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ABSTRACT 

The lack of end-to-end quality of service support in the 

current Internet has caused significant difficulties to 

ensuring playback continuity in video streaming 
applications. This study addresses this challenge by 

investigating a new adaptation algorithm to adjust the 

bit-rate of video data in response to the network 

bandwidth available to improve playback continuity. 

Unlike previous works, the proposed algorithm is 

transparent to the video client, requires no parameter 

tuning, and yet can outperform existing algorithms. This 

paper presents this algorithm, evaluates and compares its 

performance with the best algorithm currently available 

using extensive trace-driven simulations. 

1. INTRODUCTION 

The lack of end-to-end quality-of-service (QoS) support in 

today’s Internet has caused significant difficulties to the 

deployment of video streaming services such as video 

broadcasting and video-on-demand. In particular, when 

the network becomes congested, significant packet losses 

will arise, leading to corrupted or even dropped video 

frames.  

Given QoS support is unlikely to be widely available in 

the near future, researchers have resorted to another 

approach to tackle this problem. Specifically, a number of 

pioneering researchers have investigated algorithms to 

adapt the video bit-rate to the network bandwidth 

available [1-5]. For example, when the network becomes 

congested, the sender will reduce the bit-rate of the 

encoded video to alleviate the congestion. Clearly, 

reducing the bit-rate will also degrade the visual quality. 

Nevertheless, reducing the video bit-rate in a controlled 

manner at the sender will result in far better visual quality 

than attempting to recover from data loss at the receiver. 

To perform video adaptation we must tackle two 

fundamental challenges. First, the sender must be able to 

dynamically control or convert the video bit-rate to the 

desired value. This can be accomplished by means of 

scalable video coding [6] and transcoding [7-9]. Second, 

an adaptation algorithm is needed to estimate the network 

bandwidth available, and subsequently determine the 

bit-rate to be used for converting and transmitting the 

video stream. This study focuses on the second challenge, 

i.e., design of the rate adaptation algorithm.  

This problem has recently been studied by a number of 

researchers, including the studies by Rejaie, et al. [4] and 

Assuncao and Ghanbari [5] which adopted UDP as the 

network transport; and the studies by Cuetos and Ross [1], 

Cuetos, et al. [2], and Jacobs and Eleftheriadis [3] which 

adopted TCP as the network transport. 

A common property of these adaptation algorithms is 

the existence of a configurable operating parameter [1-2], 

which is typically used in the feedback loop of the 

algorithms. Not surprisingly, as will be illustrated in 

Section 5, the choice of this operating parameter will 

significantly affect the performance of the rate adaptation 

algorithm. Unfortunately, to optimize this parameter for 

the best performance will require a priori knowledge of 

the network bandwidth available over the entire duration 

of the video session. This is clearly not possible in 

practice and thus poses significant difficulties to 

deploying these rate adaptation algorithms. 

In this study, we address this issue by presenting a new 

rate adaptation algorithm that does not have configurable 

parameter at all. In other words, no prior knowledge of the 

available network bandwidth is needed nor required to run 

the rate adaptation algorithm. Our results show that 

compared to the existing algorithms, the presented 

algorithm can achieve comparable or even better 

performance and does so without the need to tweak any 

operating parameters. 

2. SYSTEM MODEL 

In this work we consider a video streaming system that 

streams pre-encoded video data using TCP as the network 

transport to the receiver for playback. Despite the 

common notion that TCP is unsuitable for video streaming 
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for its aggressive congestion control and full reliability, it 

does possess a number of appealing features.  

First, TCP is intrinsically TCP-friendly and thus 

fairness with other TCP traffics is automatically 

guaranteed. Second, using TCP the sender can stream 

video using say the standard HTTP protocol to the client. 

As most, if not all, video players in the market supports 

HTTP-based video streaming and playback, compatibility 

is greatly enhanced. Third, for security reasons, many 

company and ISP blocks UDP traffic at their gateways, 

thus making UDP-based video streaming impossible. By 

contrast, TCP/HTTP streaming can pass through firewalls 

in the same way as web traffic. Finally, to perform 

bandwidth estimation the sender will need some form of 

feedbacks from the client. Thus with UDP transport the 

client will need to be modified to send explicit feedbacks 

to the sender to enable bandwidth estimation and 

subsequently rate adaptation to be performed. By contrast, 

TCP with its built-in flow control already can provide 

implicit feedbacks to the sender and thus no modification 

to the client is necessary. Again this will greatly enhance 

the compatibility of the rate-adaptation algorithm to the 

existing video player software. 

