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Abstract: Patching and transition patching are two techniques proposed to build efficient video-on-demand (VoD) 
systems. Patching works by allowing a client to playback video data from a patching stream while caching 
video data from another multicast video stream for later playback. The patching stream can be released once 
video playback reaches the point where the cached data begins, and playback continues via the cache and 
the shared multicast channel for the rest of the session. Transition patching takes this patching technique one 
step further by allowing a new client to cache video data not only from a full-length multicast channel, but 
also from a nearby in-progress patching channel as well to further reduce resource consumption. This study 
further generalizes these patching techniques into a recursive patching scheme where a new client can cache 
video data recursively from multiple patching streams to further reduce resource consumption. This 
recursive patching scheme unifies the existing patching schemes as special cases. Simulation results show 
that it can achieve significant reductions (e.g. 60%~80%) in startup latency at the same load and with the 
same system resources. 

1 INTRODUCTION 

Although extensive researches on video-on-demand 
(VoD) have been conducted in the last decade, 
commercial deployment of VoD services in the 
market is still far from commonplace. Apart from 
content copyright issues, the main reason is the 
immense network and server resources needed to 
serve a large user population. As traditional VoD 
systems make use of unicast for video streaming, the 
required server and network bandwidth grows 
linearly with the number of subscribers, thereby 
rendering metropolitan-scale deployment 
economically difficult, if not impossible.  

To tackle this challenge, researchers have 
recently investigated a number of innovative video 
streaming architectures based on network multicast 
to dramatically reduce the server and network 
resources needed in large-scale VoD systems.  

One technique, called batching, groups users 
waiting for the same video data and then serves them 
using a single multicast channel (Dan et al., 1994a; 
Dan et al., 1994b; Dan et al., 1996; Aggarwal et al., 
1996; Shachnai and Yu, 1997). This batching 
process can occur passively while the users are 
waiting, or actively by delaying the service of earlier 
users to wait for later users to join the batch. Various 

batching policies have been proposed in recent 
years, including first-come-first-serve (FCFS) and 
maximum queue length (MQL) proposed by Dan et 
al. (1994a), maximum factored queue (MFQ) 
proposed by Aggarwal et al. (1996), Max_Batch and 
Min_Idle proposed by Shachnai and Yu (1997), etc.  

Another technique, called patching, exploits 
client-side bandwidth and buffer space to merge 
users on separate transmission channels onto an 
existing multicast channel (Liao and Li, 1997; Hua 
et al., 1998; Cai et al., 1999; Carter et al., 1997; 
Eager et al., 2000). The idea is to let a client cache 
data from a nearby (in playback time) multicast 
transmission channel while sustaining playback with 
data from another transmission channel − called a 
patching channel in (Hua et al., 1998). This patching 
channel can be released once video playback reaches 
the point where the cached data begins, and 
playback continues via the cache and the shared 
multicast channel for the rest of the session. 

Cai and Hua (1999) took this patching technique 
one step further by allowing a new client to cache 
video data not only from a full-length multicast 
channel, but also from a nearby in-progress patching 
channel as well. This technique, called transition 
patching, can further reduce resource consumption 
when compared to simple patching. 
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In this study, our first contribution is the 
generalization of these patching techniques into a 
recursive patching scheme where a new client can 
cache video data recursively from multiple patching 
streams to further reduce resource consumption. 
Second, this recursive patching scheme also unifies 
the existing patching schemes as special cases. Third, 
we also consider recursive patching in bandwidth-
limited systems and incorporate batching to further 
reduce resource consumption, especially in heavily-
loaded systems. Our simulation results show that 
recursive patching can achieve startup latency 
reduction of 60%~80% compared to transition 
patching. 

The rest of this paper is organized as follows: 
Section 2 reviews transition patching; Section 3 
introduces our recursive patching scheme; Section 4 
addresses the stream assignment problem; Section 5 
compares the performance of different patching 
schemes using simulation; and Section 6 
summarizes the study. 

2 TRANSITION PATCHING  

Fig. 1 illustrates the patching and transition patching 
techniques. There are three clients, denoted by ra, rb 
and rc, which arrive at the system at time instants ta, 
tb, and tc respectively requesting the same video. We 
assume that the length of the video being served is L 

and is encoded at a constant bit-rate of R bps. To 
facilitate discussion, we divide the video into 7 
logical segments (D1 to D7) and denote the group of 
video segments from the rth segment to the sth 
segment by [Dr, Ds]. 

