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Buffer Management and Dimensioning for a
Pull-Based Parallel Video Server

Jack Y. B. Lee

Abstract—Recently, there has been a trend toward designing architectures make use of data striping at the server level to
video-on-demand systems using parallel-server architectures. By avoid data replication. Specifically, a compressed video title is
exploiting server-level parallelism, researchers can break through yjiged into many stripe units, and these are then distributed
the performance limit of a single server, while keeping the system to th ding t ' ific ol t policy. In thi
cost low by leveraging on commodity hardware platforms. A 0 the servers aC‘?Or Ing 10 & Specific placement policy. n. IS
number of studies have demonstrated the feasibility of building Way, all servers will then evenly share the loads from the video
parallel video servers around the client-pull architecture and clients.
one can even incorporate data redundancy into the system to  \While the idea of parallel-server architecture may appear
sustain server-level failures. However, due to randomness of gimnje designing a video server using server-parallelism raises

request arrivals and server processing time, dimensioning the bl tf di i [ vid desi
server resource requirement is often difficult. This paper tackles Many Probiems notfoundin conventional video Server designs.

the problem of buffer management and dimensioning for such In particular, one has to: 1) devise striping and placement
a pull-based parallel video server. Using a generic buffer-pool algorithms for the storage of video titles among the servers; 2)
model with worst-case analysis, upper bounds on the server devise retrieval scheduling algorithms to read video data off
buffer requirement are derived for a parallel-server design with the disk array; 3) devise scheduling algorithms to coordinate
multiple disks per server. The obtained bounds are independent . ’ . . .

of placement policy, video bit-rate, disk-scheduling discipline, and transm'ssl'ons from the Servers_’ and 4) Qev!se bufferlng.and
even number of servers in the system, making it applicable to a Presentation algorithms at the client to maintain a smooth video
wide range of server designs. The analytical results also proved playback, etc. Moreover, these algorithms should be scalable
that the scalability of this pull-based server design will not be in the sense that the hardware resources required at each server
limited by the server buffer requirement. should not increase drastically when scaling up the system (i.e.,

Index Terms—Buffer management, parallel video server, scala- adding more servers).

bility, server design, system dimensioning, video-on-demand. While performance studies on push-based parallel video
servers have been conducted by a number of researchers
I. INTRODUCTION [6]-[9], [12], [18], [19], there are very few studies that in-

. vestigate the performance of pull-based parallel video server
C ONVENTIONAL  video-on-demand (VoD) = systemSgesigns. In this paper, we tackle the problem of buffer manage-
\s are usually designed and implemented around thgant and dimensioning in a pull-based parallel video server,
single-server approach where video titles are stored in a vidgap, particular attention to achieving scalability.
server for storage, retrieval, and delivery. While the design of the main contributions of this paper are: 1) we derive
such VoD systems are well understood, the capacity constraiggper bounds for the server buffer requirement in a pull-based
(storage and bandwidth) of the server hardware often limit ”]Eb%rallel video server; 2) we show that the bounds are in-
system to no more than a few hundred users. To go beyqfighendent of the disk placement policy, the video bit-rate,
this Ilmlt, one either has to use replication [1]-[3] or expensivgnq the disk-scheduling discipline; 3) we discover that for a
massively-parallel hardware platforms [4], [5]. multiple-disk server having more than two disks, the buffer
Recently, a number of researchers [6]-{19] have begpgyuirement will be larger if the server capacity is limited by
studies on the design and implementation of scalaligs network sub-system; and 4) we prove that the per-server
video-on-demand (VoD) systems using parallel-server ffer requirement is independent of the number of servers in
chitectures. Interested readers can find a general OVEIVig{ system and hence will not limit the scalability of the design.
in [20]. The objective in using server-parallelism is o break Thg rest of the paper is organized as follows. Section Il gives
through the capacity constraint of a single server but withogh gyerview of the parallel video server architecture; Section Ill
the cost of a full replication across multiple servers. AnalQgerives upper bounds for single-disk servers. Section IV ex-
gous to disk arrays, most of the studies using parallel-serygrgs the analysis in Section Il to multiple-disk servers. Sec-

tion V discusses implications of the obtained bounds. Section VI
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(e.g. Ethernet, ATM) video server is inter-server clock-synchronization. As long as

the server clocks are synchronized, round-based scheduling al-
gorithms similar to single-server designs can be employed, re-
sulting in relatively simple performance analysis and system di-
mensioning. By contrast, pull-based parallel video servers do
not need clock-synchronization among the servers and hence

Video Storage
(e.g. Disk Array)

Fig. 1. Architecture of a (five-servers) parallel video server.

