
A Transparent Rate Adaptation Algorithm

for Streaming Video over the Internet

L. S. Lam, Jack Y. B. Lee, S. C. Liew, and W. Wang

Department of Information Engineering

The Chinese University of Hong Kong

Shatin, N.T., Hong Kong, China

{lslam2, yblee, soung, wwang2}@ie.cuhk.edu.hk

ABSTRACT

The lack of end-to-end quality of service support in the

current Internet has caused significant difficulties to

ensuring playback continuity in video streaming
applications. This study addresses this challenge by

investigating a new adaptation algorithm to adjust the

bit-rate of video data in response to the network

bandwidth available to improve playback continuity.

Unlike previous works, the proposed algorithm is

transparent to the video client, requires no parameter

tuning, and yet can outperform existing algorithms. This

paper presents this algorithm, evaluates and compares its

performance with the best algorithm currently available

using extensive trace-driven simulations.

1. INTRODUCTION

The lack of end-to-end quality-of-service (QoS) support in

today’s Internet has caused significant difficulties to the

deployment of video streaming services such as video

broadcasting and video-on-demand. In particular, when

the network becomes congested, significant packet losses

will arise, leading to corrupted or even dropped video

frames.

Given QoS support is unlikely to be widely available in

the near future, researchers have resorted to another

approach to tackle this problem. Specifically, a number of

pioneering researchers have investigated algorithms to

adapt the video bit-rate to the network bandwidth

available [1-5]. For example, when the network becomes

congested, the sender will reduce the bit-rate of the

encoded video to alleviate the congestion. Clearly,

reducing the bit-rate will also degrade the visual quality.

Nevertheless, reducing the video bit-rate in a controlled

manner at the sender will result in far better visual quality

than attempting to recover from data loss at the receiver.

To perform video adaptation we must tackle two

fundamental challenges. First, the sender must be able to

dynamically control or convert the video bit-rate to the

desired value. This can be accomplished by means of

scalable video coding [6] and transcoding [7-9]. Second,

an adaptation algorithm is needed to estimate the network

bandwidth available, and subsequently determine the

bit-rate to be used for converting and transmitting the

video stream. This study focuses on the second challenge,

i.e., design of the rate adaptation algorithm.

This problem has recently been studied by a number of

researchers, including the studies by Rejaie, et al. [4] and

Assuncao and Ghanbari [5] which adopted UDP as the

network transport; and the studies by Cuetos and Ross [1],

Cuetos, et al. [2], and Jacobs and Eleftheriadis [3] which

adopted TCP as the network transport.

A common property of these adaptation algorithms is

the existence of a configurable operating parameter [1-2],

which is typically used in the feedback loop of the

algorithms. Not surprisingly, as will be illustrated in

Section 5, the choice of this operating parameter will

significantly affect the performance of the rate adaptation

algorithm. Unfortunately, to optimize this parameter for

the best performance will require a priori knowledge of

the network bandwidth available over the entire duration

of the video session. This is clearly not possible in

practice and thus poses significant difficulties to

deploying these rate adaptation algorithms.

In this study, we address this issue by presenting a new

rate adaptation algorithm that does not have configurable

parameter at all. In other words, no prior knowledge of the

available network bandwidth is needed nor required to run

the rate adaptation algorithm. Our results show that

compared to the existing algorithms, the presented

algorithm can achieve comparable or even better

performance and does so without the need to tweak any

operating parameters.

2. SYSTEM MODEL

In this work we consider a video streaming system that

streams pre-encoded video data using TCP as the network

transport to the receiver for playback. Despite the

common notion that TCP is unsuitable for video streaming

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

for its aggressive congestion control and full reliability, it

does possess a number of appealing features.

First, TCP is intrinsically TCP-friendly and thus

fairness with other TCP traffics is automatically

guaranteed. Second, using TCP the sender can stream

video using say the standard HTTP protocol to the client.

As most, if not all, video players in the market supports

HTTP-based video streaming and playback, compatibility

is greatly enhanced. Third, for security reasons, many

company and ISP blocks UDP traffic at their gateways,

thus making UDP-based video streaming impossible. By

contrast, TCP/HTTP streaming can pass through firewalls

in the same way as web traffic. Finally, to perform

bandwidth estimation the sender will need some form of

feedbacks from the client. Thus with UDP transport the

client will need to be modified to send explicit feedbacks

to the sender to enable bandwidth estimation and

subsequently rate adaptation to be performed. By contrast,

TCP with its built-in flow control already can provide

implicit feedbacks to the sender and thus no modification

to the client is necessary. Again this will greatly enhance

the compatibility of the rate-adaptation algorithm to the

existing video player software.

