
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001 485

Buffer Management and Dimensioning for a
Pull-Based Parallel Video Server

Jack Y. B. Lee

Abstract—Recently, there has been a trend toward designing
video-on-demand systems using parallel-server architectures. By
exploiting server-level parallelism, researchers can break through
the performance limit of a single server, while keeping the system
cost low by leveraging on commodity hardware platforms. A
number of studies have demonstrated the feasibility of building
parallel video servers around the client-pull architecture and
one can even incorporate data redundancy into the system to
sustain server-level failures. However, due to randomness of
request arrivals and server processing time, dimensioning the
server resource requirement is often difficult. This paper tackles
the problem of buffer management and dimensioning for such
a pull-based parallel video server. Using a generic buffer-pool
model with worst-case analysis, upper bounds on the server
buffer requirement are derived for a parallel-server design with
multiple disks per server. The obtained bounds are independent
of placement policy, video bit-rate, disk-scheduling discipline, and
even number of servers in the system, making it applicable to a
wide range of server designs. The analytical results also proved
that the scalability of this pull-based server design will not be
limited by the server buffer requirement.

Index Terms—Buffer management, parallel video server, scala-
bility, server design, system dimensioning, video-on-demand.

I. INTRODUCTION

CONVENTIONAL video-on-demand (VoD) systems
are usually designed and implemented around the

single-server approach where video titles are stored in a video
server for storage, retrieval, and delivery. While the design of
such VoD systems are well understood, the capacity constraints
(storage and bandwidth) of the server hardware often limit the
system to no more than a few hundred users. To go beyond
this limit, one either has to use replication [1]–[3] or expensive
massively-parallel hardware platforms [4], [5].

Recently, a number of researchers [6]–[19] have begun
studies on the design and implementation of scalable
video-on-demand (VoD) systems using parallel-server ar-
chitectures. Interested readers can find a general overview
in [20]. The objective in using server-parallelism is to break
through the capacity constraint of a single server but without
the cost of a full replication across multiple servers. Analo-
gous to disk arrays, most of the studies using parallel-server

Manuscript received October 30, 1998; revised December 22, 2000. This
work was supported in part by Grant CUHK6095/99E from the HKSAR Re-
search Grant Council and by the Area-of-Excellence in Information Technology,
a research grant from the HKSAR University Grants Council. This paper was
recommended by Associate Editor S.-F. Chang.

The author is with the Department of Information Engineering, the Chinese
University of Hong Kong, Shatin, N.T., Hong Kong (e-mail: jacklee@com-
puter.org).

Publisher Item Identifier S 1051-8215(01)03016-6.

architectures make use of data striping at the server level to
avoid data replication. Specifically, a compressed video title is
divided into many stripe units, and these are then distributed
to the servers according to a specific placement policy. In this
way, all servers will then evenly share the loads from the video
clients.

While the idea of parallel-server architecture may appear
simple, designing a video server using server-parallelism raises
many problems not found in conventional video server designs.
In particular, one has to: 1) devise striping and placement
algorithms for the storage of video titles among the servers; 2)
devise retrieval scheduling algorithms to read video data off
the disk array; 3) devise scheduling algorithms to coordinate
transmissions from the servers; and 4) devise buffering and
presentation algorithms at the client to maintain a smooth video
playback, etc. Moreover, these algorithms should be scalable
in the sense that the hardware resources required at each server
should not increase drastically when scaling up the system (i.e.,
adding more servers).

While performance studies on push-based parallel video
servers have been conducted by a number of researchers
[6]–[9], [12], [18], [19], there are very few studies that in-
vestigate the performance of pull-based parallel video server
designs. In this paper, we tackle the problem of buffer manage-
ment and dimensioning in a pull-based parallel video server,
with particular attention to achieving scalability.

The main contributions of this paper are: 1) we derive
upper bounds for the server buffer requirement in a pull-based
parallel video server; 2) we show that the bounds are in-
dependent of the disk placement policy, the video bit-rate,
and the disk-scheduling discipline; 3) we discover that for a
multiple-disk server having more than two disks, the buffer
requirement will be larger if the server capacity is limited by
the network sub-system; and 4) we prove that the per-server
buffer requirement is independent of the number of servers in
the system and hence will not limit the scalability of the design.

The rest of the paper is organized as follows. Section II gives
an overview of the parallel video server architecture; Section III
derives upper bounds for single-disk servers. Section IV ex-
tends the analysis in Section III to multiple-disk servers. Sec-
tion V discusses implications of the obtained bounds. Section VI
reviews some related works and compares them with our ap-
proach. Lastly, Section VII concludes the paper.

II. SYSTEM ARCHITECTURE

Fig. 1 depicts the general architecture of the pull-based
parallel video server studied in this paper. It is first proposed

1051–8215/01$10.00 © 2001 IEEE

486 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

Fig. 1. Architecture of a (five-servers) parallel video server.

Fig. 2. Data organization in a parallel video server.

in [11] and comprises multiple independent servers connected
by an interconnection network. Each video title is divided into
fixed-size blocks of bytes and distributed to the servers in a
round-robin manner as shown in Fig. 2. This fixed-size block
striping algorithm is called space striping [20], as opposed to
striping in units of video frames, called time striping. Since a
stripe unit in space striping is significantly smaller than a video
title (kilobytes versus megabytes), this enables fine-grain load
sharing (as oppose to course-grain load sharing in data parti-
tion) among servers. Moreover, the loads are evenly distributed
over all servers regardless of skewness in video retrievals.

A. Service Model

To retrieve video data for playback, a client sends requests to
the servers according to the placement policy to retrieve stripe
units for playback. Upon receiving a request, a server will read
the requested stripe unit off the storage device and transmit it
to the client at a controlled data rate. This model of control-
ling the data flow between the client and the servers is called
the client-pull service model [20], as opposed to the server-push
service model where the server schedules the retrieval and trans-
mission of video data.