these queues share a pool of buffers allocated by the system
at startup. Incoming requests are first stored into the request
gueue. The disk-retrieval process serves requests in batches by
allocating free buffers and reading video blocks off the disk
into the buffers. After retrieval, these buffers are then pushed
into the shared queue to wait for transmission at the traffic
smoother. When a send queue becomes empty, a buffer unit
in [11] and comprises multiple independent servers connectggm the shared queue is pushed into the empty send queue for
by an interconnection network. Each video title is divided intﬁansmission_ Each send gueue can contain 0n|y one buffer unit
fixed-size blocks of) bytes and distributed to the servers in @t a time. After transmission, this buffer unit will be released
round-robin manner as shown in Fig. 2. This fixed-size blogr reuse. Note that there is no memory copy in passing buffer
striping algorithm is called space striping [20], as opposed {fits among the server queues.
striping in units of video frames, called time striping. Since a The traffic smoother is introduced to control the bustiness of
stripe unit in space striping is significantly smaller than a videgutgoing traffic at the server to avoid congestion at the network
title (kilobytes versus megabytes), this enables fine-grain logfld the client. Specifically, in each round of transmission, the
sharing (as oppose to course-grain load sharing in data pagbrver will transmit one packet from each of the nonempty send
tion) among servers. Moreover, the loads are evenly distributggeues in a round-robin manner so that video packets destined
over all servers regardless of skewness in video retrievals. for different clients are interleaved. For example, with a block
) size of 64 KB and a packet size of 8 KB (excluding headers),

A. Service Model the traffic smoother will completely transmit a video block in

To retrieve video data for playback, a client sends requestsdight rounds. To further avoid congestion, we define a min-
the servers according to the placement policy to retrieve stripeum round sizéM,,,;,, (1 < Myin < M), such that the traffic
units for playback. Upon receiving a request, a server will reathoother will introduce artificial delay to maintain a minimum
the requested stripe unit off the storage device and transmitgund time as if there ar&/,,,;, nonempty send queues.
to the client at a controlled data rate. This model of control- It is worth noting that by setting/ = 1, the traffic smoother
ling the data flow between the client and the servers is callegdduces to the first-come-first-serve (FCFS) discipline, and by
the client-pull service model [20], as opposed to the server-pusttting A/ equal to the maximum number of concurrent video
service model where the server schedules the retrieval and tresteeams, the traffic smoother reduces to simple Round Robin.
mission of video data. In a parallel-server systemif will usually be set equal to the

Among the existing studies on parallel video servers, the maient-server ratio to maintain a proper transmission rate. In-
jority of them employed the server-push service model [4]-[6lerested readers are referred to [11] for details on this traffic
[8], [9], [12], [18], [19]. The challenge in push-based parallesmoother.

Va1

Sy S, Sers‘Tm S S the servers in the system can be fully autonomous. This elimi-
] : : nates the need for a distributed clock-synchronization protocol,
Stripe —> | Vo ] | vy | V2 | I 5 \ | which is nontrivial in its own right.
Stripe unit IVS | I i ] I o I | i | ng | B. Server Architecture
(Q bytes) le | Yu I I Vi2 | | Vi3 | | Via I Inside each server in the system, there are one request queue,
I Vis | I Ve l | v, I Lvls l I i | one shared queue, add send queues, as shown in Fig. 3. All
| Lo | Lo | Lo | [ |

| Vo Vo Va4

v; denotes stripe unit i of the video title.

Fig. 2. Data organization in a parallel video server.
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C. Buffer-Management Scheme

As fixed-size buffers are used throughout the system, they ce
be pre-allocated at system initialization to form a buffer pool

(empty)

Traffic Smoother

that will be reused without further invoking memory allocation  Redues, Disk Retrieval .

services from the operating system. This buffer-managemel \ [ Process =

scheme has been shown to significantly outperform the gerfequesm'*[[[ﬂ —=>[[TTTIITIT] (O=> Network
eral buffer manager provided by the compiler and the operatin stalled Shared Queve Si

system [21]. The problem is how many buffers should be allo- B?;;’ MSend

cated so that maximum system performance can be achieve Queues

Clearly, too few buffers will negatively impact system perfor-- ' ' _ ' _
mance due to stalling in either the disk-retrieval process or th: 4. The disk stalls (i.e., stops serving requests) to wait for the traffic
. . smoother to release buffers.
traffic smoother. On the other hand, adding buffers beyond a cer-
tain limit will not help to further improve system performance.
Note that as a request consumes far less memory than a d:
block (tens of bytes versus tens of kilobytes), we will ignore the

memory needed for storing the incoming requests in the rest ¢

Traffic Smoother

the paper. In the next section, we derive upper bounds for th g3, Diek Retrioval e
amount of buffers required to achieve maximum system perfor \ / O=>
mance for a single-disk server and extend the analysis in Se"®™> @%@ L O==> Nemork
tion 1V to obtain similar bounds for multiple-disk server. & Hard (empty) O
Finally, we should emphasize that the obtained bounds onl Disk M Send
guarantee that the server throughput will not be hampered by ir Queues
sufficient buffers. They do not, for example, guarantee that th (fewer ms;‘:',',::macﬁve)

load on all servers will be balanced, nor guarantee that video

playback at the clients will be continuous. These are separai@ 5. The traffic smoother stalls (i.e., fewer thaf..;, send queues active)
problems and hence require different solutions (e.g., using await for the disk to retrieve more data.

mission scheduling to guarantee load balancing [13], and using

buffering and prefetching at the client to guarantee playbackNow consider the traffic smoother. We assume that the net-
continuity [11]). work interface can send data at a maximum rat&of Then

the minimum timel’y required for the network to sentl, ?
IIl. SINGLE-DISk CASE bytes of data would be given by

