
338 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

Turbo-Slice-and-Patch: An Algorithm for
Metropolitan Scale VBR Video Streaming

Chun-Wai Kong, Jack Y. B. Lee, Senior Member, IEEE, Mounir Hamdi, Senior Member, IEEE, and
Victor O. K. Li, Fellow, IEEE

Abstract—In recent years, a number of sophisticated archi-
tectures have been proposed to provide video-on-demand (VoD)
service using multicast transmissions. Compared to their unicast
counterparts, these multicast VoD systems are highly scalable
and can potentially serve millions of concurrent users. Never-
theless, these systems are designed for streaming constant-bit
rate (CBR) encoded videos and thus cannot benefit from the
improved visual quality obtainable from variable-bit rate (VBR)
encoding techniques. To tackle this challenge, this paper presents
a turbo-slice-and-patch (TSP) algorithm to support VBR video
streaming in a multicast VoD system. Results obtained from
trace-driven simulation of 300 VBR videos show that serving VBR
videos with the TSP algorithm increases the average latency by
only 9% compared to the CBR case with the same average video
bit rate. Moreover, in 165 out of the 300 video titles, the TSP
algorithm actually outperforms the CBR equivalent by shortening
the latency by 0.04%–99%. Given that we can achieve similar
visual quality by encoding VBR video at half the average rate of
CBR video, this TSP algorithm can potentially serve VBR videos
with more consistent visual quality and with less resource compare
to CBR-based video streaming systems.

Index Terms—Turbo-slice-and-patch (TSP), variable bit rate
(VBR) video streaming, video multicast, video-on-demand (VoD).

I. INTRODUCTION

I N A true-video-on-demand (TVoD) system, the video server
has to reserve a dedicated video channel for each user for the

entire duration of the video session (e.g., two hours for a movie).
Consequently, the server and network resources required in-
crease linearly with the number of concurrent users to be sup-
ported. Although current PC servers are already very powerful
and capable to serve up to hundreds of concurrent video streams,
scaling up a system to thousands and even millions of concur-
rent video streams is still prohibitively expensive.

One promising solution to this scalability challenge is
through the intelligent use of network multicast. Network
multicast enables a server to send a few streams of video data
for reception by a large number of clients, thereby significantly

Manuscript received November 3, 2003; revised May 27, 2005. This research
was supported in part by Direct and Earmarked Grant CUHK 4328/02E from
the Hong Kong Research Grant Council and in part by the Area of Excellence
Scheme, established under the University Grants Council of the Hong Kong
Special Administrative Region, China, under Project no. AoE/E-01/99. This
paper was recommended by Associate Editor O. Al-Shaykh.

C.-W. Kong and J. Y. B. Lee are with the Department of Information En-
gineering, The Chinese University of Hong Kong, Hong Kong, SAR (e-mail:
yblee@ie.cuhk.edu.hk).

M. Hamdi is with the Department of Computer Science, Hong Kong Univer-
sity of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR
(e-mail: hamdi@cs.ust.hk).

V. O. K. Li is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong, SAR (e-mail: vli@eee.hku.hk).

Digital Object Identifier 10.1109/TCSVT.2006.870021

reducing the amount of resources required. A number of pio-
neering studies have investigated such architectures, such as
batching [2]–[4], patching [5]–[8], and periodic broadcasting
[9]–[12].

A common assumption among these multicast VoD architec-
tures is that the videos are constant bit rate (CBR) encoded. This
significantly simplifies system design and analysis, and enables
one to study the system performance independent of video en-
coding variations. Nevertheless, the visual quality of CBR video
is not constant and tends to vary according to the video content.
For example, complex video scenes with a lot of motion will
typically result in lower visual quality than simple video scenes
with little movement.

By contrast, videos encoded with constant-quality encoding
algorithms will have more consistent visual quality, albeit at the
expense of bit rate variations. However, a study by Tan et al. [14]
has shown that VBR-encoded video can achieve visual quality
similar to CBR-encoded video using only half the bit rate. This
result suggests that VBR encoding is not only desirable for pro-
viding high-quality VoD services, but also has the potential to
reduce resource requirements as well. The challenge is the com-
plex resource allocation and scheduling problems resulting from
the video bit rate variations.

This study addresses this challenge by investigating a new
turbo-slice-and-patch (TSP) algorithm for serving VBR-en-
coded video streams in a metropolitan-scale video streaming
service using network multicast. Unlike previous work on VBR
video streaming that focused on unicast network transmission,
the TSP algorithm investigated in this study employs network
multicast to significantly increase the system’s scalability
to cope with the immense workload in a metropolitan scale
streaming service. Results obtained from trace-driven simula-
tion of 300 VBR videos show that serving VBR videos with
the TSP algorithm increases the average latency by only 9%
compared to the CBR case with the same average video bit rate.
Moreover, in 165 out of the 300 video titles, the TSP algorithm
actually outperforms the CBR equivalent by shortening the
latency by 0.04%–99%. Given that we can achieve similar
visual quality by encoding VBR video at half the average
rate of CBR video, this TSP algorithm can potentially serve
VBR videos with more consistent visual quality and with less
resource compare to CBR-based video streaming systems.

The rest of the paper is organized as follows. Section II
reviews some related work and compares them with this study.
Section III reviews the multicast VoD architecture. Section IV
presents two priority scheduling algorithms. Section V presents
the slice-and-patch (S&P) algorithm. Section VI presents a

1051-8215/$20.00 © 2006 IEEE

KONG et al.: TURBO-SLICE-AND-PATCH 339

proof for continuous playback guarantee and derives the client
buffer requirment. Section VII evaluates and compares the three
algorithms using simulation results and Section VIII concludes
the paper.

II. BACKGROUND

The problem of VBR video delivery in unicast VoD systems
has been studied extensively. We review some of the more rele-
vant previous work in Section II-A and compare them with this
study in Section II-B.

A. Previous Work

One of the best known solutions for VBR video delivery
is temporal smoothing [15]–[20]. Smoothing makes use of a
client-side buffer to receive data in advance of playback. This
work-ahead technique enables the server to transmit video
data in a piecewise linear schedule that can be optimized to
minimize rate variability [16], to minimize the number of
rate changes [17], or to guarantee quality-of-service [19]. The
schedule can be computed offline and with proper resource
reservation, deterministic performance can be guaranteed.
Interested readers are referred to Feng et al. [20] for a thorough
comparison of various smoothing algorithms.

In another study by Lee and Yeom [], a data prefetch
technique is proposed to improve video server performance
in serving VBR videos. Unlike smoothing, where all video
data are retrieved from the disk sequentially, data prefetching
preloads video data corresponding to a video’s bit rate peaks
into the server’s memory during system initialization. During
operation, the server then only needs to retrieve the remaining
video data from the disk to combine with the prefetched data
for transmission to the clients. As the remaining video stream
has a lower peak bit rate, disk utilization is increased. Their
simulation results show that up to 81% more streams can be
served using this prefetch technique. The tradeoffs are increased
server buffer requirement and additional offline preprocessing
of the video data.

A third approach proposed by Saparilla et al. [9] sched-
ules video data transmission using a priority scheduler
(join-the-shortest queue). In particular, the server sched-
ules video data transmission according to the demand of data
of each channel. A channel with the greatest demand of data
(the clients listening to this channel are most likely to run out
of data) will have the highest priority in the next round of
transmission. However, while server efficiency is improved,
this priority scheduler does not guarantee a client can receive
all data in time. In particular, a channel will simply be skipped
(i.e., not transmitted) if the data cannot be transmitted in time
for playback. Their simulation results show that with their
join-the-shortest queue priority scheduling and allowing the
client to retrieve data from seven channels synchronously, the
start-up latency can be limited to around 100 seconds with a
loss probability of 10 .