Among the existing studies on parallel video servers, the ma-
jority of them employed the server-push service model [4]–[6],
[8], [9], [12], [18], [19]. The challenge in push-based parallel

Fig. 3. Design of a server node in the pull-based parallel video server.

video server is inter-server clock-synchronization. As long as
the server clocks are synchronized, round-based scheduling al-
gorithms similar to single-server designs can be employed, re-
sulting in relatively simple performance analysis and system di-
mensioning. By contrast, pull-based parallel video servers do
not need clock-synchronization among the servers and hence
the servers in the system can be fully autonomous. This elimi-
nates the need for a distributed clock-synchronization protocol,
which is nontrivial in its own right.

B. Server Architecture

Inside each server in the system, there are one request queue,
one shared queue, and send queues, as shown in Fig. 3. All
these queues share a pool of buffers allocated by the system
at startup. Incoming requests are first stored into the request
queue. The disk-retrieval process serves requests in batches by
allocating free buffers and reading video blocks off the disk
into the buffers. After retrieval, these buffers are then pushed
into the shared queue to wait for transmission at the traffic
smoother. When a send queue becomes empty, a buffer unit
from the shared queue is pushed into the empty send queue for
transmission. Each send queue can contain only one buffer unit
at a time. After transmission, this buffer unit will be released
for reuse. Note that there is no memory copy in passing buffer
units among the server queues.

The traffic smoother is introduced to control the bustiness of
outgoing traffic at the server to avoid congestion at the network
and the client. Specifically, in each round of transmission, the
server will transmit one packet from each of the nonempty send
queues in a round-robin manner so that video packets destined
for different clients are interleaved. For example, with a block
size of 64 KB and a packet size of 8 KB (excluding headers),
the traffic smoother will completely transmit a video block in
eight rounds. To further avoid congestion, we define a min-
imum round size , such that the traffic
smoother will introduce artificial delay to maintain a minimum
round time as if there are nonempty send queues.

It is worth noting that by setting , the traffic smoother
reduces to the first-come-first-serve (FCFS) discipline, and by
setting equal to the maximum number of concurrent video
streams, the traffic smoother reduces to simple Round Robin.
In a parallel-server system, will usually be set equal to the
client-server ratio to maintain a proper transmission rate. In-
terested readers are referred to [11] for details on this traffic
smoother.

LEE: BUFFER MANAGEMENT AND DIMENSIONING FOR A PULL-BASED PARALLEL VIDEO SERVER 487

C. Buffer-Management Scheme

As fixed-size buffers are used throughout the system, they can
be pre-allocated at system initialization to form a buffer pool
that will be reused without further invoking memory allocation
services from the operating system. This buffer-management
scheme has been shown to significantly outperform the gen-
eral buffer manager provided by the compiler and the operating
system [21]. The problem is how many buffers should be allo-
cated so that maximum system performance can be achieved.
Clearly, too few buffers will negatively impact system perfor-
mance due to stalling in either the disk-retrieval process or the
traffic smoother. On the other hand, adding buffers beyond a cer-
tain limit will not help to further improve system performance.

Note that as a request consumes far less memory than a data
block (tens of bytes versus tens of kilobytes), we will ignore the
memory needed for storing the incoming requests in the rest of
the paper. In the next section, we derive upper bounds for the
amount of buffers required to achieve maximum system perfor-
mance for a single-disk server and extend the analysis in Sec-
tion IV to obtain similar bounds for multiple-disk server.

Finally, we should emphasize that the obtained bounds only
guarantee that the server throughput will not be hampered by in-
sufficient buffers. They do not, for example, guarantee that the
load on all servers will be balanced, nor guarantee that video
playback at the clients will be continuous. These are separate
problems and hence require different solutions (e.g., using ad-
mission scheduling to guarantee load balancing [13], and using
buffering and prefetching at the client to guarantee playback
continuity [11]).

III. SINGLE-DISK CASE

Let be the total number of buffers in the buffer pool at
the server and be the size of a buffer (also the size of a re-
trieved data block). If is too small, the retrieval process may
find that there are insufficient free buffers to start a new ser-
vice round. In this case, the disk will have to stop serving re-
quests even if there are requests waiting in the request queue, as
shown in Fig. 4. On the other hand, Fig. 5 shows that the traffic
smoother may need to temporary stop transmission to wait for
the disk to retrieve more data blocks. Clearly, the occurrences of
these two scenarios depend on the relative speed of the disk-re-
trieval process, the traffic smoother, and the amount of buffers
to pipeline the two processes.

For the disk-retrieval process, most disk-scheduling algo-
rithms (e.g., SCAN and C-SCAN, etc.) serve requests in rounds
to reduce disk-seek overhead [22], [23]. Let be the number
of requests served in a round, the maximum round time denoted
as can then be derived for a particular scheduling scheme.
Note that only the worst-case (maximum) round time needs to
be considered in system dimensioning because a VoD system
must provide performance guarantee.

In general, we cannot assume when a particular request is
served in a round. However, we can be sure that all re-
quests will be completely served at the end of a round. The disk
throughput is therefore given by

(1)

Fig. 4. The disk stalls (i.e., stops serving requests) to wait for the traffic
smoother to release buffers.

Fig. 5. The traffic smoother stalls (i.e., fewer thanM send queues active)
to wait for the disk to retrieve more data.

Now consider the traffic smoother. We assume that the net-
work interface can send data at a maximum rate of. Then
the minimum time required for the network to send
bytes of data would be given by

(2)

or

(3)

Clearly, the server throughput is limited either by the disk (disk
bound) or the traffic smoother (network bound), whichever is
smaller

if
otherwise

(4)

However, these bounds can only be achieved if there are suffi-
cient buffers to pipeline the disk-retrieval process and the traffic
smoother.