Nevertheless, the rate-adaptation algorithm presented 

in this study can also be applied to UDP-based video 

streaming with appropriate support from the client’s 

player software (e.g. sending explicit feedbacks).  

Figure 1 shows the key components in the video 

streaming system. Assuming the video data are encoded at 

a constant bit rate of rmax bps.  The rate controller can 

convert the encoded video to any bit-rate between rmax and 

rmin (e.g., using scalable video coding [6] or transcoding 

[7-9]). Note that there is a lower limit rmin on the 

achievable video bit-rate to model, for example, the 

bit-rate of the base layer in FGS encoded video [6] or the 

lowest achievable bit rate in transcoding [7-9].  

In practice, even with a transcoder the video bit-rate 

may not be changed at arbitrary time due to the structure 

of the coding algorithm (e.g. group of pictures, etc.). Thus 

in the system model we assume video transcoding is 

performed in discrete video segments of fixed playback 

duration, denoted by M seconds. The rate controller will 

then determine the target bit-rate for the next video 

segment based on estimation of the client’s buffer 

occupancy. We denote the average bit rate for the kth video 

segment by rk.

The transcoded video segments are then transmitted to 

the client using TCP. Note that the server does not limit 

the transmission rate here and simply sends the transcoded 

video data as fast as TCP allows. This ensures that 

available network bandwidth is fully utilized. 

At the receiver, many existing video players will 

prefetch a certain amount of video data before starting 

playback to absorb the inevitable bandwidth fluctuations.  
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Figure 1: Block diagram of the system model. 

We denote the playback duration of the prefetched 

video data by Bp seconds. Depending on the specific 

player software, Bp can be a fixed value known to the 

server, or it can be configurable by the users. If it is the 

latter case and the existing player software does not report 

this value to the server, the server will simply assume the 

worst case of no prefetch, i.e. Bp = 0 sec, in performing 

rate adaptation. Our results show that the performance 

difference is insignificant (c.f. Section 5-A).  

3. CLIENT BUFFER OCCUPANCY AND 

NETWORK BANDWIDTH ESTIMATION 

The objective of the rate adaptation algorithm is to 

prevent playback starvation caused by client buffer 

underflow. To prevent buffer underflow, the server will 

need to estimate the available network bandwidth as well 

as the client buffer occupancy, in terms of second’s worth 

of video data.  

Specifically, we make two assumptions on the receiver 

and the server. First, we assume that the client will not 

decode and playback a video frame until it is completely 

received. Thus if a frame arrives late missing the playback 

schedule, then the player will pause playback until the 

whole frame is received. We call the period of time when 

the playback is stalled due to late frame arrival underflow 

time. Second, we assume that the total size of the buffer in 

between the server application and the network (e.g., 

including the buffer inside the socket library and TCP) is a 

known constant, denoted by Z.

Estimation of the client buffer occupancy is then 

performed every time the server completes submitting a 

video frame to the network transport for delivery. For 

example, if the common socket library is used then this is 

equivalent to completing all send() function calls for the 

video frame. 

Let ti be the completion time of submitting video frame 

i for transmission, and let fi be the index of the oldest 

frame (i.e. with the smallest index number) that has not 

yet been completely received by the client at time ti. Now 

as the server will submit data for transmission as fast as 

the transport allows, we can assume that the intermediate 

buffer at the server is always full, i.e., there are Z bytes of 

data accumulated awaiting for transmission. Thus we can 

estimate fi from 
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= max    s.t.  
i

i k

k n

f n s Z    (1) 

where si is the size of frame i.

Similarly, after frame i+1 is submitted for 

transmission, we can compute fi+1 using (1). Now if fi+1>

fi , then we know that frame fi to frame fi+1 1 must have 

arrived at the client during the time from ti to ti+1.

Assuming in this short interval the frames arrive at the 

client at a constant rate. Then we can estimate the arrival 

time of frame k , denoted by Tk, from  

1 1

1

1
    , 1i

k i i i i i

i i

k f
T t t t k f f

f f
  (2) 

Note that we ignored in (2) network and processing 

delay in receiving ACKs from the client. Our simulations 

show that this does not have significant impact on the 

algorithm’s performance.  