Assuming the system is idle when ra arrives, then 
the system will assign a regular stream (R-stream), 
denoted by Sa, to stream the whole video from the 
beginning to the end (i.e. [D1, D7]) to client ra. The 
cost of serving client ra is thus equal to the 
bandwidth-duration product LR. For client rb 
arriving at time tb, it clearly cannot begin playback 
by receiving video data from stream Sa as it has 
missed the first (tb-ta) seconds of the video, i.e., [D1, 
D3].  

Instead of starting another R-stream for client rb, 
the system assigns a patching stream (P-stream) Sb 
to transmit only the first (tb-ta) seconds (i.e., [D1, 
D3]) of missed video data to enable client rb to begin 
playback. At the same time, client rb also caches 
video segment [D4, D6] from multicast stream Sa for 
later playback. After (tb-ta) seconds, the video 
playback of client rb will reach video time (tb-ta) and 
thus the client can continue playback using the 
cached data received from Sa for the rest of the 
video. The P-stream Sb can then be released for 
reuse by other clients. Given that Sb is occupied for 
duration much shorter than the length of the video 
((tb-ta) versus L), the cost of serving client rb is thus 
significantly reduced. 
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Figure 1: Streaming, data reception and playback schedules in transition patching. 
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This technique is called patching in this study 
and it has been studied by a number of researchers 
(Liao and Li, 1997; Hua et al., 1998; Cai et al., 1999; 
Carter et al., 1997; Eager et al., 2000) under 
different names. The tradeoffs of patching are the 
need for network multicast, the need for the client to 
receive two video streams simultaneously, and the 
additional client buffer required (i.e. (tb-ta)R bytes) 
to cache video data received from the R-stream. 
Nevertheless, subject to the client’s buffer 
availability, a client admitted using patching always 
consumes less server resource than a client admitted 
using an R-stream as is the case in a conventional 
VoD system. 

In patching, a patched client receives data from a 
P-stream while caching video data from another R-
stream. Cai and Hua (1999) proposed a transition 
patching technique which extends patching to allow 
a client to cache video data not only from an R-
stream, but also from another P-stream as well. In 
other words, a client admitted using transition 
patching will first receive video data from two P-
streams, then releases one P-stream to be replaced 
by an R-stream, and finally releases the remaining P-
stream to continue playback for the rest of the video 
using data received from the R-stream.  

For example, consider client rc in Fig. 1 which 
arrives at time tc and is admitted using transition 
patching. We note that for client rc, it has already 
missed video segment [D1, D4] multicast from the R-
stream Sa. To patch this missed video segment, 
transition patching employs a three-phase admission 
process as shown in Fig. 1. In Phase 1, a P-stream Sc 
is allocated to stream the initial video segment D1 to 
client rc to begin playback. At the same time, the 

client caches video data segment D2 being 
multicasted by the P-stream Sb. In Phase 2, the P-
stream Sc is released and the client begins caching 
video data segment [D6, D7] from the R-stream Sa. 
Note that the client also continues to receive video 
segment [D3, D5] from the P-stream Sb. Finally, in 
Phase 3 the remaining P-stream Sb is released and 
the client simply continues playback using cached 
data and data received from the R-stream Sa. 

This transition patching technique differs from 
simple patching in two aspects. First, the P-stream Sc 
allocated for client rc is occupied for a duration of 
(tc-tb) seconds, which is shorter than the duration 
when simple patching is used, i.e., (tc-ta) seconds. 
Second, the P-stream Sb is extended from (tb-ta) 
seconds to (2tc-ta-tb) seconds to support client rc. 
This stream is called a transition stream (T-stream) 
in (Cai and Hua, 1999). Thus the net gain in 
resource reduction is equal to {[(tc-ta)-(tc-tb)] - [(2tc-
ta-tb)-(tb-ta)]} = 3tb-2tc-ta. 

For example, suppose L, ta, tb and tc equal to 
7200, 0, 200 and 250 seconds respectively. Then the 
costs of supporting ra, rb and rc are 7200R, 200R and 
150R respectively, representing resource savings of 
97.22% and 97.92% for clients rb and rc. 

