 
eliminating the need to estimate network resource availability 
and to schedule data transmission among the peers. 

This advantage does come with a price – the erasure 
encoding/decoding process is computation expensive. Worst 
still, the computation complexity of the traditional erasure 
codes such as RS codes increases exponentially with coding 
space size, which is proportional to the data length. For 
example, using Cauchy-based Reed-Solomon Codes [13] to 
encode a 1-MB data, for 1-KB packet size, the encode rate and 
decode rate achieved by a Pentium-class 2 GHz CPU are only 
0.91 MBps and 0.30 MBps respectively. 

More recently, researchers proposed a new class of erasure 
codes called rateless codes such as LT Codes [14], Online 
Codes [15], and Raptor Codes [16] to address the 
computational efficiency issue. Compare to traditional erasure 
codes, rateless codes are simple and efficient in encoding and 
decoding using only XOR operations. More importantly, 
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rateless-code encoder does not require a predetermined coding 
space size. It can dynamically generate coded data of any size 
on the fly, by performing XOR operations on a subset of the 
original data. 

However, rateless codes’ performance superiority can only 
be realized when the data length is large (e.g, hundreds of MBs 
or more). While this works well in file download [17] where the 
whole file can be encoded as a single unit, streaming 
applications require the division of the data stream into small 
data units (e.g., KBs) such that playback can begin shortly after 
a few units of data are received. For example, if we employ 1 
MB data unit size at an aggregate streaming bit-rate of 256 kbps, 
then the initial startup delay will be at least 32 seconds. Using 
the Online codes decoder from [18] with number of data blocks 
equal to 10,000 in a Pentium-class 2 GHz CPU, the decode rate 
is only 0.54 MBps. Moreover, at this configuration the client 
will also need to receive an additional 5.09% of data, called 
decoding overhead, before it can recover the original data, thus 
further reducing its efficiency. 

Note that while it is possible to reduce decoding overhead by 
increasing the number of data blocks in the encoding process, 
e.g., increasing it from 10,000 to 40,000 will reduce the 
decoding overhead from 5.09% to 4.09%., the decode rate will 
deteriorate further, dropping from 0.76 MBps to only 0.08 
MBps – which is even lower than the traditional RS codes. On 
the other hand, decreasing the number of data blocks will 
improve decode rate at the expense of decoding overhead. See 
Table I for more examples of these tradeoffs. Therefore while 
rateless codes have several attractive properties and have been 
proposed for peer-to-peer video streaming [19]-[21], their 
computational complexity and decoding overhead still present 
significant challenges in the application to media streaming.  

Another alternative codec is the class of Low-Density 
Parity-Check (LDPC) codes [22]-[24]. These LDPC codes 
have substantially better decoding performance than rateless 
codes. For example, the HLDPC codes [22] provide similar 
erasure recovery capabilities as the rateless codes but at a 
significantly lower computation complexity in decoding. The 
study in [24] shows that the decoding overheads of the 
LDPC-triangle codes for various code rate are less than 1%, 
even with a small number of blocks (i.e., 1,000), with decoding 
time always an order of magnitude faster than RS codes. 
Nevertheless, unlike rateless codes, the encoded data blocks in 
the LDPC codes are interdependent so that its memory 
requirement is proportional to the size of the coding space. 
Thus for large coding space the memory requirement will 
quickly become the bottleneck. 

More recently, network coding [25] has also been applied to 
solve the data distribution problem in P2P streaming [26], [27]. 
Nevertheless network coding still suffer from the same 
encoding and decoding complexity issue as conventional 
erasure codes and the authors are currently investigating the 
application of the scheduling algorithms presented in this work 
to mitigate the problem in network-coding-based P2P systems. 

TABLE I 
PERFORMANCE OF ONLINE CODES OF ENCODING AND DECODING 1MB DATA 

Number of blocks Overheads Encoding rate Decoding rate

2000
4000
10000
20000
40000

15.38 %
8.62 %
5.09 %
4.74 %
4.09 %

17.22 MBps
10.20 MBps
4.44 MBps
2.34 MBps
1.22 MBps

6.70 MBps
2.82 MBps
0.76 MBps
0.29 MBps
0.08 MBps

Block size

500 B
250 B
100 B
50 B
25 B
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Fig. 2.  Hash-based data authentication process. A hash is computed for each 
erasure-coded data block. The hashes are then distributed through a trusted 
channel. 