B. Comparison

Compared to the TSP algorithm, both temporal smoothing
and the data prefetch techniques discussed previously are

orthogonal and complementary. For temporal smoothing, a
smoothed VBR video stream can be considered as just an-
other VBR video stream, albeit one requiring additional client
buffer for proper playback. For the data prefetch technique, the
focus is on improving disk retrieval efficiency by intelligently
preloading some video data into the server memory. Obviously,
this technique does not affect the transmission schedule at all
and can thus be integrated with any transmission scheduling
algorithms including TSP.

Compared to the study by Saparilla et al. [9], TSP differs in
two major ways. First, the TSP algorithm guarantees that no
video data will be skipped, thus ensuring visual quality. Second,
TSP is targeted at clients with limited access bandwidth (twice
the average bit rate of the video). By contrast, the algorithm
proposed by Saparilla et al. assumes the client have sufficient
bandwidth to receive data from many channels simultaneously,
which may not be practical for some applications.

In a previous work [1], we investigated an early version of the
TSP algorithm, the S&P, which shares some of the design prin-
ciples of the TSP algorithm. There are, however, two important
differences. First, in S&P the VBR video is first smoothed using
temporal smoothing (e.g., optimal smoothing [16]) before being
subjected to the slicing operation. In TSP, we divide the video
into two sections that are independently smoothed. Second, TSP
has a different algorithm in phase 2 of the patching process (c.f.
Section V-C) where video data are transmitted at the maximum
client access bandwidth rather than the original video bit rate
in S&P (hence the name TSP versus S&P [1]). Last but not
least, we have conducted more extensive trace-driven simulation
using 300 VBR video traces in this study (versus 50 in the pre-
vious study [1]) to evaluate the proposed algorithms in a much
broader context to obtain more complete and reliable results.

III. SYSTEM ARCHITECTURE

In this section, we briefly review the super-scalar VoD
(SSVoD) architecture proposed by Lee and Lee [13]. SSVoD is
designed for streaming CBR videos over a combination of static
and dynamically-scheduled multicast transmission channels.
Its primary advantages are the super-linear scalability achieved
by multicast transmission, and the ability to support interac-
tive playback control such as pause-resume and slow-motion
playback without additional server resources.

A. Transmission Scheduling

The SSVoD architecture comprises a number of service
nodes delivering video data over multicast channels to the
clients. SSVoD achieves scalability and bandwidth efficiency
by sending video data to a large number of clients using a
few multicast channels. However, simple periodic multicast
schemes such as those used in a near-video-on-demand (NVoD)
system limit the time for which a client may start a new video
session. Depending on the number of multicast channels al-
located for a video title, this startup delay can range from a
few minutes to tens of minutes. To tackle this initial delay
problem, SSVoD employs patching to enable a client to start
video playback at any time using a dynamic multicast channel

340 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

until it can be merged back onto an existing multicast channel.
The following sections present these techniques in more detail.

Each service node in the system streams video data using
multiple multicast channels. Let be the number of video ti-
tles served by each service node and let be the total number
of multicast channels available to a service node. For simplicity,
we assume is divisible by and hence each video title is
served by the same number of multicast channels, denoted by

. These multicast channels are then divided into
static multicast channels and dynamic

multicast channels. The video title is multicast repeatedly over
all static multicast channels in a time-staggered manner as
shown in Fig. 1. Specifically, adjacent channels are offset by

(1)

seconds, where is the length of the video in seconds. Trans-
missions are repeated continuously, i.e., restarted from the be-
ginning of a video title every time transmission completes, re-
gardless of the load of the server or how many users are active.
These static multicast channels are used as the main channels
for delivering video data to the clients. A client may start out
with a dynamic multicast channel but it will shortly be merged
back to one of these static multicast channels as explained in the
next section.

B. Admission Control

To reduce the response time while still leveraging the band-
width efficiency of multicast, SSVoD allocates a portion of the
multicast channels and schedules them dynamically according
to the request arrival pattern. A new user either waits for the
next upcoming multicast transmission from a static multicast
channel, or starts playback with a dynamic multicast channel.

Suppose a request arrives at time , between the start time
of the previous multicast cycle, denoted by , and the start
time of the next multicast cycle, denoted by (see Fig. 1).
The new request will be assigned to wait for the next multicast
cycle to start playback if the waiting time, denoted by , is
equal to or smaller than a predefined admission threshold ,
i.e., . We call these requests statically
admitted. This admission threshold is introduced to reduce the
amount of load going to the dynamic multicast channels.

On the other hand, if the waiting time is longer than the
threshold, then the client will request a dynamic multicast
channel to begin playback (dynamically admitted), while si-
multaneously caching video data from the multicast channel
with the multicast cycle started at time . Note that the client
may need to wait for a dynamic multicast channel to become
available. If additional clients requesting the same video arrive
during the wait, they will be batched and served by the same dy-
namic multicast channel once it becomes available. Eventually,
the client playback will reach the point where the cached data
began and then it can release the dynamic multicast channel
and continue playback using data received from the static
multicast channel. This integration of batching with patching
significantly increases the system’s efficiency at heavy loads.

Compared to TVoD systems, an SSVoD client must have the
capability to receive two multicast channels concurrently and

Fig. 1. Patching process in the SSVoD system supporting CBR video.

have a local buffer to hold up to seconds of video data. Given
a video bit rate of 3 Mbps (e.g., high-quality MPEG-4 video), a
total of 6 Mbps downstream bandwidth is required during the
initial patching phase of the video session. For a 2-hr movie
served using 25 static multicast channels, the buffer requirement
is 108 MB. This can easily be accommodated using a small hard-
disk at the client, and in the near future simply using memory
as technology improves.

C. Challenges in Supporting VBR-Encoded Video

The SSVoD architecture is designed for CBR videos and thus
problems will arise if stream VBR videos using the architec-
ture. The first problem is in channel allocation. SSVoD parti-
tions the server and network bandwidth into fixed-bandwidth
network channels for allocation purpose. This allocation model
is clearly undesirable for streaming VBR videos as it requires
each channel to have sufficient bandwidth to accommodate the
peak rate of the video, which is typically many times the average
video bit rate.

To tackle this problem, we need to abandon the fixed-rate
channel allocation model altogether and resort to allocating
bandwidth according to the exact video bit rate profile. Specifi-
cally, instead of reserving half the channels for static multicast
channels, we reserve half the server and network bandwidth for
multicasting VBR streams in a time-staggered manner. Let the
function define the bit rate at which video data are being
consumed seconds after playback has begun. To multicast
a video title in independent time-staggered streams, the
aggregate video bit rate of the ensemble, denoted by
will be given by

(2)

Thus we can determine the maximum number of time-staggered
VBR video streams that can fit within the system capacity from

(3)

where is the total server and network bandwidth available.
The second problem is in the client access network where the

client has an access network bandwidth equal to twice the video
bit rate. While this is sufficient for receiving two CBR video
streams, it may run into congestion when VBR video is streamed

KONG et al.: TURBO-SLICE-AND-PATCH 341

due to video bit rate variations. The use of temporal smoothing
can alleviate this problem but cannot solve it completely without
adding excessive start-up delay. In the next section, we address
this problem by presenting two streaming algorithms based on
priority scheduling.

IV. PRIORITY SCHEDULING

The primary problem in streaming VBR video in SSVoD is
that dynamically-admitted clients may not have sufficient ac-
cess bandwidth to accommodate both the dynamic and the static
multicast channel. For example, let be the average video bit
rate, then the client has an access bandwidth of . However,
a VBR video of average bit rate will likely have bit rate
peaks substantially higher than even after smoothing is ap-
plied (e.g., some of the videos in our collection have average bit
rate 4 Mbps but have peak bit rate exceeding 12 Mbps). It is easy
to see that the access channel will become seriously congested
whenever peaks from both dynamic channel and static channel
overlap.