Let L be the total number of buffers in the buffer pool at T — LpQ @
the server andy be the size of a buffer (also the size of a re- N Sn
trieved data block). ILs is too small, the retrieval process may,,
find that there are insufficient free buffers to start a new ser-
vice round. In this case, the disk will have to stop serving re- Sy = LDQ. (3)

quests even if there are requests waiting in the request queue, as In

shown in Fig. 4. On the other hand, Fig. 5 shows that the trafiiearly, the server throughput is limited either by the disk (disk

smoother may need to temporary stop transmission to wait {6undj or the traffic smoother (network bound), whichever is
the disk to retrieve more data blocks. Clearly, the occurrences@falier

these two scenarios depend on the relative speed of the disk-re- )
trieval process, the traffic smoother, and the amount of buffers S = { Sy, Tp <1y (4)
to pipeline the two processes. Sp, otherwise

For the disk-retrieval process, most disk-scheduling alg
rithms (e.g., SCAN and C-SCAN, etc.) serve requests in roun
to reduce disk-seek overhead [22], [23]. g} be the number s

) . . oother.
of requests served in a round, the maximum round time denOterILefore deriving the number of buffers needed, we first make
asTp can then be derived for a particular scheduling sche

N h v th : 1 d”ffew assumptions on the disk-retrieval process. We assume that
ote that only the worst-case (maximum) round time needs 0, gy retrieval process starts a new round of service only if:

be c0n5|d§red in system dimensioning because a VoD SyStfﬂhere arel., or more requests waiting for service in the re-
must provide performance guarantee. . guest queue and 2) there dig or more free buffers available
In geﬂera'- we cannot assume when a particular requestd3ore retrieved data. The first assumption models the behavior
served n a round. However, we can be sure thatgl re- of round-based disk schedulers (e.g., SCAN, GSS) that batch re-
quests wil t.)e completely_served atthe end of around. The d'& ests to reduce seek-time overhead. The second assumption is
throughput is therefore given by trivial as retrieval cannot proceed without available buffers.
LpQ Since we want to ensure that the server can achieve maximum
Sp = Tp - (1) throughput under heavy load, we assume that there will always

owever, these bounds can only be achieved if there are suffi-
@nt buffers to pipeline the disk-retrieval process and the traffic
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< Lp free buffers occupied before data can be stored inside buffers in the shared

gqueue, all thesé4,,,;, buffers must be in the traffic smoother.
@ @ Therefore the minimum round size (cf. Section 1I-B) is satisfied
and the traffic smoother will be sending data at full réte. m
Using Lemma 1, we can determine the number of buffers
> L, free buffers needed to keep the traffic smoother sending at full rate when-
) ever the disk-retrieval process is idle.

Theorem 1:If there are at leastL p + Min — 2) buffers,
then the traffic smoother will always be transmitting at full rate
whenever the disk-retrieval process is in the idle state.
@ @ Proof: From Lemma 1, to ensure that the traffic smoother

will be sending data at full rate whenever the disk-retrieval
process is idle, we need

< M,,, send queues busy

=M, send queues busy

(b) WI > (Mmin - 1)Q (6)

Fig. 6. State transition for the: (a) disk-retrieval process and (b) traff

smoother. §ubstituting (5) intd¥7, we then have

(LS - LD + 1)Q + WS > (Mmin - 1)Q (7)
be L or more requests waiting at the request queue. That is,
the server is always busy with requests pending for service. Since this must be true for any valid valug®t and0 < Ws <

Under the previous assumptions, the retrieval process theft), we have

operates between two states: idle and busy (Fig. 6). The retrieval
process enters idle state if there are fewer thanfree buffers Ls > Lp + Mujn — 2 8)
available for the retrieval process to start a new service round.
The retrieval process leaves idle state and enters busy state gitéthe result follows. n

the two conditions specified in the previous paragraph are satEquation (8) gives the number of buffers needed at the server
isfied. to ensure that the traffic smoother can transmit at full rate when

the retrieval process is in the idle state. Next, we consider the
A. Server Is Network Bound case when the disk-retrieval process leaves the idle state and

) . i enters the busy state. We derive in the next lemma the minimum
We first consider the case where the server is network bou'%ﬁ‘nount of data in the system at this instant.

i.e.,Tp < Ty.Inthis case, we want to make sure thatthe traffic | o rnma 2: At the time instant the disk-retrieval process

smoother (the bottleneck) will never become idle because @fes the idle state and enters the busy state, the minimum

insufficient buffers (Fig. 6). We start with the time the retrieval, o nt of data waiting for transmission in the system is at least
process is in the idle state and determine the number of server

buffers needed to ensure that the traffic smoother will always Wis > (Ls — Lp — M +1)Q. (9)
have data for transmission. If the retrieval process is in the idle
state, there will be fewer thahy, free buffers in the buffer pool. Proof: Justbefore the disk-retrieval process leaves the idle