B. Integrity and Security in Content Distribution 
Apart from transmission efficiency, integrity and security are 

the fundamental problems in distributed systems. In particular 
systems such as P2P primarily relies on untrusted user hosts 
which could be compromised to inject malicious data into the 
system to disrupt normal service or worst – to intrude other 
hosts, e.g., by exploiting bugs in the media decoder. Currently 
this problem is solved by the use of data authentication as 
depicted in Fig. 2. 

Specifically, the original source of the media data will 
compute a security hash for each media block (e.g., SHA1 
[28]). These hashes are then distributed by a trusted server, 
typically together with a list of peers or trackers (e.g. BT) for 
new clients to begin the data distribution process. Armed with 
the hashes a client can then verify the received media data 
blocks and simply discard those that failed the test while 
requesting the missing media data from another peer. 

This hash-based data authentication process works well in a 
pull-based data distribution protocol such as BT. Applying the 
same process to multi-source erasure-correction coded data 
distribution raises two challenges however. First, hash 
generation is computation expensive. For example, with 10 MB 
data and 100 peers (i.e., code rate is r=0.01), generating hashes 
using SHA1 for the 1 GB erasure-coded data on a 
Pentium-class processor running at 2 GHz can achieve an 
effective encode rate of only 0.13 MBps, which is even lower 
than the erasure-correction encode rate. Second, assuming a 
20-byte SHA1 hash is generated for every 16 KB of data block 
(similar to BT), a total of 1,250 KB hashes will be generated for 
the 10 MB data, representing storage and bandwidth overheads 
of 12.2%. 

The fundamental problem here is that in order to cater for the 
potentially large number of peers in the system, the content 
publisher must encode the data using a very small code rate, 
e.g., using 0.01 for 100 peers.  This increases the computation 
complexity of both erasure-correction encoding and hash 
generation, and the storage overhead incurred by the generated 
hashes. By contrast, if the content publisher limits the coding 
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space to a small number, e.g., 10 peers, then it may not be able 
to utilize all the available peers in the system. 

C. Comparisons 
In summary, the existing erasure-correction codes all have 

limitations when applied to media streaming: RS codes are 
limited by their high computational complexity; rateless codes 
are limited by their computational complexity and/or decoding 
overhead; and LDPC codes variants limited by their memory 
requirement and/or decoding overhead. In addition, the 
hash-based data authentication process is also limited by the 
computational complexity and hash overhead. The root cause 
of these limitations is the need to match the code rate to the 
potentially large number of peers in the system so that the 
encoded data are all orthogonal across all peers. 

This work proposed a radically different approach to solving 
this problem – we decouple the code rate from the size of the 
system, and then develop transmission scheduling algorithms 
to reduce the likelihood of duplicated data transmission (called 
collisions) from different peers. This approach enables the use 
of coding space significantly smaller than the number of peers 
in the system, thus substantially reducing the computational 
complexity and memory requirement for all types of 
erasure-correction codes and hash-generation processes. 
Although the encoded data, now being only partially 
orthogonal, may result in duplicated data transmissions, our 
preliminary results show that even including the effects of 
collisions our approach can still achieve lower transmission 
overhead than rateless codes (c.f. Section V). We present in the 
next section the principles of the proposed multi-source 
transmission scheduling algorithm. 

III. PARALLEL TRANSMISSION SCHEDULING 
In a P2P media streaming system, the original media data 

such as a video data stream is first sequentially divided into 
numerous segments and distributed to the peers. While a new 
client join the system, it collects the information of available 
peers from dedicated servers or trackers (e.g. BT) and 
downloads the media data segments successively from the 
available peers. If more than one peer carries the same media 
segment, then the segment is further subdivided into n data 
blocks, which are then encoded using an erasure-correction 
code to n/r encoded data blocks.  

Now let k be the number of source peers in the system. If we 
set r=1/k, then a total of nk encoded data blocks will be 
produced for each media data segment. These nk blocks are 
then distributed equally among the k source peers so that there 
will be no duplication of any of the encoded data blocks. In 
actual streaming, the client simply connects to as many peers as 
they are available and requests them to transmit the encoded 
data simultaneously. Once n encoded data blocks are received, 
irrespective of which peers they originate from, the client can 
decode the original n data blocks to form the media data 
segment for playback. This process repeats for subsequent 
media data segments until playback completes.  
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Fig. 3.  Peers transmitting the encoded data blocks in the same sequence. 
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Fig. 4.  Peers transmitting the encoded data blocks in random order. 

