

 306

RECURSIVE PATCHING
An Efficient Technique for Multicast Video Streaming

Y. W. Wong, Jack Y. B. Lee
Department of Information Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
Email: ywwong1@ie.cuhk.edu.hk, yblee@ie.cuhk.edu.hk

Keywords: Video-on-demand, multicast, patching, transition, recursive.

Abstract: Patching and transition patching are two techniques proposed to build efficient video-on-demand (VoD)
systems. Patching works by allowing a client to playback video data from a patching stream while caching
video data from another multicast video stream for later playback. The patching stream can be released once
video playback reaches the point where the cached data begins, and playback continues via the cache and
the shared multicast channel for the rest of the session. Transition patching takes this patching technique one
step further by allowing a new client to cache video data not only from a full-length multicast channel, but
also from a nearby in-progress patching channel as well to further reduce resource consumption. This study
further generalizes these patching techniques into a recursive patching scheme where a new client can cache
video data recursively from multiple patching streams to further reduce resource consumption. This
recursive patching scheme unifies the existing patching schemes as special cases. Simulation results show
that it can achieve significant reductions (e.g. 60%~80%) in startup latency at the same load and with the
same system resources.

1 INTRODUCTION

Although extensive researches on video-on-demand
(VoD) have been conducted in the last decade,
commercial deployment of VoD services in the
market is still far from commonplace. Apart from
content copyright issues, the main reason is the
immense network and server resources needed to
serve a large user population. As traditional VoD
systems make use of unicast for video streaming, the
required server and network bandwidth grows
linearly with the number of subscribers, thereby
rendering metropolitan-scale deployment
economically difficult, if not impossible.

To tackle this challenge, researchers have
recently investigated a number of innovative video
streaming architectures based on network multicast
to dramatically reduce the server and network
resources needed in large-scale VoD systems.

One technique, called batching, groups users
waiting for the same video data and then serves them
using a single multicast channel (Dan et al., 1994a;
Dan et al., 1994b; Dan et al., 1996; Aggarwal et al.,
1996; Shachnai and Yu, 1997). This batching
process can occur passively while the users are
waiting, or actively by delaying the service of earlier
users to wait for later users to join the batch. Various

batching policies have been proposed in recent
years, including first-come-first-serve (FCFS) and
maximum queue length (MQL) proposed by Dan et
al. (1994a), maximum factored queue (MFQ)
proposed by Aggarwal et al. (1996), Max_Batch and
Min_Idle proposed by Shachnai and Yu (1997), etc.

Another technique, called patching, exploits
client-side bandwidth and buffer space to merge
users on separate transmission channels onto an
existing multicast channel (Liao and Li, 1997; Hua
et al., 1998; Cai et al., 1999; Carter et al., 1997;
Eager et al., 2000). The idea is to let a client cache
data from a nearby (in playback time) multicast
transmission channel while sustaining playback with
data from another transmission channel − called a
patching channel in (Hua et al., 1998). This patching
channel can be released once video playback reaches
the point where the cached data begins, and
playback continues via the cache and the shared
multicast channel for the rest of the session.

Cai and Hua (1999) took this patching technique
one step further by allowing a new client to cache
video data not only from a full-length multicast
channel, but also from a nearby in-progress patching
channel as well. This technique, called transition
patching, can further reduce resource consumption
when compared to simple patching.

RECURSIVE PATCHING

 307

In this study, our first contribution is the
generalization of these patching techniques into a
recursive patching scheme where a new client can
cache video data recursively from multiple patching
streams to further reduce resource consumption.
Second, this recursive patching scheme also unifies
the existing patching schemes as special cases. Third,
we also consider recursive patching in bandwidth-
limited systems and incorporate batching to further
reduce resource consumption, especially in heavily-
loaded systems. Our simulation results show that
recursive patching can achieve startup latency
reduction of 60%~80% compared to transition
patching.

The rest of this paper is organized as follows:
Section 2 reviews transition patching; Section 3
introduces our recursive patching scheme; Section 4
addresses the stream assignment problem; Section 5
compares the performance of different patching
schemes using simulation; and Section 6
summarizes the study.

2 TRANSITION PATCHING

Fig. 1 illustrates the patching and transition patching
techniques. There are three clients, denoted by ra, rb
and rc, which arrive at the system at time instants ta,
tb, and tc respectively requesting the same video. We
assume that the length of the video being served is L

and is encoded at a constant bit-rate of R bps. To
facilitate discussion, we divide the video into 7
logical segments (D1 to D7) and denote the group of
video segments from the rth segment to the sth
segment by [Dr, Ds].