Before deriving the number of buffers needed, we first make
a few assumptions on the disk-retrieval process. We assume that
the disk-retrieval process starts a new round of service only if:
1) there are or more requests waiting for service in the re-
quest queue and 2) there are or more free buffers available
to store retrieved data. The first assumption models the behavior
of round-based disk schedulers (e.g., SCAN, GSS) that batch re-
quests to reduce seek-time overhead. The second assumption is
trivial as retrieval cannot proceed without available buffers.

Since we want to ensure that the server can achieve maximum
throughput under heavy load, we assume that there will always

488 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

(a)

(b)

Fig. 6. State transition for the: (a) disk-retrieval process and (b) traffic
smoother.

be or more requests waiting at the request queue. That is,
the server is always busy with requests pending for service.

Under the previous assumptions, the retrieval process then
operates between two states: idle and busy (Fig. 6). The retrieval
process enters idle state if there are fewer thanfree buffers
available for the retrieval process to start a new service round.
The retrieval process leaves idle state and enters busy state once
the two conditions specified in the previous paragraph are sat-
isfied.

A. Server Is Network Bound

We first consider the case where the server is network bound,
i.e., . In this case, we want to make sure that the traffic
smoother (the bottleneck) will never become idle because of
insufficient buffers (Fig. 6). We start with the time the retrieval
process is in the idle state and determine the number of server
buffers needed to ensure that the traffic smoother will always
have data for transmission. If the retrieval process is in the idle
state, there will be fewer than free buffers in the buffer pool.
Let be the total amount of data in all send queues in the
traffic smoother, the total amount of data in the system (shared
queue send queues), denoted by , waiting for transmission
is given by

(5)

From the previous section, we know that the traffic smoother
will not send data at full rate if there are fewer than oc-
cupied send queues. In the next lemma, we use this observation
to define a sufficient condition for the traffic smoother to send
data at full rate .

Lemma 1: If there are more than bytes of data
waiting for transmission at the server, then the traffic smoother
will be transmitting at full rate .

Proof: Since each buffer can accommodate at most
bytes of data for transmission, the minimum number of buffers
to store bytes of data is simply .
Hence, to store more than bytes of data, at
least buffers are needed. As all send queues must be

occupied before data can be stored inside buffers in the shared
queue, all these buffers must be in the traffic smoother.
Therefore the minimum round size (cf. Section II-B) is satisfied
and the traffic smoother will be sending data at full rate.

Using Lemma 1, we can determine the number of buffers
needed to keep the traffic smoother sending at full rate when-
ever the disk-retrieval process is idle.

Theorem 1: If there are at least buffers,
then the traffic smoother will always be transmitting at full rate
whenever the disk-retrieval process is in the idle state.

Proof: From Lemma 1, to ensure that the traffic smoother
will be sending data at full rate whenever the disk-retrieval
process is idle, we need

(6)

Substituting (5) into , we then have

(7)

Since this must be true for any valid value of and
, we have

(8)

and the result follows.
Equation (8) gives the number of buffers needed at the server

to ensure that the traffic smoother can transmit at full rate when
the retrieval process is in the idle state. Next, we consider the
case when the disk-retrieval process leaves the idle state and
enters the busy state. We derive in the next lemma the minimum
amount of data in the system at this instant.

Lemma 2: At the time instant the disk-retrieval process
leaves the idle state and enters the busy state, the minimum
amount of data waiting for transmission in the system is at least

(9)

Proof: Just before the disk-retrieval process leaves the idle
state and enters the busy state, there are at most
free buffers. Since the traffic smoother can free at mostfree
buffers at a time instant, the number of free buffers is at most

when the disk leaves the idle state and enters the
busy state. As the retrieval process usesof these free buffers
for the new service round, this leaves at most free
buffers in the system. Note that free buffers and buffers within
the retrieval process do not contain data ready for transmission,
hence the amount of data in the system waiting for transmis-
sion must be at least and the result
follows.

Next, we derive the condition to keep the traffic smoother
sending at full rate at any timeafter the disk-retrieval process
has left the idle state and entered the busy state. We first prove a
lemma bounding the maximum difference between the amount
of data retrieved and the amount of data transmitted in the time
interval .

Lemma 3: Let be the amount of data transmitted, and
be the amount of data retrieved in a time intervalafter the

disk-retrieval process entered the busy state. If the disk-retrieval

LEE: BUFFER MANAGEMENT AND DIMENSIONING FOR A PULL-BASED PARALLEL VIDEO SERVER 489

process does not become idle again during the time interval,
then the difference between and is at most

(10)

Proof: Since the maximum transmission rate of the traffic
smoother is , the maximum amount of data that can be trans-
mitted in a time interval is

(11)

Substituting with (3) gives

(12)

For the disk-retrieval process, the minimum number of service
rounds that can be completed in a time intervalis
since the disk-retrieval process starts a new round when it leaves
the idle state and enters the busy state. Therefore, the minimum
amount of data that can be retrieved is at least

(13)

Therefore, the difference between and is

(14)

Now, as , we can replace by to obtain

(15)

Since for all positive real numbers, (15) is
bounded by

(16)

and the result follows.
Using Lemmas 2 and 3, we can determine the maximum

number of buffers required to keep the traffic smoother trans-
mitting data at full rate when the disk is in the busy state.

Theorem 2: If the total number of buffers is at least
, then the traffic smoother will be

transmitting at full rate whenever the disk-retrieval process is
in the busy state.