Obviously, we can increase the access network bandwidth
to accommodate the overlapping bit rate peaks. However this
trivial solution suffers from two limitations. First, the access
network bandwidth is often limited by the access network tech-
nology employed. For example, if Ethernet is employed as the
access network infrastructure, then the access bandwidth can
never exceed 10 Mbps (lower in practice due to frame/packet
header overheads). Thus in this case the access network cannot
even accommodate one single stream of the VBR video (which
has peaks over 10 Mbps), let alone two streams. Second, the
precise access bandwidth required is dependent on the partic-
ular video being streamed, thus rendering it impossible to fix
the access network bandwidth during system design.

Therefore, we present in the following two priority-sched-
uling algorithms that can operate with a given access network
bandwidth (say two times the average video bit rate) and yet are
able to support the caching and patching operations in SSVoD.

A. Static Channel Priority (SCP)

In the SCP algorithm, we schedule the static channels to
transmit at the original video bit rate. The dynamic channel
will simply use the remaining access network bandwidth to
transmit video data for patching so that the aggregate bit rate
does not exceed the access bandwidth limit. Before streaming
can start, we will process the video offline by collecting all
the data above the bit rate for to form the
prefetch block , which is of bit rate given by

if
otherwise

(4)

where is the original video bit rate for any playback points
. We can thus guarantee that the client’s access band-

width will be sufficient for caching data from the static channel
after the dynamic channel is released. This block will be mul-
ticast periodically by a static channel at the bit rate . A
client arriving at the system will first prefetch data from this
channel for a period of seconds.

Assume the client finishes prefetching at time and the im-
mediate previous multicast cycle begins at time . The client
will immediately begin caching video data from the static mul-
ticast channel starting from a playback point of and re-
quest a dynamic channel to stream the missed video data from
playback point 0 to . Then the amount of residual ac-
cess bandwidth left for the dynamic channel at time is equal to

for where
for all .

As the client has already missed the first seconds of the
video, a dynamic channel will be allocated to stream video data
from the beginning of the video to the playback point .
The transmission duration, denoted by , can then be obtained
by solving the following equation:

(5)

However, since the residual bandwidth available to the dynamic
channel may not be sufficient to sustain continuous playback,
the client may need to introduce an extra delay before playback
can begin. Specifically, if the following inequality is satisfied:

(6)

then it implies that the amount of video data received from the
dynamic channel always exceeds the amount required for con-
tinuous playback. In this case the client can begin playback as
soon as the dynamic channel becomes available. Otherwise, the
client will have to delay playback by say seconds so that the
continuity condition is satisfied:

(7)

As we will show in Section VII, can become very large for
certain videos.

Next we derive the client buffer requirement for SCP. Specif-
ically, the client will need to buffer video data from both the
dynamic channel and the static channel. First, we derive the
amount of data received at any time . From the time the client
has finished prefetching at time , data will be cached from the
static channel up to the end of the video section at time .
The amount of data received from the static channel at any time

where is equal to . To
simplify notations, we set for all and .
From time to time , the client will receive video data
from the dynamic channel at the rate . Thus the accumulated
amount of video data received by time is equal to .
Note that for all (i.e., before dynamic channel
becomes available) and (i.e., patching is com-
pleted).

342 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

Therefore, the total amount of data received at any time is
simply given by

(8)

Now as the client begins playback from time , the cumu-
lated amount of data consumed by the time for

is then given by

(9)

Finally, we can compute the amount of excess data received but
not yet played back at any time from

(10)

The maximum of (10) thus determines the client buffer require-
ment

(11)

B. Dynamic Channel Priority (DCP)

To avoid the startup delay in the previous SCP algorithm, we
can alternatively give priority to the dynamic channel which
streams video data starting from the beginning. Unlike the
previous algorithm, the static channel cannot simply transmit
video data using the leftover access bandwidth because the
static channels are periodically multicast in a fixed schedule
and bit rate profile to a large number of clients. Therefore, once
a dynamic channel becomes available at time ,
the server will transmit video data from the beginning of the
video to the client at the maximum rate until it catches up
with the playback point, say , currently being multicast by the
static channel at time . At that instant, the client can then
release the dynamic channel and continue receiving data from
the static channel for the rest of the session. Similar to the SCP
algorithm, the video is processed offline to extract video data
exceeding the client access bandwidth into a prefetch block ,
which is then multicast periodically at the rate . The client
will prefetch block before requesting for a dynamic channel
to begin playback.

Unlike SCP however, the client in DCP can always begin play-
back once a dynamic channel is available. The client does not
cache video data from a static channel until the dynamic channel
catches up with the playback point currently being broadcast by
the static channel. When the dynamic channel becomes available
at time and releases at time , the client would have re-
ceivedvideo data of size , while missed video
data from playback point 0 to of size given by . So, to
determine this switchoverpoint,weneed to find that satisfies the
following equation:

where (12)

In comparison, the dynamic channel in DCP will consume more
resource than its SCP counterpart. In particular, the dynamic
channel itself is streamed at the maximum access bit rate (i.e.,

). Also, the client cannot cache video data from the static
channel while the dynamic channel is streaming, thus increasing
the time it takes to catch up with the static channel. Both factors
increase the dynamic channel’s bandwidth consumption.

To determine the client buffer requirement, we first consider
the amount of data received from the dynamic channel. At time

, the dynamic channel starts streaming data to the client at the
rate up to the time when the dynamic channel
is released. The accumulated amount of data received from the
dynamic channel by time where is given by

(13)
where equals for or 0 otherwise.
After the dynamic channel finishes, i.e., time ,
the client will cache data from the static channel and thus the
accumulated amount of data received by time where

is given by , where
for or 0 otherwise because video data

of playback point before will not be received from the static
channel. Therefore, the total amount of data received by time
where is then given by

(14)

Now as the client begins playback at time , the accumulated
amount of data consumed by time is given by

. Thus the excess amount of video data received
but not yet played back at time is given by

(15)

KONG et al.: TURBO-SLICE-AND-PATCH 343

The maximum of (15) thus determines the client buffer require-
ment

(16)

V. TURBO-SLICE-AND-PATCH (TSP)

The two priority scheduling algorithms presented in the pre-
vious section have their pros and cons. In this section, we present
the TSP algorithm that combines the virtues of the SCP and
the DCP algorithms. In TSP, we divide the video stream into
three portions (i.e., slicing) and admit clients using a three-phase
patching process (i.e., patching). The following sections present
the algorithm in detail.

A. Video Preprocessing

Before a video is put online for streaming, two offline pro-
cessing steps are performed: temporal smoothing and slicing of
the video. First, we apply temporal smoothing [16] to reduce the
video’s peak bit rate. However, experiments show that temporal
smoothing may also increase bandwidth consumption during
the patching process. This is because temporal smoothing em-
ploys work-ahead to aggressively stream video data to the client
as long as buffer allows. Consequently, this work-ahead mech-
anism will substantially increase the transmission rate of the
video’s initial portion, thus increasing the time to complete the
patching process.

To tackle this problem, we divide the video into two segments
and then perform temporal smoothing to these two segments in-
dependently. The first video segment comprises video data from
the beginning to the playback point given by

(17)

where is the repeating interval for the static multicast chan-
nels. The physical meaning of is the latest possible play-
back point when the three-phase patching process will end. We
will derive in Section V-C after we have presented the three-
phase patching process.

The rest of the video data then form the second video seg-
ment. This two-segment smoothing process can substantially
reduce the initial transmission bit rate as the work-ahead al-
gorithm will not transmit ahead of time video data beyond the
playback point . To simplify discussions, we will refer to the
smoothed video bit rate simply as the video bit rate.

In the second step, we slice the smoothed video into three
parts for transmission in three separate multicast channels. As
depicted in Fig. 2, the video data stream is sliced at two bit
rate thresholds: and , where is the
maximum access bandwidth of the client and is a system
parameter configurable from to .