Assuming the system is idle when ra arrives, then
the system will assign a regular stream (R-stream),
denoted by Sa, to stream the whole video from the
beginning to the end (i.e. [D1, D7]) to client ra. The
cost of serving client ra is thus equal to the
bandwidth-duration product LR. For client rb
arriving at time tb, it clearly cannot begin playback
by receiving video data from stream Sa as it has
missed the first (tb-ta) seconds of the video, i.e., [D1,
D3].

Instead of starting another R-stream for client rb,
the system assigns a patching stream (P-stream) Sb
to transmit only the first (tb-ta) seconds (i.e., [D1,
D3]) of missed video data to enable client rb to begin
playback. At the same time, client rb also caches
video segment [D4, D6] from multicast stream Sa for
later playback. After (tb-ta) seconds, the video
playback of client rb will reach video time (tb-ta) and
thus the client can continue playback using the
cached data received from Sa for the rest of the
video. The P-stream Sb can then be released for
reuse by other clients. Given that Sb is occupied for
duration much shorter than the length of the video
((tb-ta) versus L), the cost of serving client rb is thus
significantly reduced.

�����������������������
�����������������������

����������������������
����������������������

���������������
���������������

����������������������
����������������������

���������������������
���������������������

ta tb

����������������������

Sa
Sb
Sc

tc

D4 D5

D1 D2 D3

D6 D7

D1

D1 D2 D3

D4 D5

����������������������
D1

����������������������
����������������������D2

���������������
���������������

����������������������
����������������������

���������������������
���������������������D3

D6 D7
D4 D5

�����������������������
�����������������������

����������������������
����������������������

���������������
���������������

D4 D5
D1 D2 D3

D6 D7D7

D4 D5 D6 D7D1 D2 D3

����������������������
����������������������D1

���������������������
���������������������D2

��������������
��������������

���������������������
���������������������

��������������������
��������������������D3 D6 D7D4 D5

��
D4 D5D1 D2 D3 D6 D7

D4 D5 D6 D7D1 D2 D3

ra

rb

rc

Client data reception

Multicasting schedule

ra
rb
rc

Client playback

tc - tb
2tc - tb - ta

Phase 1 Phase 2 Phase 3

Figure 1: Streaming, data reception and playback schedules in transition patching.

ICEIS 2003 - Databases And Information Systems Integration

 308

This technique is called patching in this study
and it has been studied by a number of researchers
(Liao and Li, 1997; Hua et al., 1998; Cai et al., 1999;
Carter et al., 1997; Eager et al., 2000) under
different names. The tradeoffs of patching are the
need for network multicast, the need for the client to
receive two video streams simultaneously, and the
additional client buffer required (i.e. (tb-ta)R bytes)
to cache video data received from the R-stream.
Nevertheless, subject to the client’s buffer
availability, a client admitted using patching always
consumes less server resource than a client admitted
using an R-stream as is the case in a conventional
VoD system.

In patching, a patched client receives data from a
P-stream while caching video data from another R-
stream. Cai and Hua (1999) proposed a transition
patching technique which extends patching to allow
a client to cache video data not only from an R-
stream, but also from another P-stream as well. In
other words, a client admitted using transition
patching will first receive video data from two P-
streams, then releases one P-stream to be replaced
by an R-stream, and finally releases the remaining P-
stream to continue playback for the rest of the video
using data received from the R-stream.

For example, consider client rc in Fig. 1 which
arrives at time tc and is admitted using transition
patching. We note that for client rc, it has already
missed video segment [D1, D4] multicast from the R-
stream Sa. To patch this missed video segment,
transition patching employs a three-phase admission
process as shown in Fig. 1. In Phase 1, a P-stream Sc
is allocated to stream the initial video segment D1 to
client rc to begin playback. At the same time, the

client caches video data segment D2 being
multicasted by the P-stream Sb. In Phase 2, the P-
stream Sc is released and the client begins caching
video data segment [D6, D7] from the R-stream Sa.
Note that the client also continues to receive video
segment [D3, D5] from the P-stream Sb. Finally, in
Phase 3 the remaining P-stream Sb is released and
the client simply continues playback using cached
data and data received from the R-stream Sa.

This transition patching technique differs from
simple patching in two aspects. First, the P-stream Sc
allocated for client rc is occupied for a duration of
(tc-tb) seconds, which is shorter than the duration
when simple patching is used, i.e., (tc-ta) seconds.
Second, the P-stream Sb is extended from (tb-ta)
seconds to (2tc-ta-tb) seconds to support client rc.
This stream is called a transition stream (T-stream)
in (Cai and Hua, 1999). Thus the net gain in
resource reduction is equal to {[(tc-ta)-(tc-tb)] - [(2tc-
ta-tb)-(tb-ta)]} = 3tb-2tc-ta.