A. Data Collisions 
The number of peers in a distributed system such as P2P 

network can be very large, e.g., hundreds to tens of thousands. 
Thus the trivial approach of setting r=1/k will run into 
scalability limitations as discussed earlier. Alternatively, if we 
decouple r from k, then by keeping r large we will be able to 
avoid these scalability limitations. However, this creates a new 
problem – data collisions in the transmission process. 

Fig. 3 illustrates this data collision problem with n=8, r=1/2, 
and k=4. The 8 data blocks are encoded into 16 unique encoded 
data blocks, of which any eight of them will be sufficient for 
decoding the original eight data blocks. Assuming all four peers 
have a copy of the eight data blocks. Then upon receiving a 
request from the client, they will begin encoding the data blocks 
and transmit them as fast as network resources allow. Fig. 3 
illustrates the situation with four peers all sending at the same 
rate and each sends out four encoded data blocks, which are 
indicated in grey colour. Immediately we can observe the 
collision problem – if the peers transmit the encoded data 
blocks in the same sequence (e.g., B1,1, B1,2, B1,3, B1,4, B2,1, B2,2, 
etc.) then the client will be receiving many duplicate encoded 
data blocks – data collisions. Duplicate encoded data blocks do 
not contribute to the decoding process and thus are simply 
discarded, thereby wasting network resources in transmitting 
them. Clearly better scheduling algorithms can reduce data 
collisions, which are the focus of the following sections. 

B. Randomized Scheduler 
The reason for the extensive collisions resulted from the 

transmission schedule in Fig. 3 is simple – the peers all have the 
same transmission schedule. Therefore, the first improved 
scheduling algorithm we consider is the Randomized Scheduler. 
Specifically, each peer will send out encoded data blocks in a 
random order so that the likelihood of duplicated transmission 
is reduced. Fig. 4 illustrates the Randomized Scheduler with 
four peers all sending at the same rate. After they send out 16 
encoded data blocks as depicted in Fig. 4, the client receives 
eight distinct encoded data blocks while there are eight 
duplicated encoded data blocks. 

The primary advantage of the Randomized Scheduler is its 
simplicity. Specifically, individual peer can form its own 
transmission schedule without the need to coordinate with other 
peers. This is a significant advantage in practice as coordination 
in a large-scale distributed system is non-trivial in its own right 
and will certainly incur additional control overheads. We will 
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analyze the performance of the Randomized Scheduler in 
Section IV, and experimentally in Section V. 

C. Disjoint-Prefix Randomized Scheduler 
Reconsidering the transmission collision problem one 

observation is that it is possible to avoid collision in the first 
place if we can guarantee the peers to transmit disjoint sets of 
the encoded data blocks. Specifically, we first divide the n/r 
encoded data blocks into k disjoint subsets, e.g., {Bi,1, Bi,2,…, 
Bi,n/rk} for subset i=1,2,…,k. Peer i is assigned a schedule to 
always transmit its own disjoint subset i first, and then transmit 
the rest of the encoded data blocks using the Randomized 
Scheduler. We call this the Disjoint-Prefix Randomized 
Scheduler (DPRS). 

Fig. 5 illustrates the DPRS with four peers all sending at the 
same rate. Each peer only sent out two encoded data blocks, the 
client could receive eight distinct encoded data blocks without 
any collisions. Compare to the Randomized Scheduler, DPRS 
guarantees that the first n/rk encoded data blocks transmitted 
are always unique. In the best-case scenario, all k peers send at 
the same data rate, resulting in zero collisions in transmitting 
the n/r encoded data blocks. Nevertheless, collisions are still 
possible if the peers’ transmission rates are different, thus 
beyond the disjoint subset the remaining data blocks are 
transmitted in random order to avoid synchronized collisions. 

More generally, we can vary the size of the disjoint subset in 
the DPRS from zero up to n/rk. With the size of the disjoint 
subset equal to zero the DPRS algorithm then simple reduces to 
the Randomized Scheduler. We analyze the DPRS algorithm in 
the next section and show that optimal performance is achieved 
when the disjoint subset size is equal to n/rk. 

IV. PERFORMANCE MODELING 
In this section, we investigate the worst-case and the 

average-case performances of the Disjoint-Prefix Randomized 
Scheduler (DPRS). Specifically, we derive the worst-case and 
average number of transmission collisions in terms of other 
system parameters including the number of original data 
blocks, the code rate, and the number of source peers. For 
simplicity, we assume the erasure codec has zero decoding 
overhead (e.g. RS codes). The results can be extended to other 
erasure correction codes with non-zero decoding overheads in a 
straightforward manner. Table II summarizes the notations 
used in the following sections. 