Nevertheless, the rate-adaptation algorithm presented

in this study can also be applied to UDP-based video

streaming with appropriate support from the client’s

player software (e.g. sending explicit feedbacks).

Figure 1 shows the key components in the video

streaming system. Assuming the video data are encoded at

a constant bit rate of rmax bps. The rate controller can

convert the encoded video to any bit-rate between rmax and

rmin (e.g., using scalable video coding [6] or transcoding

[7-9]). Note that there is a lower limit rmin on the

achievable video bit-rate to model, for example, the

bit-rate of the base layer in FGS encoded video [6] or the

lowest achievable bit rate in transcoding [7-9].

In practice, even with a transcoder the video bit-rate

may not be changed at arbitrary time due to the structure

of the coding algorithm (e.g. group of pictures, etc.). Thus

in the system model we assume video transcoding is

performed in discrete video segments of fixed playback

duration, denoted by M seconds. The rate controller will

then determine the target bit-rate for the next video

segment based on estimation of the client’s buffer

occupancy. We denote the average bit rate for the kth video

segment by rk.

The transcoded video segments are then transmitted to

the client using TCP. Note that the server does not limit

the transmission rate here and simply sends the transcoded

video data as fast as TCP allows. This ensures that

available network bandwidth is fully utilized.

At the receiver, many existing video players will

prefetch a certain amount of video data before starting

playback to absorb the inevitable bandwidth fluctuations.

Encoded

Video

Rate

Controller

TCP

Network

Client Buffer

D
eco

d
er

t

Bitrate

r
max

Bitrate

r
max

r
min

t

Encoded

Video

Rate

Controller

TCP

Network

Client Buffer

D
eco

d
er

t

Bitrate

r
max

Bitrate

r
max

r
min

t

Figure 1: Block diagram of the system model.

We denote the playback duration of the prefetched

video data by Bp seconds. Depending on the specific

player software, Bp can be a fixed value known to the

server, or it can be configurable by the users. If it is the

latter case and the existing player software does not report

this value to the server, the server will simply assume the

worst case of no prefetch, i.e. Bp = 0 sec, in performing

rate adaptation. Our results show that the performance

difference is insignificant (c.f. Section 5-A).

3. CLIENT BUFFER OCCUPANCY AND

NETWORK BANDWIDTH ESTIMATION

The objective of the rate adaptation algorithm is to

prevent playback starvation caused by client buffer

underflow. To prevent buffer underflow, the server will

need to estimate the available network bandwidth as well

as the client buffer occupancy, in terms of second’s worth

of video data.

Specifically, we make two assumptions on the receiver

and the server. First, we assume that the client will not

decode and playback a video frame until it is completely

received. Thus if a frame arrives late missing the playback

schedule, then the player will pause playback until the

whole frame is received. We call the period of time when

the playback is stalled due to late frame arrival underflow

time. Second, we assume that the total size of the buffer in

between the server application and the network (e.g.,

including the buffer inside the socket library and TCP) is a

known constant, denoted by Z.

Estimation of the client buffer occupancy is then

performed every time the server completes submitting a

video frame to the network transport for delivery. For

example, if the common socket library is used then this is

equivalent to completing all send() function calls for the

video frame.

Let ti be the completion time of submitting video frame

i for transmission, and let fi be the index of the oldest

frame (i.e. with the smallest index number) that has not

yet been completely received by the client at time ti. Now

as the server will submit data for transmission as fast as

the transport allows, we can assume that the intermediate

buffer at the server is always full, i.e., there are Z bytes of

data accumulated awaiting for transmission. Thus we can

estimate fi from

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

= max s.t.
i

i k

k n

f n s Z (1)

where si is the size of frame i.

Similarly, after frame i+1 is submitted for

transmission, we can compute fi+1 using (1). Now if fi+1>

fi , then we know that frame fi to frame fi+1 1 must have

arrived at the client during the time from ti to ti+1.