For example, suppose L, ta, tb and tc equal to
7200, 0, 200 and 250 seconds respectively. Then the
costs of supporting ra, rb and rc are 7200R, 200R and
150R respectively, representing resource savings of
97.22% and 97.92% for clients rb and rc.

3 RECURSIVE PATCHING

The fundamental principle of patching is to cache
video data from the nearest stream so as to minimize
the amount of video data missed. We observe that
this principle not only can be applied to a single
patching stream, but also to a series of patching
streams as well. This motivates us to devise a new

���
��

�������

������
������

��������
��������

����������������������
����������������������

ta tb

���������
���������

Sa
Sb
Sc

tc

C4

C1 C2

C6

C1

C1 C2 C3

rd Client data reception

Multicasting schedule

Client playback

td

Sd
�������
C1

����������������������
����������������������C2 C3

�����������������������
�����������������������C3 C4

C5

�������
�������C1

�������
�������C2

����������������������
����������������������C3

����������������������
C4

���
C5
C6

�������
C1

���������
C2

�������������������
C3

����������������������
C4

���
C5 C6rd

C5

2td - tb - ta

2td - tc - tb

td - tc

Phase 2 Phase 3 Phase 4
Phase 1

Figure 2: Illustration of recursive patching.

RECURSIVE PATCHING

 309

recursive patching technique where video data from
multiple levels of patching streams are cached to
further reduce the resources required.

Fig. 2 illustrates the recursive patching technique
by considering a fourth client rd which arrives at the
system at time td, in addition to the three clients ra,
rb, and rc considered in Fig. 1. To ease discussion,
we divide the whole video into 6 different segments
C1 to C6.

For the client rd, it has missed the initial (td-ta)
seconds of the video. Thus, if we use simple
patching it will incur a cost of (td-ta)R bytes. Using
transition patching with Sb as the transition stream
will incur a cost of (3td-2tc-tb)R bytes.

Now consider the use of recursive patching,
which in this case is divided into 4 phases as shown
in Fig. 2. In Phase 1, the client caches video segment
C2 from Sc while playing back video segment C1
using data received from Sd. In Phase 2, client rd
continues to receive video segment C3 from Sc but
releases Sd and replaces it with Sb to receive video
segment C4. In Phase 3, client rd continues to receive
video segment C5 from Sb but releases Sc and
replaces it with Sa to receive video segment C6.
Finally, in Phase 4 the client releases the remaining
P-stream Sb and contines playback till the end of the
video by receiving video data from Sa.

Subtracting the lengths of different streams, the
total patching cost to serve rd is [(5td-2tc-2tb-ta) -
(3tc-2tb-ta)]R = 5(td-tc)R. Compared to the cost of
(3td-2tc-tb)R bytes in transition patching, there is a
gain of (3tc-2td-tb)R bytes. If td equals to 260
seconds, the cost of serving rd is 50R, or 99.31%
resource saving over serving with a new regular
stream.

Note that for the example in Fig. 2, the client
caches from at most two streams at any time and so
the client bandwidth requirement is the same as
simple patching and transition patching. In the
whole patching process, the client caches video data
through a total of three P-streams and one R-stream.
In general, a client can cache video data through
even more P-streams as long as there are eligible P-
streams.

Let k be the total number of streams (i.e., one R-
stream plus k-1 P-streams) which a client caches
data from. Then we call this process k-phase
recursive patching (kP-RP). It is worth noting that
simple patching and transition patching are
equivalent to 2P-RP and 3P-RP respectively under
this unified framework.

4 STREAM ASSIGNMENT

In admitting a new client through k-phase recursive
patching, there could be more than (k-1) P-streams
eligible for patching. In this case, the system needs
to determine the subset of eligible streams to use to
increase resource reduction. We call this the stream
assignment problem. In the next section, we first
review the stream assignment scheme employed in
the transition patching study (Cai and Hua, 1999)
and then extend it to recursive patching in Section
4.2.

4.1 The Equal-Split Stream
Assignment Scheme

Fig. 3a depicts the equal-split stream assignment
scheme proposed in the transition patching study
(Cai and Hua, 1999). There are two parameters in
this scheme, namely the regular window length
denoted by ωr and the patching window length
denoted by ωt.