A. System Model 
Let n, r, k be the number of original data blocks, the code rate, 

and the number of source peers (numbered from zero to k-1) 
respectively. After erasure encoding we have n/r encoded data 
blocks. Suppose n/r is a natural number, we can define the set 
of encoded data blocks D to be a set of n/r natural numbers 
from zero to n/r−1 where each number represents an encoded 
data block, i.e., 
 { }0,1, , / 1D n r= −…  (1) 
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Fig. 5.  Peers transmitting the encoded data blocks according to DPRS. 
 

TABLE II 
SUMMARY OF NOTATIONS USED IN THE DPRS MODEL 

Symbol Description

n

r

k

s

D

p
i

q
i

w
i

t

C

Number of original data blocks
Erasure code rate
Number of peers
Size of disjoint subset
Set of encoded data blocks
Set of blocks in the disjoint subset transmitted by peer i
Set of blocks in the randomized subset transmitted by peer i
Transmission rate of peer i
Transmission time
Collisions, number of duplicated blocks transmitted  

 
Let s be the size of the disjoint subset such. Then peer i will 

first transmit its own disjoint subset i and then transmit the 
remaining encoded blocks randomly. Note that if we set s to 
zero then the DPRS algorithm reduces to the Randomized 
Scheduler. 

We first make an observation in Theorem 1 for the case 
where there is no collision. 

Theorem 1. There is no collision if all peers each transmit 
less than s blocks. 
Proof. Under DPRS the first s blocks are guaranteed to be 
unique across all peers. Thus, in this case there will be no 
collision among transmissions from peers.  

A corollary of Theorem 1 implies that collision occurs only if 
at least one peer transmitted more than s blocks, and the 
collisions are thus from the randomized subset. Let pi, qi be the 
set of blocks sent by peer i in its own disjoint subset and 
randomized subset respectively at the time the client receives n 
unique encoded data blocks: 

 
0

, 1, , 1 0i

s
p in in in ns s

rk rk rk rk

∅ =⎧
⎪⊆ ⎨⎧ ⎫+ + − < <⎨ ⎬⎪⎩ ⎭⎩

…
 (2) 

 
0

\ , 1, , 1 0i

D s
q in in in nD s s

rk rk rk rk

=⎧
⎪⊆ ⎨ ⎧ ⎫+ + − < <⎨ ⎬⎪ ⎩ ⎭⎩

…
 (3) 

where 
  i ip s q< ⇒ = ∅  (4) 

Since each peer must send the disjoint subset before the 
randomized subset, qi remains empty until the peer has 
transmitted the entire disjoint subset (i.e., |pi| = s). 

Let wi be the transmission rate of peer i (in blocks/s), and t be 
the transmission time for the client to receive n unique encoded 
data blocks. Thus at time t, the number of blocks sent by peer i 
will be equal to wit: 
 i i i i iw t p q p q= ∪ = +  (5) 

Let C be the number of collisions, which can be computed 
from 

 
1

0

k

i
i

C t w n
−

=

= ⋅ −∑  (6) 

We now reconsider the sets pi and qi. As the client received 
exactly n unique encoded data blocks at time t, the cardinality 
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of the union of all pi and qi, must be equal to n: 

 ( )
1

0

k

i i
i

p q n
−

=

∪ =∪  (7) 

Noting that the pi’s are unique, we can rewrite the L.H.S of (7) 
as 

 ( )
1 1 1 1

0 0 0 0

\
k k k k

i i i i i
i i i i

p q p E q p
− − − −

= = = =

⎡ ⎤
∪ = + ⎢ ⎥

⎣ ⎦
∪ ∪ ∪ ∪  (8) 

where the second term counts the average number of unique 
encoded data blocks the client received from the randomized 
subset qi’s. As the pi’s are unique, the first term in the R.H.S. of 
(8) simply equals to the sum of the individual pi’s cardinality: 

 
1 1

00

k k

i i
ii

p p
− −

==

=∑∪  (9) 

Now the second term in (8) can be expressed as follows: 
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\ \ \
k k k k k

i i i i i
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∪ ∪ ∪ ∪ ∪  (10) 

which is the product of the total number of encoded data blocks 
not duplicated in all pi’s and the probability of such a data block 
to come from the randomized subsets qi’s. Next we rewrite (10) 
as 
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\ \ 1 \
k k k k k

i i i i i
i i i i i
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= = = = =