Proof: To determine the condition for keeping the traffic
smoother transmitting at full rate at any time when the disk-
retrieval process is not idle, we consider a timeafter the disk-
retrieval process left the idle state and entered the busy state. We
use to denote the amount of data in the system at a time
after the disk-retrieval process left the idle state and entered the
busy state. We can express as

(17)

Substituting (9) from Lemma 2 and (16) from Lemma 3 into
(17), we have

(18)

To ensure that the traffic smoother transmits at full rate, we need
to ensure that (cf. Lemma 1)

(19)

Hence, we have

(20)

Rearranging, we can solve for as

(21)

and the result follows.
Theorem 2 states that as long as the retrieval process is in the

busy state, the traffic smoother will always have data to transmit
if . Note that this buffer require-
ment also satisfies Theorem 1 for the idle state. Therefore, The-
orem 2 bounds the number of buffers required to avoid traffic
smoother stalling.

B. Server Is Disk Bound

If , then the server is disk bound. Since the disk
becomes the bottleneck, we want to ensure that the disk-retrieval
process will never be blocked from serving waiting requests due
to insufficient buffers. As the disk-retrieval process will not be
able to start a new service round (i.e., stalled) if there are fewer
than free buffers in the system, our objective is to determine
the number of buffers needed to guarantee that there are always

or more free buffers in the system.
We define that the traffic smoother is in the idle state if less

than send queues are active. In this case, artificial delay
will be added (Section II-B) and the aggregate transmission rate
will be less than the network throughput . Let be the total
amount of data in all send queues in the traffic smoother, and

be the total amount of data in the shared queue. Clearly,
will be zero and (cf. Lemma 1) if

the traffic smoother is in the idle state. To guarantee that the
disk-retrieval process does not stall, we must ensure that at least

free buffers are available, i.e.,

(22)

Rearranging gives the buffer requirement for the idle state

(23)

Now consider the time instant when the traffic smoother tran-
sits from the idle state to the busy state, where or more
send queues are active. Since there is no data at the shared queue
during the idle state, the state transition must be due to comple-
tion of a service round at the disk-retrieval process. Theorem
3 below sets the condition for guaranteeing continuous disk re-
trieval at this time instant.

Theorem 3: If the total number of buffers is at least
, then the disk-retrieval process will not be

stalled due to lack of free buffers at the time instant the traffic
smoother transits from the idle state to the busy state.

Proof: Just before the traffic smoother leaves the idle state
and enters the busy state, there are at most occu-
pied buffers (cf. Lemma 1). Since the disk-retrieval process can

490 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

retrieve at most buffers of video data at a time, the number
of occupied buffers when the traffic smoother leaves the idle
state and enters the busy state is at most . To
avoid stalling the disk-retrieval process, we need to ensure that
the system still has at least available free buffers. Hence the
buffer requirement is given by and the
result follows.

To further derive the number of buffers needed to keep the
disk-retrieval process from stalling after the traffic smoother en-
tered the busy state, we first need to derive the maximum amount
of data in the system in the next lemma.

Lemma 4: At the instant the traffic smoother leaves the idle
state and enters the busy state, the amount of data waiting for
transmission in the system is at most

(24)

Proof: Similar to the proof of Theorem 3.
Next we derive a bound for the difference between the amount

of data retrieved and the amount of data transmitted in a time
after the traffic smoother entered the busy state.

Lemma 5: Let be the amount of data transmitted, and
be the amount of data retrieved in a time intervalafter the

traffic smoother entered the busy state. If the traffic smoother
does not become idle again during the time interval, then the
difference between and is at most

(25)

Proof: As the traffic smoother is in the busy state (i.e.,
or more active send queues), it transmits video data at

the full effective network throughput . Hence, the amount of
data that can be transmitted in a time intervalis just given by

(26)

Substituting with (3) gives

(27)

For the disk-retrieval process, the maximum number of ser-
vice round completions that can occur in a time intervalis

. Since each service round completion retrieves
bytes of data from the disk, the amount of data that can

be retrieved is at most

(28)

Therefore, the difference between and is bounded by

(29)

Now, as , we can replace by in (29) to obtain

(30)

Since for all positive real numbers, (30) must
be bounded by

(31)

and the result follows.
Using Lemmas 4 and 5, we can determine the number of

buffers required to guarantee that the disk-retrieval process
will not be stalled due to lack of free buffers when the traffic
smoother is in the busy state.

Theorem 4: If the total amount of buffer is at least
, then the disk-retrieval process will

never be stalled due to lack of free buffers when the traffic
smoother is in the busy state.

Proof: We use to denote the amount of data in the
system at a timeafter the traffic smoother left the idle state and
entered the busy state. We can express as

(32)

Substituting (24) from Lemma 4 and (25) from Lemma 5 into
(32), we have

(33)

To store this amount of data, we need at least
buffers but no more than because
only the send queues in the traffic smoother can be partially
occupied. Hence, to ensure that the disk-retrieval process will
not stall due to lack of free buffers, we just need to ensure that

(34)

Rearranging, we can solve for as

(35)

and the result follows.
So far, we have assumed that the disk-retrieval process is

working under worst-case scenario, i.e., the disk service round
is at the maximum of seconds. Given the number of buffers
as derived in Theorem 4, the disk-retrieval process will never
be stalled due to lack of free buffer, and hence guarantees a
throughput of bytes/s, which is also the maximum achiev-
able server throughput. However, if the retrieval pattern is not
worst case (e.g., clustered around a small disk region), then the
disk-retrieval process could still be stalled momentarily due to
reduction in seek time. The next theorem shows that the disk
throughput in this case is still at least .

Theorem 5: The disk-retrieval process can achieve a
throughput of at least , even if it stalls under nonworst-case
scenarios.