The first stream allocated in a regular window is
always an R-stream, streaming the video from the
beginning to the end. The first stream in a patching
window (except the first one), however, will be a T-
stream, which is a P-stream extended to support
other clients’ transition patching. The rest are simple
patching streams (P-streams) streaming the missed
initial video segment for the clients.

For example, when the first client r1 arrives at
the system, an R-stream S1 is assigned, and all the
subsequent requests (r2 through rk-1) are assigned P-
streams to perform simple patching. When a client rk
arriving more than ωt time units after the R-stream
S1, the server will assign a T-stream Sk to it. Within
the next ωt window (rk+1 through rq-1), all requests
are then assigned P-streams to perform transition
patching via the T-stream Sk. The next request rq is
again assigned a new T-stream which also starts
another ωt window and so on. This process repeats
until a request rp whose arrival time exceeds ωr
seconds from the R-stream S1. In this case a new R-
stream will be assigned to begin a new regular
window.

The study by Cai and Hua did not address how to
configure ωr and ωt to optimize performance. In our
experiments, we simply optimize ωr and ωt using
exhaustive search in unit of seconds. As this
computation can be done offline, it does not affect
the system’s runtime performance.

ICEIS 2003 - Databases And Information Systems Integration

 310

r1

R

r2

P

r3

P

rk

T

rk+1

P

rp

R

… … …

£ sr

£ st

stream type

rk-1

P

regular group

patching group

£ st

patching group

rq

T

rq-1

P

r1

R

r2

P

r3

P

rk

T1

rk+1

P

rm-1

P

rp

R

… …… …

£ s0

£ s1

stream type

rk-1

P

rm

T2

£ s2

L0 patching group

L1 patching group

£ s1

L1 patching group

rq

T1

£ s2

rn

T2

rm+1

P

rn-1

P

… rn+1

P

L2 patching group L2 patching group

rk+2

P

…

…

(a) The equal-split stream assignment scheme.

(b) The hierarchical equal-split stream assignment scheme.

Figure 3: Illustration of stream assignment schemes.

4.2 A Hierarchical Equal-Split
Stream Assignment Scheme

Unlike transition patching, a client admitted with k-
phase recursive patching may cache data through a
new P-stream plus up to k-2 extended transition
streams, say streams s1, s2, …, sk-2, before merging
back to an R-stream. To be consistent with Cai and
Hua’s study, we denote these transition streams by
T1-stream, T2-stream, …, Tk-2-stream.

Similarly we can generalize the two-level equal-
split stream assignment scheme to a hierarchical
equal-split stream assignment scheme with (k-1)
levels as shown in Fig. 3b for k=4. Let ωi be the
window length for level i. Then ω0 and ω1 are
equivalent to the regular window length ωr and
patching window length ωt in the original equal-split
stream assignment scheme.

Streams within the same level i window belong
to an Li patching group. For a client admitted via k-
phase recursive patching, it will begin with a new P-
stream and at the same time caches video data from
the first stream in the Lk-2 patching group, which is a

Tk-2-stream. In Phase 2, it will release the P-stream
and begin caching data from the first stream, in the
Lk-3 patching group, which is a Tk-3-stream. In
general, the client caches video data from the Tk-i-
stream and the Tk-i-1-stream during Phase i for i<(k-
1). In Phase (k-1), the client caches video data from
a T1-stream and the R-stream, and finally releases
the T1-stream to continue playback using the R-
stream in the last Phase k.

Again, we can optimize the set of window
lengths {ω0, ω1, …, ωk-2} offline using exhaustive

search. Note that the computational complexity
increases exponentially with k. Further researches
are therefore needed to devise computationally-
efficient algorithms for optimizing the window
lengths.

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of
recursive patching using simulations. We assume
Poisson client arrivals and all clients playback the
video from the beginning to the end without

RECURSIVE PATCHING

 311

interactive operations. For simplicity, we ignore
network delays and processing delays. Table 1 lists
the system parameters used in our simulation study.
We use startup latency - defined as the time from
client arrival to the time playback can begin, as the
performance metric for comparison.

Fig. 4 plots the startup latency versus arrival rate
ranging from 0.1 to 1 client/second. There are three
curves plotting the startup delay for 3-phase, 4-
phase, and 5-phase recursive patching respectively.
Note that 3-phase recursive patching is equivalent to
transition patching.

Compared to transition patching (i.e. with k=3),
the 4-phase recursive patching can achieve
significantly lower startup latency under the same
load. For example, the latency is reduced by 78%,
67% and 62% at arrival rates of 0.3/s, 0.6/s and 0.9/s
respectively. The improvement is particularly
significant at higher arrival rates. This can be
explained by the observation that at higher arrival
rates, the streams are more closely spaced and thus,
enables more data sharing by patching recursively.