The first part, slice A, comprises two portions. The first por-
tion includes video data exceeding the bit rate (e.g., ,

, etc., in Fig. 2) from the beginning of the video until the
playback point given by (17). The purpose of this slicing is
to reduce the peak rate of the video stream to prevent congesting
the client’s access channel during patching. The second portion
includes video data exceeding the client access bandwidth

Fig. 2. Video slicing in the S&P algorithm.

Fig. 3. Three types of multicast channels in the S&P algorithm.

from the playback point to the end of the video. This por-
tion is similar to the prefetch block in the SCP/DCP algorithms
and the purpose is to keep the video streaming bit rate within
the client access bandwidth limit. Let the size of this first video
data block be Mb. It will be multicast repeatedly at a rate of

once every seconds as shown in Fig. 3.
The second part, slice B in Fig. 2, also comprises two por-

tions. The first portion, covering the first seconds of the
video, includes the video data that exceed the bit rate

but excludes those already in slice A. The second por-
tion, covering from playback point until the end of the video,
comprises all video data that exceeds the bit rate
except those already in slice A. This slice will be multicast re-
peatedly over a separate multicast channel following the actual
video bit rate (as opposed to the constant transmission rate for
slice A) as shown in Fig. 3.

Lastly, the third part, slice C in Fig. 2, comprises the rest of
the video data not included in slice A and slice B. This slice will
be multicast repeatedly over a third multicast channel following
the actual video bit rate as shown in Fig. 3.

B. Bandwidth Allocation

Let be the total server (or network, whichever is
smaller) bandwidth allocated for a video of average bit rate
bps and length seconds. First, a bandwidth of will be
allocated to multicast slice A. Then the remaining bandwidth
will be divided equally between the static multicast channels
and dynamic multicast channels (c.f. Section VII-F).

344 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

Fig. 4. Three-phase patching process in the S&P algorithm.

There are two types of static multicast channels, transmitting
slice B and slice C, respectively. As the numbers of these chan-
nels are equal, we will refer to a pair of such channels as a static
multicast channel. Unlike in the case of CBR videos, a static
multicast channel in TSP does not occupy a constant amount
of bandwidth. Therefore, offline numerical procedures are used
to compute the maximum number of static multicast channels
that can fit within the bandwidth limit . The
remaining bandwidth will be used by the dynamic channels to
patch newly admitted users and then merge them to one of the
static multicast channels. Once the merging is completed, the
user will not incur any additional load to the server for the rest
of the video streaming session.

C. Three-Phase Patching

A new client goes through a three-phase patching process to
begin a new video streaming session. Let the client arrive at time

. It immediately enters phase 1 by caching slice A at the max-
imum rate for a duration of seconds as shown in Fig. 4.
Next, the client will request and wait for a dynamic channel to
begin phase 2. Once a dynamic channel becomes available at
time , the client begins receiving and playing back video data
blocks while simultaneously caching block into
a local buffer. The dynamic channel sustains video playback by
streaming the missed content (i.e., blocks) to the client

at the bit rate . Thus the transmission duration in phase 2,
denoted by , is given by

(18)

where and are the transmission rates of slice B and
slice C at playback point . Note that for ,
is bounded by according to the slicing procedure described
in Section V-A. Due to the rate varying nature of the video, it is
possible that the combined bit rate is lower than

for some playback points. Thus, the transmission duration,
denoted by , cannot be larger than the length of video to be
patched

(19)

By the end of phase 2, the client will have already cached block
and completed playback of blocks . However, due

to the limited client access bandwidth, the client cannot cache
block and thus in phase 3 the server will use the dynamic

KONG et al.: TURBO-SLICE-AND-PATCH 345

channel to stream block at the bit rate to sus-
tain continuous video playback. Concurrently, the client con-
tinues to cache data (e.g., ,) from the static channel for
the rest of the video session. The duration of phase 3, denoted
by , is given by

(20)

where the numerator is the size of block and the denomi-
nator is the transmission rate. To deduce the upper bound for
the transmission duration , we would first show that the bit
rate of slice B in the first seconds is actually bounded by

in the following lemma.
Lemma 1: If , then

for all .
Proof: Firstly,

. Secondly, according to the slicing procedure, the bit
rate of slice B is bounded by (Please refer
to Fig. 2 and Fig. 3). Thus

(21)

Thus, Lemma 1 follows.
From (20), we can now deduce the upper bound for the trans-

mission duration

(22)

With the three-phase patching process defined, we can proceed
to derive used earlier in Section V-A.

Recall that (c.f. Section V-A) preprocessing of the video de-
pends on the duration of the three-phase patching process, which
in turns depends on the client arrival time. We first define
to be the length of time from , i.e., the start of the multicast
cycle, to the end of phase 3 given that the dynamic channel is
available at time . This time interval comprises three parts. The
first part is the time from to the time the dynamic channel
becomes available, having a length of seconds. The
second part is the transmission duration of phase 2 as given by
(18). The last part is the duration of phase 3 as given by (20).
Thus, we can express as

(23)

To determine the maximum duration of this interval, i.e., ,
we first note that is upper-bounded by because it
is the maximum time to the next multicast cycle. Thus if the dy-
namic channel is not available before then, the client can simply
receive video data from the new multicast cycle to begin video
playback. For the length of phase 2, we note that the combined

bit rate cannot exceed due to the slicing pro-
cedure. Thus, the maximum length of phase 2 can be computed
from

(24)

Similarly, the maximum length of phase 3 is equal to the max-
imum size of segment (see Fig. 4) divided by the transmis-
sion rate

since

(25)

due to (22). Finally, substituting (24) and (25) into the right-
hand side of (23) gives the desired result

(26)

D. Client Buffer Requirement

In this section, we derive the maximum client buffer size
needed under the TSP algorithm by considering the buffer re-
quired during the three phases of patching. First, in phase 1 the
client prefetches slice A and thus the amount of buffer required
is simply equal to the size of slice A, i.e., .

Phase 2 begins at time when the dynamic channel is avail-
able and finishes at time . The client in this phase re-
ceives two streams of video data, one from the dynamic channel
at the rate and the other from the static channel multicas-
ting slice C. Thus, the total amount of data received at any time
during phase 2 (i.e.,) is given by

(27)

Phase 3 begins at time and finishes at time .
In this phase, the dynamic channel streams (see Fig. 4) to the

346 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

client at the rate . Concurrently, the client also
caches data from the static channels multicasting slice B and
slice C. Thus, the total amount of data received at any time
during phase 3 (i.e.,) is the sum of the total amount
of data received up to time given by (27) plus the amount
received during this phase up to time , giving a total of

(28)

After phase 3 completes, i.e., at time , the dynamic channel
will be released and the client will continue caching both slice
B and slice C from the static channel. So, the total amount of
data received at any time where is simply
the sum of the total amount of data received up to time given
by (28) and that received after time giving a total amount of

(29)

To simplify notations, let

if
if
otherwise

(30)

and

if
if
otherwise

(31)
Then the sum of (27)–(29), i.e., the amount of data received by
the client at any time where can be expressed
as

(32)

Now as playback starts at , the accumulated amount of data
consumed by time is given by . Thus the excess
amount of video data received but not yet played back at time
where is given by

(33)
and the maximum of (33) thus determines the client buffer re-
quirement

(34)

VI. PLAYBACK CONTINUITY

In the three-phase patching process, the client does not al-
ways receive video data according to the playback sequence.
Consider the example in Fig. 4, the client receives in phase 2
video segments , , and simultaneously but is not
played back until phase 3. Consequently, to guarantee contin-
uous video playback, it is not sufficient to just ensure the recep-
tion data rate is not lower than the video playback bit rate. In
the following, we investigate this playback continuity issue and
present a proof that TSP can indeed guarantee playback conti-
nuity for the entire video duration.