Knowing the arrival time of each video frame, we can 

then proceed to estimate the client buffer occupancy. Let 

Bi (in seconds of video data) be the client buffer 

occupancy when frame i arrives at the client and G be the 

frame rate of the video. Then we can estimate the client 

buffer occupancy Bi according to the following rules: 

Case 1 - 
pi B G

In this case the frame i belongs to the initial prefetch part 

of the video, i.e., the player has not yet started decoding 

the received video data. Thus the buffer occupancy is 

equal to the duration of video data received: 

/iB i G       (3) 

Case 2 - 
pi B G

In this case, the way to estimate Bi depends on whether or 

not the frame i has arrived before all the data in the client 

buffer is consumed as illustrated in Figure 2.  

If (Ti 1+Bi 1) Ti 0, that means frame i has arrived 

before the client buffer becomes empty, then Bi is 

estimated as: 

1 1 1/i i i iB B T T G        (4)

Otherwise, if (Ti 1+Bi 1) Ti 0, that means the client 

buffer has been empty for a period of time before frame i

arrived, then Bi is simply equal to the time value of a 

frame, i.e.: 

    1/iB G       (5)

From the above derivation, we can estimate Bi when 

frame i has just arrived at the client. However, since the 

video bit rate of a segment has to be determined when all 

the data of the previous segment has been submitted into 

the server buffer, some frames of the previous segment are 

still in the server buffer. Therefore, to predict the client 

buffer occupancy after all the data of the previous 

segment has arrived at the client, we need to predict the 

arrival times of the frames in the server buffer.  

Ti-1 Ti

Bi = (Bi-1+ Ti-1 )- Ti + 1/G

t

Bi-1

Ti

Bi = 1/G

t

Period when

buffer is empty

Bi

Frame i

Figure 2: Two ways to estimate Bi when i > Bp x G.

Let ni be the index of the last frame of segment i, we 

have to predict 
inB  at time 

int  while frame 
inf  to 

frame ni are still in the server buffer and then use the 

predicted 
inB  to perform adaptation of segment i+1.

Assuming the remaining data in the server buffer at 

time 
int  will arrive at the client at a constant rate of Di+1’,

which is also the estimated TCP throughput for sending 

the segment i+1, the arrival times of the remaining frames 

are estimated as follows: 

1

1
( )   ,

'i i i

ni

k

k n j n n i

j fi

T t F t k f n
D

    (6) 

where Fi(t) is the remaining amount of data of frame i at 

time t. With ,kT k [
inf , ni], we can estimate 

inB .

To estimate Di+1’, we simply take the rate at which 

segment i was submitted into the server buffer as the 

estimated value, i.e., 

1 '
i

i i

i

n

i k n m

k m

D s t t     (7)

where mi is the index of the first frame of segment i. This 

is because the rate at which data are submitted into the 

server buffer is equal to the rate at which data leave the 

server buffer. 

4. RATE ADAPTATION 

Armed with a mean to estimate the client buffer 

occupancy and network bandwidth, the next challenge is 

to devise an adaptation algorithm to control the video 

bit-rate to prevent client buffer underflow.  

A. Segment-based Rate Control 

As video data are transcoded and transmitted in 

fixed-duration segments, the server must determine the 

target bit-rate before converting a video segment for 

transmission. The server determines the target bit-rate 

based on two factors, namely the estimated client buffer 

occupancy and the estimated network bandwidth available 

which could be estimated using techniques described in 

Section 3. 
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Suppose segment i has just been submitted to the server 

buffer, with the estimated Di+1’ and 
inB , we can predict 

the client buffer occupancy after transmitting the segment 

i+1 to the client, i.e. 
1inB , from: 

1

1

1 'i i

i
n n

i

Mr
B B M

D
    (8) 

where the last term is the predicted time taken to send the 

whole i+1th segment to the client. By rearranging (8), we 

obtain: 

1

1 11 'i in n

i i

B B
r D

M
   (9) 

From (9), we can relate the video bit-rate ri+1 with the 

estimated client buffer occupancy (represented by 
1inB ).

Our goal is to adjust the video bit-rate to maintain the 

client buffer occupancy to above a given threshold 

denoted by BT such that short-term bandwidth variations 

can be absorbed. In practice, BT =Bp when Bp is known, 

otherwise it is set to 5 seconds. 