⎛ ⎞⎡ ⎤ ⎧ ⎫⎪ ⎪= ⋅ − ∉ ∈⎜ ⎟⎨ ⎬⎢ ⎥ ⎜ ⎟⎪ ⎪⎣ ⎦ ⎩ ⎭⎝ ⎠
∪ ∪ ∪ ∪ ∪  (11) 

and then further express the probability term in terms of the 
individual qj: 
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or simply: 
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Equation (13) together with (2) to (6) relates the number of 
collisions with the sets pi’s and qi’s, and also the transmission 
rates of individual peers wi’s. With this model, we derive the 
worst-case and average-case results in the next two sections. 

B. Worst-case Analysis 
We observe that the number of collisions depends on the 

compositions of the sets pi’s and qi’s, which in turn depends on 
the transmission rates wi’s. Thus to derive the worst-case 
number of collisions we need to find the set of wi’s such that (6) 
is maximized. Table III summarizes the notations used in this 
section. 

Theorem 1 states that there are collisions only if at least one 
peer transmitted more than s blocks. Let x be the number of fast 
peers which each sent more than s blocks. The remaining k-x 
peers are regarded as slow peers. 

Theorem 2. Irrespective of how many blocks each slow peer 
sent, the number of distinct blocks received is determined solely 
by the sum of the number of blocks sent by the slow peers. 
Proof. First substitute (9) and (13) into (8): 

 ( )
1 11 1

0 0 00

1 1
/
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Then we separate the pi’s into the sum of fast and slow peers: 
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0 0
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TABLE III 
SUMMARY OF NOTATIONS USED IN THE WORST-CASE PERFORMANCE MODEL 

Symbol Description

x

y

z

C*

x*

y*

z*

Number of fast peers
Number of blocks transmitted by each fast peer
Number of blocks transmitted by all the slow peers
Collisions in worst-case
Corresponding value of x in worst-case
Corresponding value of y in worst-case
Corresponding value of z in worst-case  

 
Let z be the sum of all pi’s for the slow peers: 

 
1k

i
i x

z p
−

=

=∑  (16) 

Finally substituting (15), (16) into (14), we have: 

 ( )
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00
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/

k x
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ii

qnp q xs z xs z
r n r s

− −

==
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∏∪  (17) 

Thus, the R.H.S. of (17) depends only on the sum of |pi| (i.e., 
z) but not the individual values.  

Next we consider the composition of the fast peers’ 
transmission rates which maximizes collisions. We first 
establish in Theorem 3 a property for the worst-case scenario. 

Theorem 3. If the number of collisions is maximized, then all 
the fast peers must have sent the same number of blocks. 
Proof. Consider the product term in (17): 
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 Applying the inequality of arithmetic and geometric 
means, we have 
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q q
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in which the equality holds when qi=qj, for all i, j ≤x−1, which is 
also the maximal for the product term.  

Theorem 3 implies that we no longer need to consider the 
individual fast peers’ transmission rates. Instead, we let y be the 
number of blocks sent by each fast peer (i.e., s<y<n): 

0 1i i i iy w t p q s q i x= = + = + ≤ ≤ −  (20) 
Then substituting (17) and (20) back into (6), we have 

 1 1
/

xn y sxs z xs z n
r n r s

⎛ ⎞−⎛ ⎞ ⎛ ⎞+ + − − ⋅ − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠
 (21) 

Similarly, (6) can be rewritten in terms of x, y and z as 
 C xy z n= + −  (22) 

In the following, we determine the values of x, y and z that 
maximize (22) subject to (21). First, we rearrange (21) subject 
to z: 

 1
/

xn n y sz xs n
r r n r s

−−⎛ ⎞ ⎛ ⎞= − − − ⋅ −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (23) 

Since z is non-negative, we can obtain an upper bound of y, 
denoted by ymax, in terms of x by setting z≥0 in (23): 

 
1

/1
/

x

max
n n r ny y s s
r n r xs

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟≤ = + − ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (24) 

This is the scenario where all the k-x slow peers do not send any 
data blocks. 