Let Ws be the total amount of data in all send queues in thgate and enters the busy state, there are at figst— 1)
traffic smoother, the total amount of data in the system (shargde buffers. Since the traffic smoother can free at middree
queuet- send queues), denoted By, waiting for transmission puffers at a time instant, the number of free buffers is at most
is given by (Lp — 1+ M) when the disk leaves the idle state and enters the
busy state. As the retrieval process usgsof these free buffers
Wr>(Ls—Lp+1)Q+Ws. (5) for the new service round, this leaves at mosf — 1) free
buffers in the system. Note that free buffers and buffers within
From the previous section, we know that the traffic smoothé#re retrieval process do not contain data ready for transmission,
will not send data at full rate if there are fewer th&h,;, oc- hence the amount of data in the system waiting for transmis-
cupied send queues. In the next lemma, we use this observasmm must be at leadis@ — (M — 1)@ — Lp@ and the result
to define a sufficient condition for the traffic smoother to sentbllows. [ ]
data at full rateSy . Next, we derive the condition to keep the traffic smoother
Lemma 1: If there are more thatWM,,,;;,, — 1)@ bytes of data sending at full rate at any timeafter the disk-retrieval process
waiting for transmission at the server, then the traffic smoothlkas left the idle state and entered the busy state. We first prove a
will be transmitting at full rateS . lemma bounding the maximum difference between the amount
Proof: Since each buffer can accommodate at m@st of data retrieved and the amount of data transmitted in the time
bytes of data for transmission, the minimum number of buffensterval ¢.
to store (M, — 1)@ bytes of data is simply{ M, — 1). Lemma 3: Let a(¢) be the amount of data transmitted, and
Hence, to store more thaf,,;, — 1)@ bytes of data, at (t) be the amount of data retrieved in a time intervafter the
leastM,,;, buffers are needed. As alll send queues must bedisk-retrieval process entered the busy state. If the disk-retrieval
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process does not become idle again during the time intéyvallo ensure that the traffic smoother transmits at full rate, we need
then the difference betweetdt) andb(t) is at most to ensure that (cf. Lemma 1)

at) —b(t) < LpQ vt > 0. (10) Wg(t) > (Mpin —1)Q V¢ 2> 0. (19)

Proof: Since the maximum transmission rate of the traffislénce, we have
smoother isSy, the maximum amount of data that can be trans-
. X A . Ls—Lp—M+1)Q—L > (M — 1DQ. 20
mitted in a time intervat is (Ls b +1Q pQ 2 ( )Q (20)
Rearranging, we can solve fdrs as

a(t) < tSn-. (11)
LS > 2LD + M+ Mmin -2 (21)
SubstitutingSx with (3) gives
and the result follows. ]
a(t) < tLDQ' (12 Theorem 2 states that as long as the retrieval process is in the
- In busy state, the traffic smoother will always have data to transmit

For the disk-retrieval process, the minimum number of servidlel's = (2Lp + M + Myin —2). Note that this buffer require-
ment also satisfies Theorem 1 for the idle state. Therefore, The-

rounds that can be completed in a time interva$ [t/7 | . ) )
since the disk-retrieval process starts a new round when it Iea\(?é%ggtiebro;gﬁisn;he number of buffers required to avoid traffic

the idle state and enters the busy state. Therefore, the minimeim

amount of data that can be retrieved is at least B. Server Is Disk Bound

b(t) > {LJ LnO. (13) If Tp > Tu, then the server is disk bound. Sincg the di_sk
Tp becomes the bottleneck, we want to ensure that the disk-retrieval
process will never be blocked from serving waiting requests due
to insufficient buffers. As the disk-retrieval process will not be
+ { + J) o0 able to start a new service round (i.e., stalled) if there are fewer
D .

Therefore, the difference betwee(t) andb(t) is

(14) thanL free buffers in the system, our objective is to determine

alt) — b(t) < (

I LTp the number of buffers needed to guarantee that there are always
Now, asTy > T, we can replac&y by T} to obtain Lp or more free buffers in the system.
We define that the traffic smoother is in the idle state if less
alt) — b(t) < <L _ {LJ) LpQ. (15) th_aani,rl send queues are active. In this case, artifif:ia_l delay
Tp Tp will be added (Section 11-B) and the aggregate transmission rate

will be less than the network throughptit;. Let Us be the total
amount of data in all send queues in the traffic smoother, and
Ug be the total amount of data in the shared queue. Clearly,
Ug will be zero andl/s < (Muin — 1)Q (cf. Lemma 1) if

the traffic smoother is in the idle state. To guarantee that the
and the result follows. disk-retrieval process does not stall, we must ensure that at least

[
Using Lemmas 2 and 3, we can determine the maximufp free buffers are available, i.e.,
number of buffers required to keep the traffic smoother trans-
L N Ls—Lp—(Mym—1)2 Lp. 22
mitting data at full rate when the disk is in the busy state. s p—( )z Lp (22)
Theorem 2:1f the total number of bufferds is at least Rearranging gives the buffer requirement for the idle state
(2Lp + M + My — 2), then the traffic smoother will be
transmitting at full rate whenever the disk-retrieval process is Ls = 2Lp + (Mumin — 1) (23)

in the b“SY state. . . . . Now consider the time instant when the traffic smoother tran-
Proof: To determine the condition for keeping the traffic . .
its from the idle state to the busy state, whéfg;, or more

smoother transmitting at full rate at any time when the disR! . . :
. . . . . . send queues are active. Since there is no data at the shared queue
retrieval process is not idle, we consider a titradter the disk-

retrieval process left the idle state and entered the busy state. gng the idle state, the state transition must be due to comple-

useW (1) to denote the amount of data in the system atatim tloneloof Wasz?;\/t'ﬁ: ggzggig‘; ;2? dJZ':;netter;\rl]al fgﬁgﬁﬁzu?éfﬁ;n
after the disk-retrieval process left the idle state and entered 8 9 9

rieval at this time instant.
. W n expredss .
busy state. We can expreBiés (#) as Theorem 3:If the total number of bufferd.s is at least