Let be the playback bit rate of the video at playback point
where . Let for

where , and are the playback bit rate
of slice A, slice B and slice C at playback point , respectively.
Let be the total amount of continuous video data received
by the client at time . Assume the previous multicast of the
static channel begins at time and the client starts playback at

as shown in Fig. 4. Then to guarantee playback continuity we
need to ensure that the amount of continuous video data received
must always be larger than the amount required for continuous
playback, or mathematically we need to establish that

(35)

Note that as playback does not begin until phase 1 is completed,
playback continuity is not affected by phase 1. To derive
for the rest of the video session, we consider phase 2 and phase
3 in turn.

We first denote the amount of continuous data received up to
time to be , and for slice A, slice B, and slice
C, respectively. Since the client has already received the whole
slice A after phase 1 is completed, at
any time for .

Phase 2 begins at time when a dynamic channel becomes
available and ends at time when the dynamic
channel has streamed all the missed data to the client. The fol-
lowing theorem proves the playback continuity during phase 2.

Theorem 1: Video playback is continuous in phase 2, i.e.,
, for .

Proof: Consider and . Since the dynamic
channel streams blocks to the client continuously

KONG et al.: TURBO-SLICE-AND-PATCH 347

at the rate , the amount of video data
transmitted by the dynamic channel at time , , can be
computed from

(36)

Next, we note that the dynamic channel streams slice B and slice
C in a continuous playback sequence. Thus (36) also gives the
amount of continuous video data received by the client

(37)

Together with slice A already received, we can compute the total
amount of continuous data received at any time during phase
2 from

(38)

which shows that playback is always continuous during
phase 2.

Before we proceed to the next theorem, we first derive the
latest possible end time of phase 2. From (19),
because the dynamic channel may transmit slice B and slice C at
a bit rate higher than the playback rate. Therefore, if we express

in terms of and , we can deduce the upper bound of

(39)

In the next theorem, we prove that from up to
within phase 3, playback is also continuous.

Theorem 2: Playback is continuous, i.e.,
, for .

Proof: For , the client will have received the video
blocks , , and , and is receiving . Given that the sizes

of and equal and , re-
spectively, we can obtain the following inequality:

(40)

Therefore, we can compute the total amount of continuous video
data received at time from

(41)

which shows that playback is continuous for
.

Intuitively, Theorem 2 considers the duration after phase 2
when the client simply plays back the excess video data trans-
mitted in phase 2. The client accumulates excess video data be-
cause the dynamic channel in phase 2 may transmit slice and

at a rate higher than the playback rate.
After phase 2, the client enters phase 3 of a duration denoted

by . In the following, we prove that playback is also contin-
uous during phase 3.

Theorem 3: Video playback is continuous in phase 3, i.e.,
, for .

Proof: We consider two possible cases depending on the
total duration of phase 2 and phase 3.

Case I:
In this case, ,

which implies that phase 3 ends before the time .
As Theorem 2 has already established playback continuity for

, playback in phase 3 must also be
continuous as well.

Case II:
From Theorem 2, playback is continuous up to

. Thus, in the following, we only need to consider
the duration (see Fig. 4).

348 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

During this duration, the dynamic channel is streaming block
at a rate of . Now, according to Lemma 1,

the playback rate of block must be lower than the dynamic
channel’s transmission rate, i.e., . Thus
after a duration of from the start of phase 3, the
amount of video data streamed by the dynamic channel is equal
to

(42)

The continuous data of slice B at time contains the whole video
block and the part of block transmitted by the dynamic
channel. Since the data are streamed in-order, the amount of
continuous video data received seconds after phase 2 is given
by

(43)

For slice C, the continuous video data at time contains
the whole video block streamed by the dynamic channel
during phase 2, the whole video block cached from the
static channel during phase 2, and the portion of block
transmitted by the dynamic channel. Since the video data is
streamed in-order, the total amount of continuous data received

seconds after phase 2 is given by

(44)

Therefore, the total amount of continuous data received by the
client at time is given by

(45)

Now consider the upper limit of the second integral in (45)

since (46)

from (19). For the upper limit of the third integral in (45)

since by (19)

and by (22)

since (47)

We can then rewrite (45) as follows:

from (46) and (47)

(48)

which shows that playback is also continuous during phase 3.

Up to now we have proved that playback is continuous from
up to , i.e., covering the period from phase

1 to phase 3. In the next theorem, we will show that playback is
also continuous from the end of phase 3 to the end of the video
session.

Theorem 4: Video playback is continuous for the rest of the
video session after phase 3, i.e., , for

.
Proof: At any time after phase 3, the client has received

the whole video blocks , , , and . And at the start of
phase 3, i.e., when , the client will start caching data from
the static channel for blocks and . Thus, the total amount
of continuous data received for slice B, including blocks ,
and , is given by

(49)

KONG et al.: TURBO-SLICE-AND-PATCH 349

Similarly, the total amount of continuous data received for slice
C, including blocks , and , is given by

(50)

Therefore, the total amount of continuous data received by the
client is given by

(51)

which shows that playback is continuous after phase 3 until the
end of the video session.

Together, Theorems 1–4 establish the fact that playback con-
tinuity is guaranteed by the TSP algorithm for the entire duration
of the video session.

VII. PERFORMANCE EVALUATION

In this section, we present simulation results to evaluate and
compare the SCP, DCP, the original S&P [1], and the TSP al-
gorithms investigated in this study. The simulator is developed
in C++ using the CNCL simulation library.1 The VBR video
bit rate traces are measured from 300 DVD videos comprising
a wide variety of contents, ranging from full-length movies to
documentaries. These video traces exhibit a wide spectrum of
properties. For example, the video length ranges from 93–14585
s, and the video bit rate ranges from 1.02–9.85 Mbps. Note that
we do not measure the video bit rate directly as most of the DVD
bit streams are encrypted. Instead, we measure the I/O activities
while playing back the DVD using a hardware MPEG2 decoder.
Thus the bit rate profiles not only capture the variations due to
video encoding, but also capture the I/O behavior of the decoder
as well.

The server has a bandwidth of bps and the client an
access bandwidth of Mbps, where is the average
bit rate of the VBR-encoded video. Each simulation runs for a

1[Online]. Available: http://www.comnets.rwth-aachen.de/doc/cncl.html

Fig. 5. Comparison of mean latency for all videos.

simulated time of 30 days, with randomized initial conditions.
The client arrival rate is 1 request per second. For a video of
length 2 h or 7200 s, this arrival rate represents an average of
7200 concurrent clients in the system.

In configuring the S&P and the TSP algorithms, which both
have a system parameter that affects the system’s perfor-
mance, we simulate 20 values of linearly spaced from
to and select the one that achieves the lowest average
latency. Our results in Section VII-C show that while the choice
of is dependent on the video bit rate profile, the sensitivity
is relatively modest and thus the simple procedure we employed
is sufficient to obtain good results.

A. Average Latency

Fig. 5 compares the four algorithms’ latency for 300 different
videos, plotted as a cumulative plot with the horizontal axis rep-
resenting latency increase over the CBR case. For example, a la-
tency increase of 10% represents a latency 10% longer than the
latency achieved by the system streaming a CBR video of the
same average bit rate and duration. Note that a negative latency
increase means that the VBR case achieves latency shorter than
the CBR equivalent.

First, among the four algorithms DCP performed worst with
increased latency in 295 out of the 300 videos, followed by SCP
(279 out of 300) and S&P (279 out of 300). By contrast, TSP
performed significantly better with less than half of the videos
(135 out of 300) requiring longer latencies. Second, in terms of
variations in latency increases, TSP is also the best with a stan-
dard deviation of only 37%. SCP has the worst variation with a
standard deviation of 4867%, and a maximum latency increase
over 2000% while the maximum latency of all 300 videos in
TSP is only 535%. This shows that the performance of TSP is
more robust and less affected by the variations in the video bit
rate profile.