Next, we substitute (23) into (22) to express the collisions in 
terms of x and y: 
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xn n y sC f x y xy xs n n
r r n r s

−−⎛ ⎞ ⎛ ⎞= = + − − − ⋅ − −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (25) 

and then we can find the value of y, denoted by yx, that 
maximizes C given x: 
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1/1
/

x

x
n n r ny s s
r n r s

+
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⎝ ⎠

 (26) 

However the computed yx may be larger than the upper 
bound in (24) and in that case the maximum is simply given by 
(24) as C is a strictly increasing function of y when y≤ yx. To 
combine the two cases we define yx=min{yx,ymax}, which can be 
rewritten as 

 
1 1
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/ /

x x

x
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 (27) 

To maximize C with respect to x, we note that x being the 
number of the fast peers, which is upper bounded by k. Thus we 
can obtain the value of x, denoted by x*, that maximizes (25) 
from 
 

{ }
( )argmax ( , )x

x x k
x f x y∗ ∗

∈ ≤
=  (28) 

Finally from (23) and (27), we can obtain the corresponding 
values of y and z, denoted by y* and z* respectively, which 
maximizes C from 
 

x
y y ∗

∗ ∗=  (29) 

 1
/

x
n n y sz x s n
r r n r s

∗−∗
∗ ∗ ⎛ ⎞−⎛ ⎞= − − − ⋅ −⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

 (30) 

Hence, the worst-case number of collisions, denoted by C*, 
can be obtained from 
 C x y z n∗ ∗ ∗ ∗= + −  (31) 

We conjecture that the worst-case number of collisions is a 
non-decreasing function of k, i.e., the number of peers. Thus in 
the limiting case of infinite peers the upper bound is given by 

 1ln
1k k k k

nC x y z n n
r r

∗ ∗ ∗ ∗
→∞ →∞ →∞ →∞

⎛ ⎞= ⋅ + − = ⋅ −⎜ ⎟−⎝ ⎠
 (32) 

C. Average-case Analysis 
The model in Section IV-A could also be used to find the 

number of collisions averaged over the peers’ transmission rate 
distributions. Let the transmission rate wi of peer i be a random 
variable with probability density function fw and cumulative 
distribution function Fw on the interval [0, 1]. Then we can 
compute the average collisions from the expectation of (6): 

 [ ] ( ) ( )
1

0 1 0 1
0

k

i w w k k
i

E C t w n f w f w dw dw
−

− −
=

⎛ ⎞= ⋅ − ⋅ ⋅⎜ ⎟
⎝ ⎠
∑∫ ∫" " "  (33) 

However, (33) does not seem to be analytically tractable so 
we employ the systematic sampling technique [29] to compute 
numerical results for evaluation. Specifically, assuming the 
cumulative distribution function Fw is invertible (i.e., F-1

w 
exists), then we can generate the peers’ transmission rates using 
the inverse transform sampled from the inverse function. Let U 
be a discrete random variable with uniform distribution on [0, 
1/k]. Applying the systematic sampling technique, we can 
express the peers’ transmission rates in term of U with equal 
sampling interval (i.e., 1/k): 
 ( )1 /i ww F U i k−= +  (34) 

Using the model in Section IV-A, we could able to find the 
number of collisions for the peers’ transmission rate given by 
(34). Hence, we can obtain an approximate value of the 
expected collisions by taking the average for every value in U: 

 [ ] ( )
1

0

k

i U
U i

E C t w n f U
−

=

⎛ ⎞⎛ ⎞≈ ⋅ − ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑  (35) 

Our simulation results show that the numerical results 
computed from the sampling technique is very accurate. 

V. SIMULATION AND EXPERIMENTAL RESULTS 
In this section, we report simulation results to validate the 

mathematical model derived in Section IV and experimental 
results conducted in the Planetlab [30] to evaluate the 
performance of DPRS in real-world network settings. Clearly, 
the number of collisions is proportional to the number of blocks 
n. Therefore, in the following evaluations we normalize the 
number of collisions by n and plot collisions as the ratio C/n. 

A. Model Validation and Performance Evaluation 
We developed a discrete-event simulator to simulate the 

streaming of erasure-coded video data from multiple sources in 
a simplified network setting. As our goal is to validate the 
mathematical model in Section IV, the simulator omits some 
details such as network delay, peer churn, etc. A more detailed 
simulation study would require a more complete system design, 
including the control protocols, data distribution policies, 
competing traffics, and so on and is a subject for further study. 

We model bandwidth variations across different peers using 
the Kumaraswamy distribution [31] which is a family of 
continuous probability distributions defined on the interval [0, 
1] differing in the values of their two non-negative shape 
parameters, a and b. By varying these two parameters, we can 
generate a wide range of bandwidth distributions. 