Assuming in this short interval the frames arrive at the

client at a constant rate. Then we can estimate the arrival

time of frame k , denoted by Tk, from

1 1

1

1
 , 1i

k i i i i i

i i

k f
T t t t k f f

f f
 (2)

Note that we ignored in (2) network and processing

delay in receiving ACKs from the client. Our simulations

show that this does not have significant impact on the

algorithm’s performance.

Knowing the arrival time of each video frame, we can

then proceed to estimate the client buffer occupancy. Let

Bi (in seconds of video data) be the client buffer

occupancy when frame i arrives at the client and G be the

frame rate of the video. Then we can estimate the client

buffer occupancy Bi according to the following rules:

Case 1 -
pi B G

In this case the frame i belongs to the initial prefetch part

of the video, i.e., the player has not yet started decoding

the received video data. Thus the buffer occupancy is

equal to the duration of video data received:

/iB i G (3)

Case 2 -
pi B G

In this case, the way to estimate Bi depends on whether or

not the frame i has arrived before all the data in the client

buffer is consumed as illustrated in Figure 2.

If (Ti 1+Bi 1) Ti 0, that means frame i has arrived

before the client buffer becomes empty, then Bi is

estimated as:

1 1 1/i i i iB B T T G (4)

Otherwise, if (Ti 1+Bi 1) Ti 0, that means the client

buffer has been empty for a period of time before frame i

arrived, then Bi is simply equal to the time value of a

frame, i.e.:

 1/iB G (5)

From the above derivation, we can estimate Bi when

frame i has just arrived at the client. However, since the

video bit rate of a segment has to be determined when all

the data of the previous segment has been submitted into

the server buffer, some frames of the previous segment are

still in the server buffer. Therefore, to predict the client

buffer occupancy after all the data of the previous

segment has arrived at the client, we need to predict the

arrival times of the frames in the server buffer.

Ti-1 Ti

Bi = (Bi-1+ Ti-1)- Ti + 1/G

t

Bi-1

Ti

Bi = 1/G

t

Period when

buffer is empty

Bi

Frame i

Figure 2: Two ways to estimate Bi when i > Bp x G.

Let ni be the index of the last frame of segment i, we

have to predict
inB at time

int while frame
inf to

frame ni are still in the server buffer and then use the

predicted
inB to perform adaptation of segment i+1.

Assuming the remaining data in the server buffer at

time
int will arrive at the client at a constant rate of Di+1’,

which is also the estimated TCP throughput for sending

the segment i+1, the arrival times of the remaining frames

are estimated as follows:

1

1
() ,

'i i i

ni

k

k n j n n i

j fi

T t F t k f n
D

 (6)

where Fi(t) is the remaining amount of data of frame i at

time t. With ,kT k [
inf , ni], we can estimate

inB .

To estimate Di+1’, we simply take the rate at which

segment i was submitted into the server buffer as the

estimated value, i.e.,

1 '
i

i i

i

n

i k n m

k m

D s t t (7)

where mi is the index of the first frame of segment i. This

is because the rate at which data are submitted into the

server buffer is equal to the rate at which data leave the

server buffer.

4. RATE ADAPTATION

Armed with a mean to estimate the client buffer

occupancy and network bandwidth, the next challenge is

to devise an adaptation algorithm to control the video

bit-rate to prevent client buffer underflow.

A. Segment-based Rate Control

As video data are transcoded and transmitted in

fixed-duration segments, the server must determine the

target bit-rate before converting a video segment for

transmission. The server determines the target bit-rate

based on two factors, namely the estimated client buffer

occupancy and the estimated network bandwidth available

which could be estimated using techniques described in

Section 3.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

Suppose segment i has just been submitted to the server

buffer, with the estimated Di+1’ and
inB , we can predict

the client buffer occupancy after transmitting the segment

i+1 to the client, i.e.
1inB , from:

1

1

1 'i i

i
n n

i

Mr
B B M

D
 (8)

where the last term is the predicted time taken to send the

whole i+1th segment to the client. By rearranging (8), we

obtain:

1

1 11 'i in n

i i

B B
r D

M
 (9)

From (9), we can relate the video bit-rate ri+1 with the

estimated client buffer occupancy (represented by
1inB).

Our goal is to adjust the video bit-rate to maintain the

client buffer occupancy to above a given threshold

denoted by BT such that short-term bandwidth variations

can be absorbed. In practice, BT =Bp when Bp is known,

otherwise it is set to 5 seconds.