The latency is further reduced when 5-phase
recursive patching is employed although the
reduction is less significant. Compared to transition
patching, 5P-RP can achieve latency reductions of
81%, 78% and 70% at arrival rates of 0.3/s, 0.6/s
and 0.9/s respectively. We were not able to generate
results for larger values of k due to the extensive
computation time needed for optimizing the window

lengths {ω0, ω1, …, ωk-2} (c.f. Section 4.2).
Nevertheless the current results do suggest that the
improvements will be less and less when k is
increased further.

6 CONCLUSION

We investigated in this study a generalized recursive
patching scheme (kP-RP) for building efficient,
large-scale video-on-demand systems. This new
scheme unified the existing patching and transition
patching schemes as special cases of 2P-RP and 3P-
RP respectively. By using larger values of k (i.e.,
k>3), we showed that the recursive patching scheme
can achieve significantly lower startup latency
compared to even the already efficient transition
patching scheme, at the same load and with the same
system resources. Optimization of the patching
window lengths in stream assignment, however,
turned out to be very computationally expensive.
Therefore further research is needed to reduce the
computation time needed and also to extend this
algorithm to accommodate different system
parameter settings like client access bandwidth,
client buffer storage limit, etc.

ACKNOWLEDGEMENT

This work was supported in part by the Hong Kong
Special Administrative Region Research Grant Council
under Grant CUHK4328/02E and by the Area-of-
Excellence in Information Technology.

REFERENCES

Aggarwal, C. C., Wolf, J. L. and Yu, P. S., 1996. On
optimal batching policies for video-on-demand storage
servers. In Proc. International Conference on
Multimedia Systems, June 1996.

Cai, Y., Hua, K. and Vu, K., 1999. Optimizing patching
performance. In Proc. SPIE/ACM Conference on
Multimedia Computing and Networking, San Jose,
CA, January 1999, pp.204-215.

Cai, Y. and Hua, K. A., 1999. An efficient bandwidth-
sharing technique for true video on demand systems.
In Proc. 7th ACM International Conference on
Multimedia, Orlando, Florida, United States, 1999.

Carter, S.W., Long, D. D. E., Makki, K., Ni, L.M.,
Singhal, M. and Pissinou, N., 1997. Improving video-
on-demand server efficiency through stream tapping.
In Proc. 6th International Conference on Computer

Table 1: Parameters used in simulations.
Parameter Range of values

Request arrival rate (/s) 0.1 - 1.0

Movie length (L) 7200

Number of server channels (C) 20

Figure 4: Performance of kP-RP.

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival Rate (per second)

St
ar

tu
p

La
te

nc
y

(s
ec

on
ds

)

k = 3

k = 4

k = 5

ICEIS 2003 - Databases And Information Systems Integration

 312

Communications and Networks, September 1997,
pp.200-207.

Dan, A., Sitaram, D. and Shahabuddin, P., 1994.
Scheduling policies for an on-demand video server
with batching. In Proc. 2nd ACM International
Conference on Multimedia, pp. 15-23.

Dan, A., Shahabuddin, P., Sitaram, D. and Towsley, D.,
1994. Channel allocation under batching and VCR
control in movie-on-demand servers. IBM Research
Report RC19588, Yorktown Heights, NY.

Dan, A., Sitaram, D. and Shahabuddin, P., 1996. Dynamic
batching policies for an on-demand video server. ACM
Multimedia Systems, vol. 4, no. 3, June 1996, pp. 112-
121.

Eager, D. L., Vernon, M. K. and Zahorjan, J., 2000.
Bandwidth skimming: A technique for cost-effective
video-on-demand. In Proc. IS&T/SPIE Conf. On
Multimedia Computing and Networking 2000 (MMCN
2000), San Jose, CA, January 2000, pp.206-215.

Hua, K. A., Cai, Y. and Sheu, S., 1998. Patching: A
multicast technique for true video-on-demand services.
In Proc. 6th International Conference on Multimedia,
September 1998, pp.191-200.

Liao, W. and Li, V. O. K., 1997. The split and merge
protocol for interactive video-on-demand. IEEE
Multimedia, vol.4(4), 1997, pp.51-62.

Shachnai, H. and Yu, P. S., 1997. Exploring wait tolerance
in effective batching for video-on-demand scheduling.
In Proc. 8th Israeli Conference on Computer Systems
and Software Engineering, June 1997, pp. 67-76.