At the beginning of each simulation run, each peer in the 
system is randomly assigned a bandwidth according to the 
Kumaraswamy distribution. The sending peers then transmit 
the erasure-coded data blocks according to the DPRS algorithm 
at the assigned bandwidth. Once the client receives n encoded 
data blocks, the transmission process is terminated and the 
number of collisions counted. 

We carry out two simulations, one for worst-case results and 
the other for average-case results. In the worst-case simulations, 
we ran a large number (thousands) of trials with different 
parameters {a, b} of the Kumaraswamy distribution and 
recorded the maximum number of collisions. In the 
average-case simulations, we ran one hundred trials for each set 
of parameters {a, b} and record the average number of 
collisions. In both cases, the size of the disjoint subset s is set to 
the maximum, i.e., n/rk. 

Fig. 6 shows the analytical and simulated worst-case 
collisions against the code rate r for k=10, 20, 50, and 100 
sending peers. We observe that the analytical and simulation 
results agree reasonably well, with the simulated collisions 
slightly lower than the analytical counter-part.  
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Fig. 6.  Analytical and simulated worst-case collisions against the code rate r. 
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Fig. 8.  Analytical and simulated average collisions against the code rate r.for 
number of peers k=10 with respect to different shape parameters a and b. 
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Fig. 7.  Probability density function of Kumaraswamy distribution with respect 
to different shape parameters a and b. 
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Fig. 9.  Analytical and simulated average collisions against the code rate r.for 
number of peers k=100 with respect to different shape parameters a and b. 
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Fig. 10.  Analytical and trace-driven simulated worst-case collisions against the 
code rate r.  
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Fig. 11.  Trace-driven simulated average collisions against the code rate r. 
  

This is expected as the simulation does not exhaust all 
possible parameter combinations and so tends to underestimate 
the worst case collisions. We conducted a large number of 
additional simulation results (not shown) and found them to 
agree with the analytical results consistently, thereby validating 
the mathematical model in Section IV. 

More importantly, the results reveal that we can achieve 
relatively low worst-case collision (e.g., 11.59% for 100 peers) 
even for code rate as large as r=0.3. By contrast, conventional 
erasure coding without multi-source scheduling for 100 peers 
have a code rate of r=0.01, or a coding space 30 times larger 
than using DPRS. This reduction in coding space will result in 
significantly lower computation and hashing overheads as 
discussed in Section II. 

In the average-case simulations, we carry out five sets of 
simulations with different parameter sets {a, b} for the 
Kumaraswamy distribution. These five-parameter sets {a, b} 
represent a wide range of bandwidth distributions as shown in 
Fig. 7. Fig. 8 and Fig. 9 plots the average collisions versus code 
rate for k=10 and 100 respectively. We again observe that the 
simulation results closely match the numerical results 
computed from the system model in Section IV, thereby 
validating the system model. 

In addition, the results show that the average collision 
depends heavily on the property of the bandwidth distribution. 
For example, bandwidth distribution with small variance, e.g., 
{a=5; b=1} and {a=2; b=2}, result in significantly lower 
average collisions than bandwidth distributions of large 
variance, e.g., {a=0.2; b=0.2} and {a=1; b=5}. 

More importantly, with DPRS the average collisions can be 
reduced to negligible levels for code rate of just r=0.3. 
Compared to conventional erasure coding (with r=0.01 for 
k=100) the proposed DPRS algorithm can achieve comparable 
performance and yet can reduce the coding space size by one 
order of magnitude. 

B. Trace-driven Simulation Results 
The bandwidth distribution used in Section V.A is merely a 

mathematical model and thus may not resemble real-world 
network bandwidth distributions. To address this limitation we 
carried out extensive bandwidth measurements conducted in 
the Planetlab to capture bandwidth distributions and variations 
in a real network setting.  

TABLE IV 
COMPARISON OF DPRS AND ORDINARY PUSH-BASED APPROACHES IN 

DISTRIBUTING 10-MB DATA FROM 10 PEERS 

Scheduling Scheme
Coding Scheme
Code Rate
Effective Encoding Rate
Effective Hashing Rate
Decoding Rate
Hashes Overhead
Decoding Overhead
Average Collisions

DPRS
Online codes

0.3
9.75 MBps
4.11 MBps
6.61 MBps

0.41%
4.74%
0.28%

DPRS
RS codes

0.5
0.79 MBps
6.86 MBps
1.57 MBps

0.24%
0%

3.84%

Conventional
Online codes

0.1
3.14 MBps
1.37 MBps
6.61 MBps

1.22%
4.74%

0%

Conventional
Online codes

0.01
0.32 MBps
0.13 MBps
6.61 MBps

12.20%
4.74%

0%

(a) (b) (c) (d)

Total Overhead 5.43% 4.08% 5.96% 16.94%  
 
Specifically, a test program was installed to the PlanetLab 

nodes (total 286 nodes) for the measurements. In each 
measurement, N+1 nodes are randomly drawn from the pool of 
PlanetLab nodes, with one node acting as the receiver and the 
remaining N nodes acting as senders. All N senders then 
simultaneously transmit data to the receiver using TCP. The 
captured bandwidth traces are then fed into the simulator to 
obtain collision performances. 