Specifically, if 
1in TB B  then it implies the client 

buffer occupancy is below the threshold. Hence the server 

will reduce the video bit-rate to raise the buffer occupancy 

to BT by substituting 
1in TB B  in (9) to obtain: 

1 11 'iT n

i i

B B
r D

M
  (10)

Otherwise if 
in TB B , then it implies the client buffer 

occupancy is above the threshold. In this case the server 

will simply maintain the current client buffer occupancy 

by setting 
1inB =

inB  in (9) to obtain ri+1. This is a 

conservative strategy to reduce the possibility of buffer 

underflow. Thus, we have 

    1 1 'i ir D     (11) 

Finally, the server checks and limits the computed 

video bit rate to the feasible range [rmin, rmax] by 

   1 max min 1min , max ,i ir r r r      (12) 

Note that in contrast to previous works [1-3], this 

adaptation algorithm has no control parameter that 

requires either offline or online optimization. This has 

practical significance as optimizing the control parameters 

in the existing algorithms [1-3] requires a priori
knowledge of the available network bandwidth over the 

entire duration of the video session, clearly impossible in 

practice.  

B. Preemptive Rate Control 

In our experiments, we found that the available network 

bandwidth can occasionally drops drastically to a very low 

value. These sudden bandwidth drops do not appear to be 

predictable and thus can result in client video playback 

starvation. 
The fundamental problem is that the adaptation 

algorithm is executed only when a new video segment is 

to be transmitted. Thus if bandwidth drops significantly, 
then the transmission of the current video segment will 

stall. The adaptation algorithm cannot react in this case as 

the current video segment has not yet been completely 

transmitted. Meanwhile the client will continue 

consuming video data for playback and thus may 

eventually runs into buffer underflow.  

To tackle this problem, we propose a preemptive 

scheduling technique to shorten the time at which the 
adaptation algorithm can react to changing network 

conditions. Instead of waiting for a video segment to be 

completely submitted into the server buffer, the scheduler 

will timeout after Mri+1/Di+1’ seconds, which is the 

expected time required to submit the i+1th video segment 

into the server buffer, even if not all video data have been 

submitted. In this case, any data not yet submitted for 

transmission will be discarded and the remaining video 

segment transcoded again according to the new estimates 

on client buffer occupancy and available network 

bandwidth.  

Note that preemptive rate control requires the video 

transcoder to be able to adjust the video bit rate in 

between a video segment. The implementation will be 

highly dependent on the video compression employed and 
further study is required to identify the constraints and 

tradeoffs of this requirement. 

5. PERFORMANCE EVALUATION 

In this section, we use trace-driven simulation written in 

ns-2 [10] to evaluate the performance of the proposed 
adaptation algorithm (denoted by AVS) and compare it 

with the current state-of-the-art algorithm proposed by 

Cuetos and Ross [1-2] (denoted by CR).  
Figure 3 depicts the simulated network topology. We 

use the common NewReno TCP [11-12] as the transport 

protocol to deliver the video data to the client. Cross 

traffic is generated from a packet trace file obtained from 

Bell Labs [13-14]1. The trace file captured 107 hours of 

network traffic passing through a firewall. We divide the 

107-hour trace file into 107 1-hour trace files and run a 

simulation for each 1-hour trace file to evaluate the 

algorithms’ performance under different cross traffics.  

Both the streaming traffic and the cross traffic share a 

link of R Mbps as shown in Figure 3. For each simulation, 

we adjust R such that the network has just sufficient 

1
Network traces used in the simulations belongs to NLANR 

project sponsored by the National Science Foundation and its ANIR 

division under Cooperative Agreement No. ANI-9807479, and the 

National Laboratory for Applied Network Research.
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bandwidth to stream the video maxR r c , where c  is 

the average data rate of the cross traffic. We summarize 

the system settings in Table 1.   

We use two performance metrics, namely underflow 

ratio and bandwidth utilization, to evaluate the algorithms’ 

performance. Underflow ratio is defined as the ratio of 

underflow duration (i.e. the duration of time that playback 
starvation occurs) to the video length. Bandwidth 

utilization is defined as: 

max{ , }

0
0

( )
N P L S

i

i

Utilization s v t dt (13) 

where N is the total number of frames, P is the initial 

prefetch delay, L is the movie length, S is the total time 

taken to stream the video and v(t) is the TCP throughput at 

time t. The value of bandwidth utilization is in the range 

of [0,1]. This metric measures how well an algorithm 

utilizes the available network bandwidth. 

A. Sensitivity to prefetch duration 

The proposed rate adaptation algorithm makes use of 

knowledge of the client’s initial prefetch duration in 

estimating the client buffer occupancy. However if this is 

not known then it simply assumes no prefetch is 

performed. 
To investigate the performance impact of such 

knowledge we run two sets of simulations for all 107 

traffic traces, one set with the prefetch duration known to 
the server and the other set simply assuming no prefetch. 