3 RECURSIVE PATCHING 

The fundamental principle of patching is to cache 
video data from the nearest stream so as to minimize 
the amount of video data missed. We observe that 
this principle not only can be applied to a single 
patching stream, but also to a series of patching 
streams as well. This motivates us to devise a new 
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Figure 2: Illustration of recursive patching. 
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recursive patching technique where video data from 
multiple levels of patching streams are cached to 
further reduce the resources required. 

Fig. 2 illustrates the recursive patching technique 
by considering a fourth client rd which arrives at the 
system at time td, in addition to the three clients ra, 
rb, and rc considered in Fig. 1. To ease discussion, 
we divide the whole video into 6 different segments 
C1 to C6.  

For the client rd, it has missed the initial (td-ta) 
seconds of the video. Thus, if we use simple 
patching it will incur a cost of (td-ta)R bytes. Using 
transition patching with Sb as the transition stream 
will incur a cost of (3td-2tc-tb)R bytes. 

Now consider the use of recursive patching, 
which in this case is divided into 4 phases as shown 
in Fig. 2. In Phase 1, the client caches video segment 
C2 from Sc while playing back video segment C1 
using data received from Sd. In Phase 2, client rd 
continues to receive video segment C3 from Sc but 
releases Sd and replaces it with Sb to receive video 
segment C4. In Phase 3, client rd continues to receive 
video segment C5 from Sb but releases Sc and 
replaces it with Sa to receive video segment C6. 
Finally, in Phase 4 the client releases the remaining 
P-stream Sb and contines playback till the end of the 
video by receiving video data from Sa.  

Subtracting the lengths of different streams, the 
total patching cost to serve rd is [(5td-2tc-2tb-ta) - 
(3tc-2tb-ta)]R = 5(td-tc)R. Compared to the cost of 
(3td-2tc-tb)R bytes in transition patching, there is a 
gain of (3tc-2td-tb)R bytes. If td equals to 260 
seconds, the cost of serving rd is 50R, or 99.31% 
resource saving over serving with a new regular 
stream. 

Note that for the example in Fig. 2, the client 
caches from at most two streams at any time and so 
the client bandwidth requirement is the same as 
simple patching and transition patching. In the 
whole patching process, the client caches video data 
through a total of three P-streams and one R-stream. 
In general, a client can cache video data through 
even more P-streams as long as there are eligible P-
streams. 

Let k be the total number of streams (i.e., one R-
stream plus k-1 P-streams) which a client caches 
data from. Then we call this process k-phase 
recursive patching (kP-RP). It is worth noting that 
simple patching and transition patching are 
equivalent to 2P-RP and 3P-RP respectively under 
this unified framework.  

4 STREAM ASSIGNMENT 

In admitting a new client through k-phase recursive 
patching, there could be more than (k-1) P-streams 
eligible for patching. In this case, the system needs 
to determine the subset of eligible streams to use to 
increase resource reduction. We call this the stream 
assignment problem. In the next section, we first 
review the stream assignment scheme employed in 
the transition patching study (Cai and Hua, 1999) 
and then extend it to recursive patching in Section 
4.2. 

4.1 The Equal-Split Stream 
Assignment Scheme 

Fig. 3a depicts the equal-split stream assignment 
scheme proposed in the transition patching study 
(Cai and Hua, 1999). There are two parameters in 
this scheme, namely the regular window length 
denoted by ωr and the patching window length 
denoted by ωt.  

The first stream allocated in a regular window is 
always an R-stream, streaming the video from the 
beginning to the end. The first stream in a patching 
window (except the first one), however, will be a T-
stream, which is a P-stream extended to support 
other clients’ transition patching. The rest are simple 
patching streams (P-streams) streaming the missed 
initial video segment for the clients. 

For example, when the first client r1 arrives at 
the system, an R-stream S1 is assigned, and all the 
subsequent requests (r2 through rk-1) are assigned P-
streams to perform simple patching. When a client rk 
arriving more than ωt time units after the R-stream 
S1, the server will assign a T-stream Sk to it. Within 
the next ωt window (rk+1 through rq-1), all requests 
are then assigned P-streams to perform transition 
patching via the T-stream Sk. The next request rq is 
again assigned a new T-stream which also starts 
another ωt window and so on. This process repeats 
until a request rp whose arrival time exceeds ωr 
seconds from the R-stream S1. In this case a new R-
stream will be assigned to begin a new regular 
window.  