Fig. 10 plots the maximum collisions measured in the 
trace-driven simulations versus different code rate r. The 
results show clear agreement between the analytical results and 
the simulated results. Fig. 11 plots the average collisions versus 
code rate. Only the simulated results are shown as the curves 
for the analytical results overlap with the simulated ones. 

We observe that in real network settings, the proposed DPRS 
algorithm can also reduce the average collisions to negligible 
levels using a code rate of just r=0.3. This result suggests that 
the DPRS has potential to work well in real network settings. 

C. Comparisons 
Table IV compares the proposed DPRS algorithm with 

conventional push-based transmission in distributing a 10 MB 
data block from 10 peers to a receiver, running in a 2 GHz 
Pentium-class processor. Total overhead is the sum of decoding 
overhead and average collisions, and represent the amount of 
extra network bandwidth used in delivering the data block. 

Case (c) and (d) both employ conventional push-based 
transmission using Online codes [18] and SHA1 [28] as the 
hashing algorithm. The only difference is the code rate, of 
which case (c) is 0.1 and case (d) is 0.01. The code rate limits 
the number of peers that can participate in the transmission 
process, e.g., code rate of 0.1 and 0.01 allow up 10 and 100 
peers respectively. Decreasing the code rate increases the 
number of sending peers at the expense of significantly lower 
encoding rate (e.g., 3.14 Mbps v.s. 0.32 Mbps) and hash 
generating rate (e.g., 1.37 Mbps v.s. 0.13 Mbps), and 
significantly higher total overheads (e.g., 5.96% v.s. 16.94%). 

By contrast, with DPRS in case (a) we not only can achieve 
substantially lower total overheads (e.g., 5.43% versus 16.94%), 
but also at significantly higher encoding rate (e.g., 9.75 Mbps 
versus 0.32 Mbps) and hashing rate (e.g., 4.11 Mbps versus 
0.12 Mbps). DPRS also enables the use of more 
computation-intensive codes such as RS codes [13] (case (b)). 

The results show that DPRS is more bandwidth efficient, 
requires lower computation power, and thus more scalable to a 
large peer population. 
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VI. CONCLUSION 
Unlike pull-based approaches, the push-based multi-source 

streaming model investigated in this work eliminates the need 
for network resource estimation that is error-prone and difficult 
to implement in real networks. The proposed DPRS 
transmission scheduling algorithm solves the scalability 
problem inherent in erasure-correction codes and thus make 
application of the multi-source streaming model to large-scale 
distributed systems feasible. With the promising preliminary 
results, we will extend the research in two directions. 

First, the two transmission schedulers described in Section 
III are only a starting point. In particular, the schedulers assume 
absolutely no knowledge of the peers’ network resources, 
which may not be the case in practice. For example, while the 
peers’ network resource availabilities could not be accurately 
predicted or estimated, they may still be bounded by practical 
constrains, such as the physical constraint set by the network 
link, or logical constraint set by the user. In this case, a partial 
knowledge of the peer bandwidth distribution, for example, can 
be exploited in the design of the transmission scheduler. More 
generally, the transmission scheduler may also be combined 
with existing bandwidth estimation tools so that partial network 
knowledge can be integrated into the transmission scheduler to 
achieve better performance. 

Second, the transmission schedulers described in Section III 
are static in the sense that they are fixed a priori and remain the 
same for the rest of the streaming session. In real networks, the 
amount of network resource available often fluctuates from 
time to time. Thus if partial network resource information can 
be gathered online then it will open up the possibility to 
dynamically reconfigure the transmission schedules to adapt to 
the changing network conditions. 

Finally, we intend to implement the proposed schedulers into 
a working P2P streaming platform so that real-world 
performance results can be obtained to verify the mathematical 
models, and to demonstrate the feasibility of multi-source 
streaming of erasure-coded media data in real networks. 
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