Wi(t) > Wis — a(t) + b(2). 17) (2Lp + (M — 1)), then the disk-retrieval process will not be
stalled due to lack of free buffers at the time instant the traffic
Substituting (9) from Lemma 2 and (16) from Lemma 3 int§moother transits from the idle state to the busy state.
(17), we have Proof: Just before the traffic smoother leaves the idle state
and enters the busy state, there are at ibkt;, — 1) occu-
Wg(t) >(Ls —Lp — M+ 1)Q — LpQ. (18) pied buffers (cf. Lemma 1). Since the disk-retrieval process can

Since(z — |x]) < 1 for all positive real numbers, (15) is
bounded by

a(t) — b(t) < LpQ (16)
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retrieve at mosL p buffers of video data at a time, the numbeand the result follows. [ ]

of occupied buffers when the traffic smoother leaves the idle Using Lemmas 4 and 5, we can determine the number of

state and enters the busy state is at Mgt + M, — 1). To  buffers required to guarantee that the disk-retrieval process

avoid stalling the disk-retrieval process, we need to ensure thall not be stalled due to lack of free buffers when the traffic

the system still has at least, available free buffers. Hence thesmoother is in the busy state.

buffer requirement is given byd., + M, — 1) + Lp and the Theorem 4:If the total amount of bufferLs is at least

result follows. B (3Lp + M + M, — 2), then the disk-retrieval process will
To further derive the number of buffers needed to keep tinever be stalled due to lack of free buffers when the traffic

disk-retrieval process from stalling after the traffic smoother esmoother is in the busy state.

tered the busy state, we first need to derive the maximum amount Proof: We useWW(¢) to denote the amount of data in the

of data in the system in the next lemma. system at a timeafter the traffic smoother left the idle state and
Lemma 4: At the instant the traffic smoother leaves the idlentered the busy state. We can expiéss(t) as

state and enters the busy state, the amount of data waiting for

transmission in the system is at most Wg(t) = Wip — a(t) + b(t). (32)
Wi < (Lp 4+ My — 1)Q. (24) Substituting (24) from Lemma 4 and (25) from Lemma 5 into
(32), we have
Proof. Similar to the proof of Theorem 3. [ |
Next we derive a bound for the difference between the amount Wg(t) < (Lp + My — 1)@ + LpQ. (33)
of data retrieved and the amount of data transmitted in atime ]
after the traffic smoother entered the busy state. To store this amount of data, we need at I€2&t) + Min —1)

Lemma 5: Let a(¢) be the amount of data transmitted, an@uffers but no more tha2l.p + M + M — 2) because
b(¢) be the amount of data retrieved in a time intemvafter the only theM send queues in the traffic smoother can be partially

traffic smoother entered the busy state. If the traffic smooth@fCupied. Hence, to ensure that the disk-retrieval process will
does not become idle again during the time intetyaihen the not stall due to lack of free buffers, we just need to ensure that

difference betweeh(t) anda(t) is at most Ls — (2Lp + My + M — 2) > Lp, (34)

_ > N
b(#) —a(t) <Lp@ V20 (25) Rearranging, we can solve fdrs as

Proof. As the traffic smoother is in the busy state (i.e.,

M,,.;» Or more active send queues), it transmits video data at Ls 2 3Lp + M + M — 2 (35)
the full effective network.thrOl_Jghpg.ﬁN..Henc.e,'the amount of and the result follows. -
data that can be transmitted in a time intenvas just given by So far, we have assumed that the disk-retrieval process is
a(t) = tSy. (26) working under worst-case scenario, i.e., the disk service round
is at the maximum of , seconds. Given the number of buffers
SubstitutingSy with (3) gives as derived in Theorem 4, the disk-retrieval process will never

LpQ be stalled due to lack of free buffer, and hence guarantees a
a(t) =t To (27) throughput ofSp bytes/s, which is also the maximum achiev-
N able server throughput. However, if the retrieval pattern is not
For the disk-retrieval process, the maximum number of segorst case (e.g., clustered around a small disk region), then the
vice round completions that can occur in a time intervéd  disk-retrieval process could still be stalled momentarily due to
(1t/Tp] + 1). Since each service round completion retrievagduction in seek time. The next theorem shows that the disk
LpQ bytes of data from the disk, the amount of data that cahroughput in this case is still at leaSp.

be retrieved is at most Theorem 5:The disk-retrieval process can achieve a
+ throughput of at least,, even if it stalls under nonworst-case
b(t) < < Ty + 1) LpQ. (28)  scenarios.

Proof: Assume that the retrieval patternin a service round,
Therefore, the difference betweéft) anda(t) is bounded by say round, is nonworst-case in the sense that the length of the
service round, say, is less tharl’p. Under this scenario, it is

b(t) —a(t) < < -t +1-— i ) LpQ. (29) possible that the traffic smoother cannot free enough buffers for
L Tp | In the disk-retrieval process to start service roknd,, i.e., stalled.