SCP’s significantly higher variation in latency is due to vari-
ations in the bit rate of the videos’ initial portion. As the algo-
rithm gives priority to cache from the static channel video data
that cannot be used to begin video playback, if the initial portion
of the video has a high bit rate, then the dynamic channel will
take a longer time to cache sufficient video data to begin play-
back, thus increasing the latency. By contrast, the DCP, S&P,
and TSP algorithms are less sensitive to this effect because they
allocate more bandwidth to cache video data that can be played
back immediately. Fig. 6 illustrates this problem by plotting the

350 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

Fig. 6. Playback delay d for all videos.

Fig. 7. Comparison of client buffer requirement.

distribution of playback delay of SCP, i.e., the in (7). The
results show that more than 60% of videos require a playback
delay of 5 s or more, with a mean as high as 13.9 s. Note that this
playback delay adds to the latency experienced by the client re-
gardless of the system load, thus significantly degrading SCP’s
performance.

Third, comparing DCP with TSP, DCP manages to achieve
lower latency than TSP in 6 out of the 300 videos. It is possible
to devise a rule based on the ratio of the prefetch latency to
the length of as an indicator to select between DCP and
TSP given a video’s bit rate profile. Our experiments show that
such threshold-based selection can correctly pick the better
performer five out of six times. Nevertheless, such a selection
process still relies on the appropriate choice of the threshold
and thus the accuracy is not guaranteed. Alternatively, since
the selection is an offline process, one can always perform
simulations of the two algorithms and pick the one with the
best performance for use in the system.

B. Client Buffer Requirement

Fig. 7 compares the four algorithms’ client buffer require-
ment. These results are generated based on the assumption that
there is a server bandwidth of bps. We first observe that
the client buffer requirement of TSP is mostly within the range
of 5%–6.5% of the video size. The mean client buffer require-
ment for SCP, DCP, S&P, and TSP are 5.7%, 8.6%, 5.6%, and

Fig. 8. Comparison of latency for different arrival rates (Video 1).

Fig. 9. Comparison of latency for different arrival rates (Video 2).

Fig. 10. Comparison of latency for different arrival rates (Video 3).

5.4%, respectively. For instance, for a video of size 2 GB, the
amount of buffer required by TSP will be around 130 MB. This
can be accommodated by a low-cost harddisk or even stored
in memory given the continuous drop in RAM cost. Second,
the maximum client buffer requirement over all 300 videos are
11.4%, 10.6%, 11.4%, and 7.8% for SCP, DCP, S&P, and TSP,
respectively. Again for a video of size 2 GB, this translates into
a buffer requirement of 156 MB for TSP, clearly within the
storage limit of even the smallest harddisk.

C. Performance Impact of the Parameter

In the previous results we configure by selecting the best
result from 20 samples linearly spaced across the valid range. To
further investigate the impact of , we repeat the simulations
for 20, 40, and 80 samples and find the latency to decrease from
4.59 s for 20 samples to 4.52 and 4.49 s for 40 and 80 samples,
respectively. Thus evaluating more samples will produce lower
latency but the difference quickly diminishes. Nevertheless, as

KONG et al.: TURBO-SLICE-AND-PATCH 351

Fig. 11. Performance gain on increasing server bandwidth (Video 1).

Fig. 12. Performance gain on increasing server bandwidth (Video 2).

Fig. 13. Performance gain on increasing server bandwidth (Video 3).

the process is performed offline, one could afford to trade off
simulation time to obtain better performance.

D. Latency Versus Arrival Rate

By fixing the server bandwidth at bps and a max-
imum of 50% server bandwidth allocated for static channels, we
vary the arrival rate to study the effect on the latency. Figs. 8–10
shows the mean latency versus arrival rate ranging from
to 3.0 requests per second for three different videos. These three
videos are chosen to represent videos from the first quartile
(video 1), median (video 2), and third quartile (video 3) of the la-
tency distribution. As expected, the latency generally increases
with the arrival rate. When the arrival rate increases beyond 0.5
requests per second, the latency of both SCP and TSP level off
while the latency of DCP continues to increase. Another ob-
servation is that while SCP performs well in video 1, its per-
formance deteriorates significantly when streaming video 2 and
video 3. This shows the sensitivity of SCP’s performance to the

Fig. 14. Effect of server bandwidth partitioning (Video 1).

Fig. 15. Effect of server bandwidth partitioning (Video 2).

Fig. 16. Effect of server bandwidth partitioning (Video 3).

particular video bit rate profile. The performance of DCP and
TSP are more robust in comparison, with TSP achieving the
lowest latency in all three cases.

E. Server Bandwidth Comparison

To investigate the effect of server bandwidth, we fix the ar-
rival rate at 1 request per second and allocate at most 50%
of server bandwidth for static channels. Figs. 11–13 show the
mean latency versus server bandwidth for video 1, 2, and 3,
respectively. The horizontal axis shows the number of equiv-
alent CBR channels. For example, the value of 50 represents
the server bandwidth is . As expected, the mean latency
drops when more server bandwidth is available. The results in-
dicate that the latency decreases nearly exponentially when the
server bandwidth increases. This suggests that all four algo-
rithms are super-scalar, i.e., the performance increases super-
linearly with respect to the resources provided. This is also con-
sistent with the super-scalar property of the original SS-VoD ar-
chitecture streaming CBR videos [13].

352 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 16, NO. 3, MARCH 2006

F. Bandwidth Partitioning

To investigate the performance impact of different bandwidth
partitioning, we run simulations with a fixed arrival rate of 1
request per second and varying the bandwidth partition ratios.
Figs. 14–16 show the latency versus the ratio of static channel
bandwidth for Videos 1, 2, and 3, respectively. The horizontal
axis is the percentage of bandwidth allocated to static channels.
We observe that for TSP, the latency is lowest when half of the
bandwidth is assigned to static channels. However, for DCP and
SCP, the optimal partition ratio that gives the lowest mean la-
tency is not constant. For example, there are a number of local
minima for both algorithms for video 1. In the other two videos,
the latency of SCP decreases with more static channel band-
width while the optimal partition ratios for DCP are 40% for
both Videos 2 and 3. These results suggest that TSP is signif-
icantly simpler to deploy in practice as a bandwidth partition
ratio of 50% can already provide consistent performance. By
contrast, the service provider will need to determine and adjust
the bandwidth partition ratio for DCP and SCP on a video-by-
video basis to obtain the best performance.

VIII. CONCLUSION

The TSP algorithm investigated in this study addresses two
challenges in video streaming. First, TSP employs network mul-
ticast to achieve a super-linear scalability that is essential to
achieving economy-of-scale in provisioning metropolitan-scale
video streaming services. Second, TSP employs a novel three-
phase S&P algorithm to support the streaming of VBR-encoded
videos with on average only 9% increase in latency. Given that
a previous study has shown that one can achieve the visual
quality of CBR-encoded videos using only half the bit rate with
VBR encoding, streaming VBR video using TSP in fact requires
less resources than streaming CBR videos. With the continuous
deployment of multicast in the infrastructure, TSP will serve
as a candidate for implementing the future metropolitan video
streaming services.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their thoughtful comments and suggestions in improving this
paper.

REFERENCES

[1] C. W. Kong and J. Y. B. Lee, “Slice-and-patch—an algorithm to support
VBR video streaming in a multicast-based video-on-demand system,”
in Proc. 2002 Int. Conf. Parallel Distrib. Syst., Dec. 2002, pp. 391–397.

[2] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an
on-demand video server with batching,” in Proc. 2nd ACM Multimedia,
1994, pp. 15–23.

[3] H. Shachnai and P. S. Yu, “Exploring waiting tolerance in effective
batching for video-on-demand scheduling,” in Proc. 8th Israeli Conf.
Comput. Syst. Softw. Eng., Jun. 1997, pp. 67–76.