Specifically, if
1in TB B then it implies the client

buffer occupancy is below the threshold. Hence the server

will reduce the video bit-rate to raise the buffer occupancy

to BT by substituting
1in TB B in (9) to obtain:

1 11 'iT n

i i

B B
r D

M
 (10)

Otherwise if
in TB B , then it implies the client buffer

occupancy is above the threshold. In this case the server

will simply maintain the current client buffer occupancy

by setting
1inB =

inB in (9) to obtain ri+1. This is a

conservative strategy to reduce the possibility of buffer

underflow. Thus, we have

 1 1 'i ir D (11)

Finally, the server checks and limits the computed

video bit rate to the feasible range [rmin, rmax] by

 1 max min 1min , max ,i ir r r r (12)

Note that in contrast to previous works [1-3], this

adaptation algorithm has no control parameter that

requires either offline or online optimization. This has

practical significance as optimizing the control parameters

in the existing algorithms [1-3] requires a priori
knowledge of the available network bandwidth over the

entire duration of the video session, clearly impossible in

practice.

B. Preemptive Rate Control

In our experiments, we found that the available network

bandwidth can occasionally drops drastically to a very low

value. These sudden bandwidth drops do not appear to be

predictable and thus can result in client video playback

starvation.
The fundamental problem is that the adaptation

algorithm is executed only when a new video segment is

to be transmitted. Thus if bandwidth drops significantly,
then the transmission of the current video segment will

stall. The adaptation algorithm cannot react in this case as

the current video segment has not yet been completely

transmitted. Meanwhile the client will continue

consuming video data for playback and thus may

eventually runs into buffer underflow.

To tackle this problem, we propose a preemptive

scheduling technique to shorten the time at which the
adaptation algorithm can react to changing network

conditions. Instead of waiting for a video segment to be

completely submitted into the server buffer, the scheduler

will timeout after Mri+1/Di+1’ seconds, which is the

expected time required to submit the i+1th video segment

into the server buffer, even if not all video data have been

submitted. In this case, any data not yet submitted for

transmission will be discarded and the remaining video

segment transcoded again according to the new estimates

on client buffer occupancy and available network

bandwidth.

Note that preemptive rate control requires the video

transcoder to be able to adjust the video bit rate in

between a video segment. The implementation will be

highly dependent on the video compression employed and
further study is required to identify the constraints and

tradeoffs of this requirement.

5. PERFORMANCE EVALUATION

In this section, we use trace-driven simulation written in

ns-2 [10] to evaluate the performance of the proposed
adaptation algorithm (denoted by AVS) and compare it

with the current state-of-the-art algorithm proposed by

Cuetos and Ross [1-2] (denoted by CR).
Figure 3 depicts the simulated network topology. We

use the common NewReno TCP [11-12] as the transport

protocol to deliver the video data to the client. Cross

traffic is generated from a packet trace file obtained from

Bell Labs [13-14]1. The trace file captured 107 hours of

network traffic passing through a firewall. We divide the

107-hour trace file into 107 1-hour trace files and run a

simulation for each 1-hour trace file to evaluate the

algorithms’ performance under different cross traffics.

Both the streaming traffic and the cross traffic share a

link of R Mbps as shown in Figure 3. For each simulation,

we adjust R such that the network has just sufficient

1
Network traces used in the simulations belongs to NLANR

project sponsored by the National Science Foundation and its ANIR

division under Cooperative Agreement No. ANI-9807479, and the

National Laboratory for Applied Network Research.

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

bandwidth to stream the video maxR r c , where c is

the average data rate of the cross traffic. We summarize

the system settings in Table 1.

We use two performance metrics, namely underflow

ratio and bandwidth utilization, to evaluate the algorithms’

performance. Underflow ratio is defined as the ratio of

underflow duration (i.e. the duration of time that playback
starvation occurs) to the video length. Bandwidth

utilization is defined as:

max{ , }

0
0

()
N P L S

i

i

Utilization s v t dt (13)

where N is the total number of frames, P is the initial

prefetch delay, L is the movie length, S is the total time

taken to stream the video and v(t) is the TCP throughput at

time t. The value of bandwidth utilization is in the range

of [0,1]. This metric measures how well an algorithm

utilizes the available network bandwidth.