Now, asTn < Tp, we can replac&y by Tp in (29) to obtain Letw;, be the number of free buffers at the start of service round

k. As the disk-retrieval process stalls in rouhd+ 1, clearly

AN + 1) LpQ. (30) 0 < w < Lp.Toenable the disk-retrieval process to start round

LTn]  Tp k-1, the traffic smoother needs to clear at mbgtfree buffers.

Since(|z] — ) < 0 for all positive real numbers, (30) must Now to freeL , buffers, the_traffic smoot_herneedsto_ tr_ansmit

be bounded by at mostL p ) bytes of data. Since the traffic smoother is in busy
state when the disk-retrieval process stalls, the time it takes to

b(t) —a(t) < LpQ (31) transmitLpQ bytes of data is simpl{{’y seconds. Bufp >

b(t) — aft) < <
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This is becauséN, — n) disks will be in the busy state, each
occupyingL ,, buffers for the ongoing service round and these
{}\ Traffic Smoother buffers are not yet ready for transmission.

Using Lemma 1 and (36), we can derive the buffer require-

=
roquests / Ej B3 oo MENE needed to keep the traffic smoother sending at full rate
\\ . Shared Queus | [3=2>4 whenever the disk-retrieval process is idle.

/ M:Slen=d> Theorem 6: If there are atleastV p L p + Monin — 2) buffers,
Queues then the traffic smoother will always be transmitting at full rate
4 whenever the disk-retrieval process is in the idle state.
Proof: From Lemma 1, to ensure that the traffic smoother
will be sending data at full rate, we need

%v<

Disk Array

Fig. 7. Model for a multiple-disk server node in the parallel video server. Wr > (Mg — 1)Q. (37)

Tw. Hence, the time interval between service roérahdk +  Substituting (36) fo#¥;, we then have

1 will be smaller tharil’,. Therefore, the disk throughput for

roundk become< pQ/Tx > LpQ/Tp = Sp and the result  (Ls = Lp +1 = (Np =n)Lp)Q + Ws > (Mmin — 1)Q.
follows. [ | (38)

V. MULTIPLE-DISK CASE Since this must be true for any valid valueldfs where0 <

. . , Ws < M@, and any valid value of wherel < n < Np, we
Section Il derives the server buffer requirement for a s < MQ Y ==

an obtain a bound fak s from
single-disk server. In practice, it is likely that multiple disks s
will be used to fully u_tlllze the 1/0O channels, CPU capa_czlty, as Ls > NpLp + My — 2 (39)
well as the network interface throughput. In this section, we
extend the derivations in Section Il to derive the server buffedrnd the result follows. -

reql.Jirement.for multi-disk configurati_ons. . Theorem 6 bounds the number of buffers needed to ensure
Fig. 7 depicts the model for a multiple-disk server node. Lg5; the traffic smoother will transmit at full rate when the re-

Np be the number of disks in thg Server npde, each hav'nQrFéval process is in the idle state. Next, we consider the instant
separate request queue for queueing incoming requests. A vi n the disk-retrieval process leaves the idle state and enters

stream is divided into blocks @@ bytes and distributed to the yq 1y,gy state. In the next lemma, we first derive the minimum
disks according to a striping algorithm. For generality, we dom o nt of data in the system at the state-transition instant.
not assume the use of any specific striping algorithm. The OnlyLemma 6: When the disk-retrieval process leaves the idle

assumption is that the transmission scheduling and striping ?féte and enters the busy state, the amount of data waiting for
gorithm is designed in such a way that a request retrieves Q&< mission in the system is at least

video block of¢} bytes from one of théV, disks.
When a request arrives at the server node, it is immediately Wip > (Ls — NpLp — M +1)Q. (40)

dispatched to one of the request queues. On the other hand, re- -

trieved data blocks from the disks will all be pushed into the  p,qt. 3,5t hefore the disk-retrieval process leaves the idle

single shared queue to wait for transmission. We define that the;e and enters the busy state, there are at (dgst— 1)

disk-retrieval process is in the idle state if any one of the disk$,q pufrers. Since the traffic smoother can free at nidsree

is in the idle state. Otherwise, the disk-retrieval process is in thears at one time, the number of free buffers when the disk

busy state. Under this new model, we need to modify the defifjicyyes the idle state and enters the busy state is at(hpst

tions for disk- and network-bound conditions. Specifically, we + M). Now the retrieval process uses at lefst of these

define the system to be network boundVi>T'v > T, and  gree pyffers for the new service round, and hence leaves at most

disk bound otherwise. In the following, we consider each €aBgs _ 1) free buffers in the system. Since all disks are busy

In turn. serving requests in the busy state, a totaNefL , buffers are
used by the retrieval process. Noting that free buffers and buffers

A. Server Is Network Bound within the retrieval process do not contain data ready for trans-

The server is network bound implies thdli, Ty > Tp. If  mission, the amount of data in the system waiting for transmis-

the retrieval process is in the idle state, then there will be at msgtn must be at leagts@ — (M — 1)@ — NpLp@ and the

L — 1 empty buffer inside the shared queue. befl < n < result follows. [ |

Np)outof theN;, disks are idle and |6¥s be the total amount  Next we derive the condition to keep the traffic smoother

of data in all send queues in the traffic smoother. Then the tossinding at full rate at any timeafter the disk-retrieval process

amount of datd¥; in the system waiting for transmission ishas left the idle state and entered the busy state. We first prove a

given by lemma bounding the maximum difference between the amount
of data retrieved and the amount of data transmitted in the time