[4] V. O. K. Li, W. Liao, X. Qui, and E. W. M. Wong, “Performance model
of interactive video-on-demand systems,” Proc. IEEE JSAC, vol. 14, no.
6, pp. 1099–1109, Aug. 1996.

[5] W. Liao and V. O. K. Li, “The split and merge protocol for interac-
tive video-on-demand,” IEEE Multimedia, vol. 4, no. 4, pp. 51–62, Apr.
1997.

[6] K. A. Hua, Y. Cai, and S. Sheu, “Patching: a multicast technique for
true video-on-demand services,” in Proc. 6th Int. Conf. Multimedia, Sep.
1998, pp. 191–200.

[7] Y. Cai, K. Hua, and K. Vu, “Optimizing patching performance,” in Proc.
SPIE/ACM Conf. Multimedia Comput. Netw., Jan. 1999, pp. 204–215.

[8] S. W. Carter, D. D. E. Long, K. Makki, L. M. Ni, M. Singhal, and N.
Pissinou, “Improving video-on-demand server efficiency through stream
tapping,” in Proc. 6th Int. Conf. Comput. Commun. Netw., Sep. 1997, pp.
200–207.

[9] D. Saparilla, K. W. Ross, and M. Reisslein, “Periodic broadcasting with
VBR-encoded video,” in Proc. IEEE Infocom, New York, Mar. 1999, pp.
464–471.

[10] S. Sen, G. Lixin, and D. Towsley, “Frame-based periodic broadcast and
fundamental resource tradeoffs,” in Proc. IEEE Int. Conf. Perform.,
Comput., Commun., 2001, pp. 77–83.

[11] T. C. Chiueh and C. H. Lu, “A periodic broadcasting approach
to video-on-demand service,” in Proc. SPIE, vol. 2615, 1996, pp.
162–169.

[12] A. Hu, I. Nikolaidis, and P. van Beek, “On the design of efficient
video-on-demand broadcast schedules,” in Proc. 7th Int. Symp. Model.,
Anal. Simulation Comput. Telecomm. Syst., 1999, pp. 262–269.

[13] J. Y. B. Lee and C. H. Lee, “Design, performance analysis, and imple-
mentation of a super-scalar video-on-demand system,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 12, no. 11, pp. 983–997, Nov. 2002.

[14] W. S. Tan, N. Duong, and J. Princen, “A comparison study of variable-bit
rate versus fixed-bit rate video transmission,” in Proc. Aus. Broadband
Switch. Services Symp., 1991, pp. 134–141.

[15] W. Feng and S. Sechrest, “Smoothing and buffering for the delivery
of pre-recorded video,” in Proc. ISET/SPIE Multimedia Comput. Netw.,
Feb. 1995, pp. 234–244.

[16] J. D. Salehi, Z. L. Zhang, J. F. Kurose, and D. Towsley, “Supporting
stored video: reducing rate variability and end-to-end resource require-
ments through optimal smoothing,” in Proc. ACM SIGMETERICS, May
1996, pp. 222–231.

[17] W. Feng, F. Jahanian, and S. Sechrest, “ An optimal bandwidth alloca-
tion strategy for the delivery of compressed prerecorded video,” in ACM
Multimedia Syst. J., vol. 5, Sep. 1995, pp. 297–309.

[18] H. L. Lai, J. Y. B. Chen, and L. K. Chen, “ A monotonic-decreasing rate
scheduler for variable-bit-rate video streaming,” IEEE Trans. Circuits
Syst. Video Technol., vol. 15, no. 2, pp. 221–231, Feb. 2005.

[19] W. Feng, W. Mishra, and W. Ramakishnan, “A comparison of bandwidth
smoothing techniques for the transmission of pre-recorded compressed
video,” in Proc. INFOCOM, vol. 1, 1997, pp. 58–66.

[20] D. Y. Lee and H. Y. Yeom, “Tip prefetching: dealing with the bit rate
variability of video streams,” in Proc. IEEE ICMCS , vol. II, 1999, pp.
352–356.

Chun-Wai Kong received the B.Eng and M.Phil de-
grees in information engineering from the Chinese
University of Hong Kong, in 2000 and 2002, respec-
tively.

He was a member of the Multimedia Communi-
cations Laboratory and participated in the research
of algorithms and systems for multicast video
streaming.

Jack Y. B. Lee (M’95–SM’03) received the B.Eng
and Ph.D degrees in information engineering from
the Chinese University of Hong Kong, Hong Kong,
SAR, in 1993 and 1997, respectively.

He participated in the research and development
of video streaming systems at the Chinese University
of Hong Kong from 1997 to 1998 where he and
his team developed novel parallel video server
architectures for building cost-effective, scalable
and fault-tolerant video-on-demand systems. This
work had resulted in numerous publications, two

U.S. patents, and the technologies are subsequently transferred to a spin-off
technology company for commercialization. He was a faculty member at the
Department of Computer Science at the Hong Kong University of Science and
Technology from 1998–1999, and in 1999 he joined the Department of Infor-
mation Engineering at the Chinese University of Hong Kong to establish the
Multimedia Communications Laboratory to spearhead research in distributed
multimedia systems, fault-tolerant systems, peer-to-peer systems, multicast
communications, and Internet computing.

KONG et al.: TURBO-SLICE-AND-PATCH 353

Mounir Hamdi (S’89–M’90) received the B.S.
degree in computer engineering (with distinction)
from the University of Louisiana, Lafayette, in 1985
and the M.S. and the Ph.D. degrees in electrical
engineering from the University of Pittsburgh,
Pittsburgh, PA, in 1987 and 1991, respectively.

He has been a Faculty Member in the Department
of Computer Science, Hong Kong University of Sci-
ence and Technology since 1991, where he is now a
Professor of Computer Science and the Director of
the Computer Engineering Program that has around

350 undergraduate students. From 1999 to 2000, he held Visiting Professor
positions at Stanford University, Stanford, CA, and the Swiss Federal Insti-
tute of Technology, Lausanne, Switzerland. His general areas of research are
in high-speed packet switches/routers and all-optical networks, in which he
has published more than 200 research publications, received numerous research
grants, supervised some 20 postgraduate students, and for which he has served
as consultant to various international companies. Currently, he is working on
high-speed networks including the design, analysis, scheduling, and manage-
ment of high-speed switches/routers, wavelength-division multiplexing (WDM)
networks/switches, and wireless networks. He is currently leading a team that
is designing one the highest capacity chip sets for terabit switches/routers. This
chip set is targeted toward a 256� 256 OC-192 switch, and includes a crossbar
fabric chip, a scheduler/arbiter chip, and traffic management chip. In addition
to his commitment to research and professional service, he is also a dedicated
teacher.

Dr. Hamdi has been on the Editorial Board of IEEE TRANSACTIONS ON

COMMUNICATIONS, IEEE COMMUNICATION MAGAZINE, Computer Networks,
WIRELESS COMMUNICATIONS and Mobile Computing, and Parallel Computing,
and has been on the program committees of more than 70 international con-
ferences and workshops. He was a Guest Editor of IEEE COMMUNICATIONS

MAGAZINE, guest editor-in-chief of two special issues of IEEE JOURNAL

ON SELECTED AREAS OF COMMUNICATIONS, and a Guest Editor of Optical
Networks Magazine, and has chaired more than five international conferences
and workshops including the IEEE GLOBECOM/ICC Optical networking
workshop, the IEEE ICC High-speed Access Workshop, and the IEEE IPPS
HiNets Workshop. He is/was the Chair of IEEE Communications Society
Technical Committee on Transmissions, Access and Optical Systems, and
Vice-Chair of the Optical Networking Technical Committee, as well as member
of the ComSoc technical activities council. He is/was on the technical program
committees of more than 100 international conferences and workshops. He
received the Best Paper Award at the International Conference on Information
and Networking in 1998 out of 152 papers. He also supervised the best Ph.D.
paper award among all universities in Hong Kong. He received the Best Ten
Lecturer’s Award (through university-wide student voting for all university
faculty held once a year), the Distinguished Engineering Teaching Appreciation
Award from the Hong Kong University of Science and Technology, and various
grants targeted toward the improvement of teaching methodologies, delivery
and technology. He is a member of ACM.