Proof: Assume that the retrieval pattern in a service round,
say round , is nonworst-case in the sense that the length of the
service round, say, is less than . Under this scenario, it is
possible that the traffic smoother cannot free enough buffers for
the disk-retrieval process to start service round , i.e., stalled.
Let be the number of free buffers at the start of service round

. As the disk-retrieval process stalls in round , clearly
. To enable the disk-retrieval process to start round

, the traffic smoother needs to clear at mostfree buffers.
Now to free buffers, the traffic smoother needs to transmit

at most bytes of data. Since the traffic smoother is in busy
state when the disk-retrieval process stalls, the time it takes to
transmit bytes of data is simply seconds. But

LEE: BUFFER MANAGEMENT AND DIMENSIONING FOR A PULL-BASED PARALLEL VIDEO SERVER 491

Fig. 7. Model for a multiple-disk server node in the parallel video server.

. Hence, the time interval between service roundand
will be smaller than . Therefore, the disk throughput for

round becomes and the result
follows.

IV. M ULTIPLE-DISK CASE

Section III derives the server buffer requirement for a
single-disk server. In practice, it is likely that multiple disks
will be used to fully utilize the I/O channels, CPU capacity, as
well as the network interface throughput. In this section, we
extend the derivations in Section III to derive the server buffer
requirement for multi-disk configurations.

Fig. 7 depicts the model for a multiple-disk server node. Let
be the number of disks in the server node, each having a

separate request queue for queueing incoming requests. A video
stream is divided into blocks of bytes and distributed to the
disks according to a striping algorithm. For generality, we do
not assume the use of any specific striping algorithm. The only
assumption is that the transmission scheduling and striping al-
gorithm is designed in such a way that a request retrieves one
video block of bytes from one of the disks.

When a request arrives at the server node, it is immediately
dispatched to one of the request queues. On the other hand, re-
trieved data blocks from the disks will all be pushed into the
single shared queue to wait for transmission. We define that the
disk-retrieval process is in the idle state if any one of the disks
is in the idle state. Otherwise, the disk-retrieval process is in the
busy state. Under this new model, we need to modify the defini-
tions for disk- and network-bound conditions. Specifically, we
define the system to be network bound if , and
disk bound otherwise. In the following, we consider each case
in turn.

A. Server Is Network Bound

The server is network bound implies that . If
the retrieval process is in the idle state, then there will be at most

empty buffer inside the shared queue. Let
out of the disks are idle and let be the total amount

of data in all send queues in the traffic smoother. Then the total
amount of data in the system waiting for transmission is
given by

(36)

This is because disks will be in the busy state, each
occupying buffers for the ongoing service round and these
buffers are not yet ready for transmission.

Using Lemma 1 and (36), we can derive the buffer require-
ment needed to keep the traffic smoother sending at full rate
whenever the disk-retrieval process is idle.

Theorem 6: If there are at least buffers,
then the traffic smoother will always be transmitting at full rate
whenever the disk-retrieval process is in the idle state.

Proof: From Lemma 1, to ensure that the traffic smoother
will be sending data at full rate, we need

(37)

Substituting (36) for , we then have

(38)

Since this must be true for any valid value of where
, and any valid value of where , we

can obtain a bound for from

(39)

and the result follows.
Theorem 6 bounds the number of buffers needed to ensure

that the traffic smoother will transmit at full rate when the re-
trieval process is in the idle state. Next, we consider the instant
when the disk-retrieval process leaves the idle state and enters
the busy state. In the next lemma, we first derive the minimum
amount of data in the system at the state-transition instant.

Lemma 6: When the disk-retrieval process leaves the idle
state and enters the busy state, the amount of data waiting for
transmission in the system is at least

(40)

Proof: Just before the disk-retrieval process leaves the idle
state and enters the busy state, there are at most
free buffers. Since the traffic smoother can free at mostfree
buffers at one time, the number of free buffers when the disk
leaves the idle state and enters the busy state is at most

. Now the retrieval process uses at least of these
free buffers for the new service round, and hence leaves at most

free buffers in the system. Since all disks are busy
serving requests in the busy state, a total of buffers are
used by the retrieval process. Noting that free buffers and buffers
within the retrieval process do not contain data ready for trans-
mission, the amount of data in the system waiting for transmis-
sion must be at least and the
result follows.

Next we derive the condition to keep the traffic smoother
sending at full rate at any timeafter the disk-retrieval process
has left the idle state and entered the busy state. We first prove a
lemma bounding the maximum difference between the amount
of data retrieved and the amount of data transmitted in the time
interval .

492 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

Lemma 7: Let be the amount of data transmitted, and
be the amount of data retrieved in a time intervalafter the

disk-retrieval process entered the busy state. If the disk-retrieval
process does not become idle again during the time interval,
then the difference between and is bounded by

(41)

Proof: Since the maximum transmission rate of the traffic
smoother is , the maximum amount of data that can be trans-
mitted in a time interval is

(42)

Replacing using (3) gives

(43)

For the disk-retrieval process, the minimum number of service
rounds that can be completed in a time intervalis .
Therefore, the amount of data that can be retrieved is at least

(44)

The difference between and is given by

(45)

Now, as , we can replace by to obtain

(46)

Note that since for all positive real number ,
(46) must be bounded by

(47)

and the result follows.
Using Lemmas 6 and 7, we can then determine the number

of buffers required to keep the traffic smoother transmitting data
at full rate at any time after the disk-retrieval process starts its
busy state.

Theorem 7: If there are at least
buffers, then the traffic smoother will be transmitting at full rate
whenever the disk-retrieval process is in the busy state.

Proof: To determine the condition to keep the traffic
smoother at full rate at any time when the disk-retrieval process
is not idle, we consider a timeafter the disk-retrieval process
has left the idle state and entered the busy state. We use
to denote the amount of data in the system at a timeafter the
disk-retrieval process has left the idle state and entered the busy
state. We can express as

(48)

Substituting (40) from Lemma 6 and (47) from Lemma 7 into
(48), we have

(49)

To ensure that the traffic smoother transmits at full rate, we need
to ensure that

(50)

according to Lemma 1. Substituting (49) into , we then
obtain

(51)

Rearranging, we can finally solve for as

(52)

and the result follows.
Theorem 7 states that as long as the retrieval process is in the

busy state, the traffic smoother will then always have data to
transmit if . As the buffer
requirement for the busy state also exceeds the requirement for
the idle state, the traffic smoother will never be stalled by lack
of free buffers and hence the system can achieve the maximum
throughput of .