In both cases the client has a prefetch duration of 5 

seconds. 

Table 2 shows the underflow ratio and bandwidth 

averaged over all 107 traces for the two cases. In both 

cases the differences are insignificant and thus implying 

that the proposed rate adaptation algorithm is insensitive 

to the knowledge of the prefetch duration. Therefore in 

practice we can simply assume no prefetch if the prefetch 

duration is not known.   

B. Effectiveness of preemptive rate control 

To investigate how much performance gains can be 

obtained from preemptive rate control, we run two sets of 

simulations for all 107 traffic traces, one with 

segment-based rate control and the other with preemptive 

rate control. 

In all 107 traces, preemptive rate control achieves 

lower underflow ratios compared to segment-based rate 

control. On average, the underflow ratio is reduced by 
20% when preemptive rate control is used. Nevertheless 

preemptive rate control does require more complex 

transcoders and thus further investigation is needed to 
quantify the gains and the tradeoffs. 
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Figure 3: The network topology in the simulation. 

Table 1: System settings for simulations. 

Parameter Symbol Value 

Prefetch duration Bp 5 seconds 

Video segment length M 1 seconds 

Original video bit-rate rmax 1.1 Mbps 

Lowest video bit-rate rmin 200 kbps 

Video Length  3000 seconds 

TCP MSS  1500 bytes 

Table 2: Effect of knowledge of the prefetch duration. 

Prefetch Duration Known Unknown Difference

Bandwidth Utilization 0.9999 0.9998 ~0.01% 

Underflow Ratio 0.056335 0.055502 ~1.48% 

C. Comparison with the CR algorithm 

In this section, we compare the proposed rate adaptation 

algorithm (the AVS algorithm) with the current 

state-of-the-art algorithm proposed by Cuetos and Ross 

[1-2] (the CR algorithm). 

In the CR algorithm, there is a control parameter 

(0 ) that can substantially affect the performance. To 

find the optimal value for  it is necessary to know the 

network bandwidth availability over the entire duration of 

the video session. This is clearly not possible in practice 

and the authors did not explain how to adjust the 

parameter in practice.  

Thus to obtain performance results for the CR 

algorithm we run 2,000 simulations with the control 

parameter  varied from 0 to 1 with a step size of 0.0005. 

We found that the optimal value for  depends heavily on 

the particular traffic trace chosen, and can range from 0 to 
0.7 over the 107 traces. 

As the optimal  is not known a priori, we compare CR 

with AVS by computing the proportion of the 2,000 

simulation runs that result in higher underflow ratio than 

the AVS algorithm, which does not need any parameter 

tuning. The results are summarized in Figure 4, which 

also plots the bandwidth utilization ratio, defined as 

(bandwidth utilization of AVS)/(average bandwidth 

utilization of CR over all values). 
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Figure 4: Comparison of underflow ratios and bandwidth 

utilization of CR and AVS for different traces. 

The results in Figure 4 show that the proposed AVS 

algorithm outperforms CR in more than half of the 

simulation runs with different  values. Averaging over 

all 107 traces, the proposed AVS algorithm can achieve 

lower underflow ratio than the CR algorithm for 77% of 

the  values. This shows that in practice, the proposed 

AVS algorithm is likely to perform better and yet does not 

require any a priori knowledge of the network bandwidth 

available nor tuning of any control parameter. 

Despite the reduction in the underflow ratio, the 

proposed AVS algorithm can still make efficient use of 
the network bandwidth, and achieving bandwidth 

utilization similar to that of the CR algorithm.  

6. CONCLUSIONS 

In this study we presented a new rate adaptation algorithm 

for video streaming over the Internet. The algorithm has 
two unique features to maximize its compatibility with 

existing video player software. First, we show that the rate 

adaptation algorithm can be applied to streaming video 
over TCP/HTTP, which is compatible with most of the 

existing video player software. Second, the rate adaptation 

algorithm performs network bandwidth and client buffer 

occupancy estimations using only local information. Thus 

explicit feedbacks from the client is not needed and hence 

existing video player software can be supported. More 

importantly, unlike previous approaches the proposed 

algorithm does not need any parameter tuning to operate 

nor requires a prior knowledge of the network bandwidth 

available to perform well, thus simplifying the 

deployment of the adaptation algorithm in practice. Our 

results show that the proposed algorithm can outperform 

existing algorithm and yet still achieve efficient 

bandwidth utilization. 
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