Wr>(Ls—Lp+1—(Np—n)Lp)Q+ Ws. (36) intervalt.
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Lemma 7: Let a(¢) be the amount of data transmitted, ando ensure that the traffic smoother transmits at full rate, we need
b(t) be the amount of data retrieved in a time intervafter the to ensure that
disk-retrieval process entered the busy state. If the disk-retrieval
process does not become idle again during the time intérval
then the difference betweer(t) andb(t) is bounded by

WB(t) > (Mmin - 1)Q vt 2 0 (50)
according to Lemma 1. Substituting (49) itz (¢), we then
at) — b(t) < NpLpQ Vit > 0. (41) obtain
. . . . - - — > 1.
Proof: Since the maximum transmission rate of the trafiic (=S ~ N0l =M +1)Q = NpLpQ = (Muin — 1)@

smoother isSy, the maximum amount of data that can be trans- (51)

mitted in a time intervat is Rearranging, we can finally solve fdrs as

alt) < t9n- (42) Ls > 2NpLp + M + Miyin — 2 (52)
ReplacingSy using (3) gives and the result follows. u
tLpQ Theorem 7 states that as long as the retrieval process is in the
a(t) < (43) busy state, the traffic smoother will then always have data to

Tn .
A transmitif Lg > (2NpLp + M + My — 2). As the buffer

For the disk-retrieval process, the minimum number of servigequirement for the busy state also exceeds the requirement for
rounds that can be completed in a time intesalNp [t/Tp].  the idle state, the traffic smoother will never be stalled by lack
Therefore, the amount of data that can be retrieved is at leasf free buffers and hence the system can achieve the maximum

¢ throughput ofSy.
b(t) > | =— | NpLpQ. 44
)2 {TDJ pkpQ 44 B. Server Is Disk Bound
The difference betweed(t) andb(t) is given by If T’ > NpTy, then the server is disk bound. Since the disk
is now the bottleneck, we want to ensure that the disk-retrieval
a(t) — b(t) < < to Np t ) LpQ. (45) Process will never be blocked from serving waiting requests due
N | 1D | to lack of free buffers. As the disk-retrieval process cannot start

a new service round unless there drg or more free buffers
in the system, our objective is to determine the total number of

t t buffers needed to guarantee that there are aliay®r more

a(t) - b(t) S <NDT_D - ND E ) LDQ (46) free buffers.
S Again, letU/s be the total amount of data in all send queues

Note that sincéx — |z]) < 1 for all positive real numbet, in the traffic smoother, and, be the total amount of data in
(46) must be bounded by the shared queue. If the traffic smoother is in the idle state, then
Ug will be zero andUs < (Myin — 1)@ (cf. Lemma 1). To

Now, asNpTn > Tp, we can replac&’y by T, to obtain

a(t) = b(t) < NpLp@Q (47) guarantee that the disk-retrieval process does not stall in this
and the result follows a State, we must ensure that
Using Lemmas 6 and 7, we can then determine the number Ls—NpLp — (Myin—1) > Lp (53)

of buffers required to keep the traffic smoother transmitting data
at full rate at any time after the disk-retrieval process starts ltecause the disk-retrieval process consumes at Nedt p
busy state. buffers and the traffic smoother consumes at njd#,;,, — 1)
Theorem 7: If there are atleasRNp Lp + M + M, —2)  buffers. Rearranging gives the buffer requirement for the idle
buffers, then the traffic smoother will be transmitting at full ratstate
whenever the disk-retrieval process is in the busy state.
Proof: To determine the condition to keep the traffic Ls 2 (Np +1)Lp + (Muin — 1)- (54)

smoother at full rate at any time when the disk-retrieval processy o, consider the time instant when the traffic smoother tran-
is not idle, we consider a timeafter the disk-retrieval processg;is from the idle state to the busy state, whafg,, or more
has left the idle state and entered the busy state. WBUs#)  send queues become active. Since there is no data at the shared
to denote the amount of data in the system at a tirakter the 6,6 in the idle state, the state transition must be triggered by
disk-retrieval process has left the idle state and entered the bUgi, pietion of a service round at the disk-retrieval process. Note
state. We can expre$€(t) as that while there are multiple disks in the system, we assume that
service round completions in different disks only occur sequen-
tially. To guarantee continuous disk retrieval at this time instant,
Substituting (40) from Lemma 6 and (47) from Lemma 7 int¥/€ need the following.
(48), we have Theorem 8:If the total number of bufferd.s is at least
((Np + 1)Lp + (Muyin — 1)), then the disk-retrieval process
Wpg(t) >(Ls — NpLp — M +1)Q — NpLp@Q. (49) will not be stalled due to lack of free buffers at the time instant

Wg(t) =2 Wip — a(t) + b(t). (48)
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the traffic smoother changes from the idle state to the bus
state. Transmission

Proof: Similar to Theorem 3. n /}' /7
To determine the amount of buffer needed to sustain contil M §
il
1
[e——

uous disk retrieval once the traffic smoother entered the bus Retrieval
state, we first consider the difference between the amount one round
data retrieved and the amount of data transmitted.