B. Server Is Disk Bound

If , then the server is disk bound. Since the disk
is now the bottleneck, we want to ensure that the disk-retrieval
process will never be blocked from serving waiting requests due
to lack of free buffers. As the disk-retrieval process cannot start
a new service round unless there are or more free buffers
in the system, our objective is to determine the total number of
buffers needed to guarantee that there are alwaysor more
free buffers.

Again, let be the total amount of data in all send queues
in the traffic smoother, and be the total amount of data in
the shared queue. If the traffic smoother is in the idle state, then

will be zero and (cf. Lemma 1). To
guarantee that the disk-retrieval process does not stall in this
state, we must ensure that

(53)

because the disk-retrieval process consumes at most
buffers and the traffic smoother consumes at most
buffers. Rearranging gives the buffer requirement for the idle
state

(54)

Now consider the time instant when the traffic smoother tran-
sits from the idle state to the busy state, where or more
send queues become active. Since there is no data at the shared
queue in the idle state, the state transition must be triggered by
completion of a service round at the disk-retrieval process. Note
that while there are multiple disks in the system, we assume that
service round completions in different disks only occur sequen-
tially. To guarantee continuous disk retrieval at this time instant,
we need the following.

Theorem 8: If the total number of buffers is at least
, then the disk-retrieval process

will not be stalled due to lack of free buffers at the time instant

LEE: BUFFER MANAGEMENT AND DIMENSIONING FOR A PULL-BASED PARALLEL VIDEO SERVER 493

the traffic smoother changes from the idle state to the busy
state.

Proof: Similar to Theorem 3.
To determine the amount of buffer needed to sustain contin-

uous disk retrieval once the traffic smoother entered the busy
state, we first consider the difference between the amount of
data retrieved and the amount of data transmitted.

Lemma 8: Let be the amount of data transmitted, and
be the amount of data retrieved in a time intervalafter the

traffic smoother entered the busy state. If the traffic smoother
does not become idle again during the time interval, then the
difference between and is at most

(56)

Proof: As the traffic smoother is in the busy state (i.e.,
or more active send queues), it transmits video data at

the full effective network throughput . Hence, the amount of
data that can be transmitted in a time intervalis just given by

(57)

Substituting using (3) gives

(58)

For the disk-retrieval process, the maximum number of ser-
vice round completions that can occur in a time intervalis

because there are now disks. Since each
service round completion retrieves bytes of data from the
disk, the amount of data that can be retrieved is at most

(59)

Therefore, the difference between and is

(60)

Now, since , we can replace by to obtain

(61)

Note that for all positive real number , (61)
must be bounded by

(62)

and the result follows.
Using Lemmas 4 and 8, we can determine the number of

buffers required to guarantee that the disk-retrieval process
will not be stalled due to lack of free buffers when the traffic
smoother is in the busy state.

Theorem 9: If the total amount of buffer is at least
, then the disk-retrieval

process will never be stalled due to lack of free buffers when
the traffic smoother is in the busy state.

Fig. 8. Double buffering scheme for push-based single-disk video server.

Proof: We use to denote the amount of data in the
system at a timeafter the traffic smoother left the idle state and
entered the busy state. We can express as

(63)

Substituting (24) from Lemma 4 and (62) from Lemma 8 into
(63), we have

(64)

To store this amount of data, we need at least
buffers but no more than

because only the send queues in the traffic smoother can
be partially occupied. Hence, to ensure that the disk-retrieval
process will not stall due to lack of free buffers, we need to
ensure that

(65)

Rearranging, we can solve for as

(66)

and the result follows.
Similar to the single-disk case, the next theorem shows that

the disk throughput is still at least under nonworst-case sce-
narios.

Theorem 10:The disk-retrieval process can achieve a
throughput of at least even if it stalls under nonworst-case
scenarios.

Proof: Assume that the retrieval pattern in a service round,
say round in disk , is less than the worst case and conse-
quently the length of the service round, say, becomes less than

. Under this scenario, it is possible that the traffic smoother
cannot free enough buffers for the particular disk to start ser-
vice round , i.e., stalled. More disks can also be stalled if
they also complete their service round earlier. Now as the traffic
smoother transmits at the full rate of under this scenario, it
can free up at least buffers in a time interval of . Note
that the time between diskstarts round to the expected time
for it to start round under worst-case scenario is just .
As , the traffic smoother will have freed at least

buffers. In other words, we can guarantee that none of
the disks will be stalled by the expected time diskstarts
round under the worst-case scenario. Since this true for
all and , the disk-retrieval process will never be stalled and
the result follows.

494 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

Fig. 9. Extension of double-buffering scheme for push-based, multiple-disk video server.

V. DISCUSSIONS

As we have not assumed any specific disk-scheduling
discipline in the derivations in Sections III and IV, the obtained
bounds are valid for any disk-scheduling discipline as long
as it serves requests in batches of requests. For example,
one can employ any round-based scheduling algorithms such
as SCAN, C-SCAN, etc. as the disk scheduler. The corre-
sponding worst-case round length can then be derived using
worst-case analysis. It is worth noting that is needed only
for determining whether the server is disk bound or network
bound. Hence, by taking the maximum of the two, one can
always obtain a valid upper bound regardless of.