A. Sensitivity to prefetch duration

The proposed rate adaptation algorithm makes use of

knowledge of the client’s initial prefetch duration in

estimating the client buffer occupancy. However if this is

not known then it simply assumes no prefetch is

performed.
To investigate the performance impact of such

knowledge we run two sets of simulations for all 107

traffic traces, one set with the prefetch duration known to
the server and the other set simply assuming no prefetch.

In both cases the client has a prefetch duration of 5

seconds.

Table 2 shows the underflow ratio and bandwidth

averaged over all 107 traces for the two cases. In both

cases the differences are insignificant and thus implying

that the proposed rate adaptation algorithm is insensitive

to the knowledge of the prefetch duration. Therefore in

practice we can simply assume no prefetch if the prefetch

duration is not known.

B. Effectiveness of preemptive rate control

To investigate how much performance gains can be

obtained from preemptive rate control, we run two sets of

simulations for all 107 traffic traces, one with

segment-based rate control and the other with preemptive

rate control.

In all 107 traces, preemptive rate control achieves

lower underflow ratios compared to segment-based rate

control. On average, the underflow ratio is reduced by
20% when preemptive rate control is used. Nevertheless

preemptive rate control does require more complex

transcoders and thus further investigation is needed to
quantify the gains and the tradeoffs.

Streaming Server

Cross Traffic Generator Cross Traffic Receiver

Streaming Client

100M
bps, 10m

s

10
0M

bp
s,

10
m

s

10
0M

bp
s,

10
m

s

100M
bps, 10m

s
R Mbps, 100ms

Streaming Server

Cross Traffic Generator Cross Traffic Receiver

Streaming Client

100M
bps, 10m

s

10
0M

bp
s,

10
m

s

10
0M

bp
s,

10
m

s

100M
bps, 10m

s
R Mbps, 100ms

Figure 3: The network topology in the simulation.

Table 1: System settings for simulations.

Parameter Symbol Value

Prefetch duration Bp 5 seconds

Video segment length M 1 seconds

Original video bit-rate rmax 1.1 Mbps

Lowest video bit-rate rmin 200 kbps

Video Length 3000 seconds

TCP MSS 1500 bytes

Table 2: Effect of knowledge of the prefetch duration.

Prefetch Duration Known Unknown Difference

Bandwidth Utilization 0.9999 0.9998 ~0.01%

Underflow Ratio 0.056335 0.055502 ~1.48%

C. Comparison with the CR algorithm

In this section, we compare the proposed rate adaptation

algorithm (the AVS algorithm) with the current

state-of-the-art algorithm proposed by Cuetos and Ross

[1-2] (the CR algorithm).

In the CR algorithm, there is a control parameter

(0) that can substantially affect the performance. To

find the optimal value for it is necessary to know the

network bandwidth availability over the entire duration of

the video session. This is clearly not possible in practice

and the authors did not explain how to adjust the

parameter in practice.

Thus to obtain performance results for the CR

algorithm we run 2,000 simulations with the control

parameter varied from 0 to 1 with a step size of 0.0005.

We found that the optimal value for depends heavily on

the particular traffic trace chosen, and can range from 0 to
0.7 over the 107 traces.

As the optimal is not known a priori, we compare CR

with AVS by computing the proportion of the 2,000

simulation runs that result in higher underflow ratio than

the AVS algorithm, which does not need any parameter

tuning. The results are summarized in Figure 4, which

also plots the bandwidth utilization ratio, defined as

(bandwidth utilization of AVS)/(average bandwidth

utilization of CR over all values).

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103

Trace No.

P
o

rp
o

rt
io

n
/R

a
ti

o

Proportion of alpha values CR gives larger underflow ratio Bandwidth utilization ratio

Figure 4: Comparison of underflow ratios and bandwidth

utilization of CR and AVS for different traces.

The results in Figure 4 show that the proposed AVS

algorithm outperforms CR in more than half of the

simulation runs with different values. Averaging over

all 107 traces, the proposed AVS algorithm can achieve

lower underflow ratio than the CR algorithm for 77% of

the values. This shows that in practice, the proposed

AVS algorithm is likely to perform better and yet does not

require any a priori knowledge of the network bandwidth

available nor tuning of any control parameter.