Victor O. K. Li (S’80–M’81–SM’86–F’92) was
born in Hong Kong in 1954. He received the
S.B., S.M., E.E., and Sc.D. degrees in electrical
engineering and computer science from the Mass-
achusetts Institute of Technology, Cambridge, in
1977, 1979, 1980, and 1981, respectively.

He joined the University of Southern California
(USC), Los Angeles, in February 1981, and became
Professor of Electrical Engineering and Director of
the USC Communication Sciences Institute. Since
September 1997, he has been with the University

of Hong Kong, Hong Kong, where he is Chair Professor of Information
Engineering at the Department of Electrical and Electronic Engineering, and
Managing Director of Versitech Ltd., the technology transfer and commercial
arm of the University. He also serves on various corporate boards. His research
is in information technology, including high-speed communication networks,
wireless networks, and Internet technologies and applications. He is a Principal
Investigator of the Area of Excellence in Information Technology funded by
the Hong Kong government. Sought by government, industry, and academic
organizations, he has lectured and consulted extensively around the world.
He chaired the Computer Communications Technical Committee of the IEEE
Communications Society (1987–1989), and the Los Angeles Chapter of the
IEEE Information Theory Group (1983–1985). He co-founded the International
Conference on Computer Communications and Networks (IC3N), and chaired
its Steering Committee 1992–1997. He also chaired various international
workshops and conferences, including, most recently, IEEE INFOCOM 2004.
He was appointed to the Hong Kong Information Infrastructure Advisory
Committee by the Chief Executive of the Hong Kong Special Administrative
Region. He also serves on the Innovation and Technology Fund (Electronics)
Vetting Committee, the Small Entrepreneur Research Assistance Programme
Committee, the Engineering Panel of the Research Grants Council, and the
Task Force for the Hong Kong Academic and Research Network (HARNET)
Development Fund of the University Grants Committee. He was a Distin-
guished Lecturer at the University of California at San Diego, at the National
Science Council of Taiwan, and at the California Polytechnic Institute. He has
also delivered keynote speeches at many international conferences.

Prof. Li has received numerous awards, including, most recently, the Out-
standing Researcher Award of the University of Hong Kong, the KC Wong Ed-
ucation Foundation Lectureship, the Croucher Foundation Senior Research Fel-
lowship, and the Bronze Bauhinia Star, Government of the Hong Kong Spe-
cial Administrative Region, China. He has served as an Editor of IEEE Net-
work, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC) Wire-
less Communications Series, and Telecommunication Systems. He also guest
edited special issues of IEEE JSAC, Computer Networks and ISDN Systems,
and KICS/IEEE Journal of Communications and Networking. He is now serving
as an editor of ACM/Kluwer Wireless Networks and IEEE Communications
Surveys and Tutorials.

	toc
	Turbo-Slice-and-Patch: An Algorithm for Metropolitan Scale VBR V
	Chun-Wai Kong, Jack Y. B. Lee, Senior Member, IEEE, Mounir Hamdi
	I. I NTRODUCTION
	II. B ACKGROUND
	A. Previous Work
	B. Comparison

	III. S YSTEM A RCHITECTURE
	A. Transmission Scheduling
	B. Admission Control

	Fig.€1. Patching process in the SSVoD system supporting CBR vide
	C. Challenges in Supporting VBR-Encoded Video
	IV. P RIORITY S CHEDULING
	A. Static Channel Priority (SCP)
	B. Dynamic Channel Priority (DCP)

	V. T URBO -S LICE - AND -P ATCH (TSP)
	A. Video Preprocessing

	Fig.€2. Video slicing in the S&P algorithm.
	Fig.€3. Three types of multicast channels in the S&P algorithm.
	B. Bandwidth Allocation

	Fig.€4. Three-phase patching process in the S&P algorithm.
	C. Three-Phase Patching
	Lemma 1: If $R_{\rm cut}\leq(2/3)R_{\rm max}$, then $v_{b}(\tau)
	Proof: Firstly, $(R_{\rm max}-R_{\rm cut})\geq(R_{\rm max}-(2R_{

	D. Client Buffer Requirement
	VI. P LAYBACK C ONTINUITY
	Theorem 1: Video playback is continuous in phase 2, i.e., $c(t)\
	Proof: Consider $c_{b}(t)$ and $c_{c}(t)$. Since the dynamic ch

	Theorem 2: Playback is continuous, i.e., $c(t)\geq\int_{t_{1}}^{
	Proof: For $t\geq t_{2}$, the client will have received the vide

	Theorem 3: Video playback is continuous in phase 3, i.e., $c(t)\
	Proof: We consider two possible cases depending on the total dur

	Theorem 4: Video playback is continuous for the rest of the vide
	Proof: At any time t after phase 3, the client has received th

	VII. P ERFORMANCE E VALUATION

	Fig.€5. Comparison of mean latency for all videos.
	A. Average Latency

	Fig. 6. Playback delay d_{s} for all videos.
	Fig.€7. Comparison of client buffer requirement.
	B. Client Buffer Requirement

	Fig.€8. Comparison of latency for different arrival rates (Video
	Fig.€9. Comparison of latency for different arrival rates (Video
	Fig.€10. Comparison of latency for different arrival rates (Vide
	C. Performance Impact of the Parameter $R_{\rm cut}$

	Fig.€11. Performance gain on increasing server bandwidth (Video
	Fig.€12. Performance gain on increasing server bandwidth (Video
	Fig.€13. Performance gain on increasing server bandwidth (Video
	D. Latency Versus Arrival Rate

	Fig.€14. Effect of server bandwidth partitioning (Video 1).
	Fig.€15. Effect of server bandwidth partitioning (Video 2).
	Fig.€16. Effect of server bandwidth partitioning (Video 3).
	E. Server Bandwidth Comparison
	F. Bandwidth Partitioning
	VIII. C ONCLUSION
	C. W. Kong and J. Y. B. Lee, Slice-and-patch an algorithm to sup
	A. Dan, D. Sitaram, and P. Shahabuddin, Scheduling policies for
	H. Shachnai and P. S. Yu, Exploring waiting tolerance in effecti
	V. O. K. Li, W. Liao, X. Qui, and E. W. M. Wong, Performance mod
	W. Liao and V. O. K. Li, The split and merge protocol for intera
	K. A. Hua, Y. Cai, and S. Sheu, Patching: a multicast technique
	Y. Cai, K. Hua, and K. Vu, Optimizing patching performance, in P
	S. W. Carter, D. D. E. Long, K. Makki, L. M. Ni, M. Singhal, and
	D. Saparilla, K. W. Ross, and M. Reisslein, Periodic broadcastin
	S. Sen, G. Lixin, and D. Towsley, Frame-based periodic broadcast
	T. C. Chiueh and C. H. Lu, A periodic broadcasting approach to v
	A. Hu, I. Nikolaidis, and P. van Beek, On the design of efficien
	J. Y. B. Lee and C. H. Lee, Design, performance analysis, and im
	W. S. Tan, N. Duong, and J. Princen, A comparison study of varia
	W. Feng and S. Sechrest, Smoothing and buffering for the deliver
	J. D. Salehi, Z. L. Zhang, J. F. Kurose, and D. Towsley, Support
	W. Feng, F. Jahanian, and S. Sechrest, An optimal bandwidth allo
	H. L. Lai, J. Y. B. Chen, and L. K. Chen, A monotonic-decreasing
	W. Feng, W. Mishra, and W. Ramakishnan, A comparison of bandwidt
	D. Y. Lee and H. Y. Yeom, Tip prefetching: dealing with the bit