Another observation is that for servers with multiple disks,
the buffer requirement is likely to be larger if the server is net-
work bound. Specifically, since the buffer requirement is equal
to for the network-bound case and
equal to for the disk bound
case, we have

for (67)

Therefore, for more than two disks per server, the buffer re-
quirement will be larger if the server is network bound. Inter-
estingly, if one artificially reduce the disk throughput (e.g., by
adding artificial delay to make the round length slightly
larger than) to turn the system from network bound to disk
bound, the buffer requirement can be reduced. This could be sig-
nificant for high-capacity servers with a large number of disks
(i.e., large).

On the other hand, the derived bounds are also independent
of the number of servers in the system. In other words, server
buffer requirement in this pull-based parallel video server will
not become a limiting factor to the system’s scalability. This is
in sharp contrast to many buffer-management algorithms em-
ployed in push-based parallel video servers (see Section VI-B),
in which the per-server buffer requirement increases as the
system is scaled up.

VI. RELATED WORKS

There are a large body of works on VoD system designs
and implementations. In this section, we compare the existing

results on buffer management and dimensioning with the
approach studied in this paper.

A. Single-Server Architectures

For single-disk, single-node, push-based video servers, the
most commonly used buffer-management scheme is double
buffering, i.e., two buffers are used to pipeline the retrieval
process and the transmission process as shown in Fig. 8.
Hence, if a disk round retrieves up to video blocks for
concurrent video streams, the buffer requirement will be .

For multi-disks video servers, extending this double buffering
scheme could cause scalability problem [23]. Specifically, with

disks in the server where each disk service round retrieves
one video block for each video stream (see Fig. 9), the buffer re-
quirement per disk would become . Under this scheme,
the per-disk buffer requirement increases with the scale of the
system. To solve this problem, one can stagger the disk sched-
ules, as shown in Fig. 10 to avoid unnecessary buffer-holding
time. This reduces the buffer requirement to
buffers per disk [23]. To further reduce the buffer requirement,
the video streams can be divided into multiple groups, with the
groups served sequentially in different disk cycles (Fig. 11).
This split-schedule scheme can reduce the per-disk buffer re-
quirement to only buffers, i.e., independent of the number
of disks in the system [23].

For the pull-based design studied in this paper, the buffer
requirement for the network-bound case is

. Compared with the split-schedule scheme

(68)

Since , the pull-based design requires at least as
many buffers as the split-schedule scheme. However, in practice,

and are usually proportional to the number of video
streams to support, hence the difference will increase for servers
with more disks.

On the other hand, if the server is disk bound, the buffer re-
quirement will become . Again,
compared with the split-schedule scheme

(69)

LEE: BUFFER MANAGEMENT AND DIMENSIONING FOR A PULL-BASED PARALLEL VIDEO SERVER 495

Fig. 10. Offset-schedule scheme for push-based, multiple-disk video server.

In this case, the pull-based design could require fewer buffers
than split-schedule for large and small and . How-
ever, if we set (which is the case in [11]), then the
pull-based design will require more buffers.

The previous results show that the pull-based design gener-
ally requires more buffers than good push-based designs (e.g.,
split schedule). This is expected as the server-push service
model is centralized, and the disk-retrieval process is periodic.
For example, in the system implementation in [11], the authors
used KB, and hence
the server needs 1.875 MB if it is network bound, and 2.5 MB
if it is disk bound. The same hardware would require 1.25 MB
for the split-schedule server-push design.

B. Parallel-Server Architectures

While server buffer management and dimensioning has been
studied extensively for single-server, push-based video servers,
only a few recent studies [9], [10], [12], [16] have investigated
the corresponding issue in parallel push-based video servers.
Other studies such as [8], [11], [13]–[15], [17]–[19] focused on
other system issues and did not consider buffer management and
dimensioning in detail.

The studies by Tewariet al. [16] investigated a two-tiered ar-
chitecture where video data blocks are stored in multiple storage
nodes connected to multiple delivery nodes by a high-speed in-
terconnect. A client connects to one of the delivery nodes, which
in turn prefetches video data from the storage nodes and then
transmits to the client at a controlled data rate. Their study con-
sidered the buffer requirement at the delivery nodes and showed
that the buffer requirement is linearly proportional to the number
of video clients served by the delivery node. Their study did not
consider buffer requirement at the storage nodes. Another study
by Buddhikotet al.[9] employed a custom-designed high-speed
ATM interconnect to wire up and synchronize all servers. Their
design is push-based and requires one buffer per stream per
storage node. In the study by Lee [12] using another push-based
architecture, the server buffer requirement is also linearly pro-
portional to the scale of the system.

Fig. 11. Split-schedule scheme for push-based, multiple-disk video server.

The main problem with the previous designs is that the per-
server buffer requirement increases when scaling up the system
by adding more servers. Furthermore, existing server nodes may
have to be upgraded with more memory when adding more
servers to the system. Finally, the maximum server memory size
will limit the ultimate scale of the system. Unlike these push-
based architectures, the buffer requirement in the pull-based par-
allel video server studied in this paper is constant regardless
of the number of servers (i.e., scale) in the system. Therefore
the server memory constraint will not limit the scalability of the
system.

Another study by Freedmanet al. in [10] investigated a
parallel-server architecture with semi-client-pull service model
with predictive prefetching at the server nodes. They used
simulation to evaluate various algorithms in managing the
buffer pool at the server as well as the effect of other system
parameters (e.g., stripe size, disk-scheduling alg orithm, etc.).
Their simulation results show that a four-node configuration
with four disks per node, 512-KB stripe size, and elevator
seeking serving 220 video streams requires 128-MB buffer
memory per server. For comparison, to support similar number
of video streams in a four-node, four-disk parallel video server
using the buffer-management scheme studied in this paper, we
could set , and . With 512-KB stripe
size, the derived buffer requirement is only 69 MB for the
network-bound case, and only 55 MB for the disk-bound case.