Despite the reduction in the underflow ratio, the

proposed AVS algorithm can still make efficient use of
the network bandwidth, and achieving bandwidth

utilization similar to that of the CR algorithm.

6. CONCLUSIONS

In this study we presented a new rate adaptation algorithm

for video streaming over the Internet. The algorithm has
two unique features to maximize its compatibility with

existing video player software. First, we show that the rate

adaptation algorithm can be applied to streaming video
over TCP/HTTP, which is compatible with most of the

existing video player software. Second, the rate adaptation

algorithm performs network bandwidth and client buffer

occupancy estimations using only local information. Thus

explicit feedbacks from the client is not needed and hence

existing video player software can be supported. More

importantly, unlike previous approaches the proposed

algorithm does not need any parameter tuning to operate

nor requires a prior knowledge of the network bandwidth

available to perform well, thus simplifying the

deployment of the adaptation algorithm in practice. Our

results show that the proposed algorithm can outperform

existing algorithm and yet still achieve efficient

bandwidth utilization.

ACKNOWLEDGEMENTS

This research is funded in part by an Earmarked Grant

(CUHK4229/00E) from the HKSAR Research Grant Council

and in part by the Area of Excellence Scheme, established under

the University Grants Council of the Hong Kong Special

Administrative Region, China (Project No. AoE/E-01/99).

REFERENCES

[1] P. de Cuetos and K.W. Ross, “Adaptive Rate Control for

Streaming Stored Fine-Grained Scalable Video,” Proc.
NOSSDAV, May 2002, pp.3-12.

[2] P. de Cuetos, P. Guillotel, K.W. Ross and D. Thoreau,

“Implementation of Adaptive Streaming Of Stored

MPEG-4 FGS Video Over TCP,” Proc. IEEE Multimedia
and Expo, 2002, pp.405-408.

[3] S. Jacobs and A. Eleftheriadis, “Streaming Video using

Dynamic Rate Shaping and TCP Congestion Control,”

Journal of Visual Communication and Image

Representation, Vol. 9, No. 3, 1998, pp.211-222.

[4] R. Rejaie, M. Handley and D. Estrin, “Architectural

considerations for playback of quality adaptive video over

the Internet,” Technical Report 98-686, USC-CS, Nov.

1998.

[5] P.A.A. Assuncao and M. Ghanbari, “Congestion control

of video traffic with transcoders,” Proc. IEEE Int. Conf.

Communications, Vol. 1, June 1997, pp. 523-527.

[6] W. Li, “Overview of Fine Granularity Scalability in

MPEG-4 Video Standard,” IEEE Trans. Circuits and
Systems for Video Tech. Vol. 11, No. 3, March 2001,

pp.301-317.

[7] P. A. A. Assunção and G. Mohammed, “A

Frequency-Domain Video Transcoder for Dynamic

Bit-Rate Reduction of MPEG-2 Bit Streams,” IEEE
Trans. Circuits and Systems for Video Tech., Vol. 8, No.

8, Dec. 1998, pp.923-967.

[8] B. K. Natarajan and B. Vasudev, “A Fast Approximate

Algorithm for Scaling down Digital Images in the DCT

Domain,” Proc. IEEE Int. Conf. Image Processing, Vol. 2,

Oct. 1995, pp.241-243.

[9] H. Sun, W. Kwok and J.W. Zdepski, “Architecture for

MPEG compressed bitstream scaling,” IEEE Trans.
Circuits and Systems for Video Technology, Vol. 6, No. 2,

April 1996, pp.191-199.

[10] The network simulator – ns-2. [Online]. Available:

http://www.isi.edu/nsnam/ns/

[11] S. Floyd and V. Paxson, “Difficulties in Simulating the

Internet,” IEEE/ACM Trans. Networking, Vol. 9, No. 4,

August 2001, pp. 392-403.

[12] S. Floyd and T. Henderson, “The NewReno Modification

to TCP’s Fast Recovery Algorithm,” RFC 2582, April

1999.

[13] NLANR Measurement and Network Analysis Group.

[Online]. Available:

http://pma.nlanr.net/Traces/long/bell1.html

[14] Bell Labs Internet Traffic Research. [Online]. Available:

http://cm.bell-labs.com/cm/ms/departments/sia/InternetTra

ffic/

Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA’04)
0-7695-2051-0/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