The study by Cai and Hua did not address how to 
configure ωr and ωt to optimize performance. In our 
experiments, we simply optimize ωr and ωt using 
exhaustive search in unit of seconds. As this 
computation can be done offline, it does not affect 
the system’s runtime performance. 
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Figure 3: Illustration of stream assignment schemes. 

4.2 A Hierarchical Equal-Split 
Stream Assignment Scheme 

Unlike transition patching, a client admitted with k-
phase recursive patching may cache data through a 
new P-stream plus up to k-2 extended transition 
streams, say streams s1, s2, …, sk-2, before merging 
back to an R-stream. To be consistent with Cai and 
Hua’s study, we denote these transition streams by 
T1-stream, T2-stream, …, Tk-2-stream. 

Similarly we can generalize the two-level equal-
split stream assignment scheme to a hierarchical 
equal-split stream assignment scheme with (k-1) 
levels as shown in Fig. 3b for k=4. Let ωi be the 
window length for level i. Then ω0 and ω1 are 
equivalent to the regular window length ωr and 
patching window length ωt in the original equal-split 
stream assignment scheme.  

Streams within the same level i window belong 
to an Li patching group. For a client admitted via k-
phase recursive patching, it will begin with a new P-
stream and at the same time caches video data from 
the first stream in the Lk-2 patching group, which is a 

Tk-2-stream. In Phase 2, it will release the P-stream 
and begin caching data from the first stream, in the 
Lk-3 patching group, which is a Tk-3-stream. In 
general, the client caches video data from the Tk-i-
stream and the Tk-i-1-stream during Phase i for i<(k-
1). In Phase (k-1), the client caches video data from 
a T1-stream and the R-stream, and finally releases 
the T1-stream to continue playback using the R-
stream in the last Phase k. 

Again, we can optimize the set of window 
lengths {ω0, ω1, …, ωk-2} offline using exhaustive 

search. Note that the computational complexity 
increases exponentially with k. Further researches 
are therefore needed to devise computationally-
efficient algorithms for optimizing the window 
lengths. 

5 PERFORMANCE EVALUATION 

In this section, we evaluate the performance of 
recursive patching using simulations. We assume 
Poisson client arrivals and all clients playback the 
video from the beginning to the end without 
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interactive operations. For simplicity, we ignore 
network delays and processing delays. Table 1 lists 
the system parameters used in our simulation study. 
We use startup latency - defined as the time from 
client arrival to the time playback can begin, as the 
performance metric for comparison. 

Fig. 4 plots the startup latency versus arrival rate 
ranging from 0.1 to 1 client/second. There are three 
curves plotting the startup delay for 3-phase, 4-
phase, and 5-phase recursive patching respectively. 
Note that 3-phase recursive patching is equivalent to 
transition patching. 

Compared to transition patching (i.e. with k=3), 
the 4-phase recursive patching can achieve 
significantly lower startup latency under the same 
load. For example, the latency is reduced by 78%, 
67% and 62% at arrival rates of 0.3/s, 0.6/s and 0.9/s 
respectively. The improvement is particularly 
significant at higher arrival rates. This can be 
explained by the observation that at higher arrival 
rates, the streams are more closely spaced and thus, 
enables more data sharing by patching recursively. 

The latency is further reduced when 5-phase 
recursive patching is employed although the 
reduction is less significant. Compared to transition 
patching, 5P-RP can achieve latency reductions of 
81%, 78% and 70% at arrival rates of 0.3/s, 0.6/s 
and 0.9/s respectively. We were not able to generate 
results for larger values of k due to the extensive 
computation time needed for optimizing the window 

lengths {ω0, ω1, …, ωk-2} (c.f. Section 4.2). 
Nevertheless the current results do suggest that the 
improvements will be less and less when k is 
increased further. 

6 CONCLUSION 

We investigated in this study a generalized recursive 
patching scheme (kP-RP) for building efficient, 
large-scale video-on-demand systems. This new 
scheme unified the existing patching and transition 
patching schemes as special cases of 2P-RP and 3P-
RP respectively. By using larger values of k (i.e., 
k>3), we showed that the recursive patching scheme 
can achieve significantly lower startup latency 
compared to even the already efficient transition 
patching scheme, at the same load and with the same 
system resources. Optimization of the patching 
window lengths in stream assignment, however, 
turned out to be very computationally expensive. 
Therefore further research is needed to reduce the 
computation time needed and also to extend this 
algorithm to accommodate different system 
parameter settings like client access bandwidth, 
client buffer storage limit, etc. 
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