496 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 4, APRIL 2001

VII. CONCLUSION

In this paper, we have tackled the buffer-management and
dimensioning problem for a pull-based parallel video server
and established upper bounds for the server buffer requirement
under network-bound and disk-bound scenarios. The obtained
bounds are independent of the specific disk-scheduling algo-
rithm employed, the number of clients in the system, the video
bit-rate, the requests arrival pattern, and even the number of
servers in the system. Unlike many existing push-based designs,
our results show that the buffer requirement under the client-pull
service model is invariant to the system scale (i.e., number of
servers in the system). Hence, the scalability of the studied pull-
based parallel video server architecture will not be limited by the
cost of server buffers.

ACKNOWLEDGMENT

The authors would like to express their gratitude to the anony-
mous reviewers for their insightful comments and suggestions
in improving this paper.

REFERENCES

[1] S. A. Barnett and G. J. Anido, “A cost comparison of distributed and
centralized approaches to video-on-demand,”IEEE J. Select. Areas
Commun., vol. 14, pp. 1173–1183, 1996.

[2] C. C. Bisdikian and B. V. Patel, “Issues on movie allocation in distributed
video-on-demand systems,” inProc. ICC’95, 1995, pp. 250–255.

[3] N. Venkatasubramanian and S. Ramanthan, “Load management in dis-
tributed video servers,” inProc. 17th Int. Conf. Distributed Computing
Systems, Baltimore, MD, 1997, pp. 528–535.

[4] R. Buck, “The oracle media server for nCube massively parallel sys-
tems,” inProc. 8th Int. Parallel Processing Symp., 1994, pp. 670–673.

[5] H. Taylor, D. Chin, and S. Knight, “The magic video-on-demand server
and real-time simulation system,”IEEE Parallel Distrib. Technology:
Syst. and Applic., vol. 3, no. 2, pp. 40–51, 1995.

[6] C. Bernhardt and E. Biersack, “The Server Array: A Scalable Video
Server Architecture,” inHigh-Speed Networks for Multimedia Applica-
tions. Norwell, MA: Kluwer, 1996.

[7] E. Biersack, W. Geyer, and C. Bernhardt, “Intra- and inter-stream syn-
chronization for stored multimedia streams,”Proc. IEEE Int. Conf. Mul-
timedia Computing & Systems, June 17–23, 1996.

[8] W. J. Bolosky, J. S. Barrera, R. P. Draves, R. P. Fitzgerald, G. A. Gibson,
M. B. Jones, S. P. Levi, N. P. Myhrvold, and R. F. Rashid, “The tiger
video fileserver,” inProc. 6th NOSSDAV, Zushi, Japan, Apr. 1996, pp.
97–104.

[9] M. M. Buddhikot and G. M. Parulkar, “Efficient data layout, scheduling
and playout control in MARS,” inProc. NOSSDAV’95, Durham, NH,
Apr. 1995, pp. 318–329.

[10] C. S. Freedman and D. J. DeWitt, “The SPIFFI scalable video-on-de-
mand system,” inProc. ACM SIGMOD’95, San Jose, CA, May 1995,
pp. 352–363.

[11] Y. B. Lee and P. C. Wong, “A server array approach for video-on-de-
mand service on local area networks,” inProc. IEEE INFOCOM’96,
San Francisco, CA, Mar. 1996, pp. 27–34.

[12] J. Y. B. Lee, “Concurrent push—A scheduling algorithm for push-based
parallel video servers,”IEEE Trans. Circuits Syst. Video Technol., vol.
9, pp. 467–477, Apr. 1999.

[13] J. Y. B. Lee and P. C. Wong, “Performance analysis of a pull-based
parallel video server,”IEEE Trans. Parallel Distrib. Syst., vol. 11, pp.
217–231, Dec. 2000.

[14] P. Lougher, D. Pegler, and D. Shepherd, “Scalable storage servers for
digital audio and video,” inProc. IEE Int. Conf. Storage and Recording
Systems 1994, Keele, U.K., Apr. 5–7, 1994, pp. 140–143.

[15] A. Reddy, “Scheduling and data distribution in a multiprocessor video
server,”Proc. 2nd IEEE Int. Conf. Multimedia Computing and Systems,
pp. 256–263, May 1995.

[16] R. Tewari, R. Mukherjee, and D. M. Dias, “Real-Time Issues for Clus-
tered Multimedia Servers,” IBM, Res. Rep. RC20020, June 1995.

[17] P. C. Wong and Y. B. Lee, “Redundant array of inexpensive servers
(RAIS) for on-demand multimedia services,” inProc. ICC’97, Mon-
treal, Canada, June 8–12, 1997.

[18] M. Wu and W. Shu, “Scheduling for large-scale parallel video servers,”
in Proc. 6th Symp. Frontiers of Massively Parallel Computation, Oct.
1996, pp. 126–133.

[19] C. S. Wu, G. K. Ma, and B. S. P. Lin, “A scalable architecture for
video-on-demand servers,”IEEE Trans. Consumer Electron., vol. 42,
pp. 1029–1036, 1996.

[20] J. Y. B. Lee, “Parallel video servers—A tutorial,”IEEE Multimedia, vol.
5, pp. 20–28, June 1998.

[21] J. Y. B. Lee and P. C. Wong, “Design and performance evaluation of a
multimedia web server,”J. Vis. Commun. and Image Rep., vol. 9, pp.
183–193, Sept. 1998.

[22] A. L. N. Reddy and J. C. Wyllie, “I/O issues in a multimedia system,”
IEEE Comput., vol. 27, no. 3, pp. 69–74, Mar. 1994.

[23] A. N. Mourad, “Issues in the design of a storage server for video-on-
demand,” inProc. ACM Multimedia Systems, vol. 4, 1996, pp. 70–86.

Jack Y. B. Lee is an Assistant Professor in the Department of Information En-
gineering, Chinese University of Hong Kong. His research interests include dis-
tributed multimedia systems, fault-tolerant systems, and Internet computing.