Lemma 8: Let a(t) be the amount of data transmitted, anffig- 8. Double buffering scheme for push-based single-disk video server.
b(t) be the amount of data retrieved in a time intenvafter the
traffic smoother entered the busy state. If the traffic smoother proof: \We uselV(#) to denote the amount of data in the

does not become idle again during the time intetyaihen the gystem at a timeafter the traffic smoother left the idle state and
difference between(t) anda(t) is at most entered the busy state. We can expidss() as
b(t) —a(t) < NpLp@Q Vt>0. (56) W) = Wip — a(t) + b(#). (63)
Proof. As the traffic smoother is in the busy state (i.e
M, Or more active send queues), it transmits video data
the full effective network throughpu#,-. Hence, the amount of
data that can be transmitted in a time intemvil just given by

' ltlbstituting (24) from Lemma 4 and (62) from Lemma 8 into
3), we have

a(t) = tSy. (57)
To store this amount of data, we need at l€&st, + 1)Lp +
SubstitutingSx using (3) gives M pin—1) buffers butno more thaf{ Np+1) L p+Mpin+M —
2) because only thé/ send queues in the traffic smoother can
alt) = tw. (58) be partially occupied. Hence, to ensure that the disk-retrieval
Ty process will not stall due to lack of free buffers, we need to

. . . ensure that
For the disk-retrieval process, the maximum number of ser-

vice round completions that can occur in a time intervé
Np(|t/Tp| + 1) because there are naWp disks. Since each
service round completion retrievés, (2 bytes of data from the
disk, the amount of data that can be retrieved is at most

Ls—(Np+1)Lp+ Mpym+M—-2)> Lp. (65)

Rearranging, we can solve fdrs as

D
) ) and the result follows. |
Therefore, the difference betweb(t) anda(?) is Similar to the single-disk case, the next theorem shows that

. . the disk throughput is still at least, under nonworst-case sce-
b(t) —a(t) < Q—J +1-— ) NpLpQ. (60) narios.
Ip NpIn Theorem 10:The disk-retrieval process can achieve a

throughput of at leastp even if it stalls under nonworst-case

Now, sinceNp Ty < T, we can replac&’ by T’ to obtain

scenarios.
¢ ¢ Proof: Assume that the retrieval pattern in a service round,
b(t) — a(t) < <{T_DJ T, + 1) NpLpQ- (61) say roundk in disk j, is less than the worst case and conse-

quently the length of the service round, saypecomes less than
Note that(|x| — ) < 0 for all positive real numbes, (61) 7. Under this scenario, it is possible that the traffic smoother

must be bounded by cannot free enough buffers for the particular disk to start ser-
vice roundk + 1, i.e., stalled. More disks can also be stalled if
b(t) —a(t) < NpLpQ (62) they also complete their service round earlier. Now as the traffic
smoother transmits at the full rate 8f under this scenario, it
and the result follows. m can free up at leadt , buffers in a time interval off’ . Note

Using Lemmas 4 and 8, we can determine the number thft the time between digkstarts round: to the expected time
buffers required to guarantee that the disk-retrieval procdss it to start roundk + 1 under worst-case scenario is jUss.
will not be stalled due to lack of free buffers when the traffid\s 7, > NpTn, the traffic smoother will have freed at least
smoother is in the busy state. NpLp buffers. In other words, we can guarantee that none of

Theorem 9:If the total amount of bufferLs is at least the Np disks will be stalled by the expected time diglstarts
(Np + 2)Lp + M 4+ My, — 2), then the disk-retrieval roundk + 1 under the worst-case scenario. Since this true for
process will never be stalled due to lack of free buffers whell j andk, the disk-retrieval process will never be stalled and
the traffic smoother is in the busy state. the result follows. [ |
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Fig. 9. Extension of double-buffering scheme for push-based, multiple-disk video server.

V. DISCUSSIONS results on buffer management and dimensioning with the

As we have not assumed any specific disk—schedulir‘?‘g‘)’pro"JICh studied in this paper.

discipline in the derivations in Sections Il and IV, the obtaine
bounds are valid for any disk-scheduling discipline as lo
as it serves requests in batcheslof requests. For example, For single-disk, single-node, push-based video servers, the
one can employ any round-based scheduling algorithms sushst commonly used buffer-management scheme is double
as SCAN, C-SCAN, etc. as the disk scheduler. The correuffering, i.e., two buffers are used to pipeline the retrieval
sponding worst-case round lendgfl can then be derived usingprocess and the transmission process as shown in Fig. 8.
worst-case analysis. It is worth noting thEg is needed only Hence, if a disk round retrieves up fg, video blocks forL
for determining whether the server is disk bound or netwogoncurrent video streams, the buffer requirement wil2bg.
bound. Hence, by taking the maximum of the two, one can For multi-disks video servers, extending this double buffering
always obtain a valid upper bound regardles sf scheme could cause scalability problem [23]. Specifically, with
Another observation is that for servers with multiple disks¥Vp disks in the server where each disk service round retrieves
the buffer requirement is likely to be larger if the server is neene video block for each video stream (see Fig. 9), the buffer re-
work bound. Specifically, since the buffer requirement is equgtirement per disk would becor2e&V, L ,. Under this scheme,
t0 (2Np Lp + M + M, — 2) for the network-bound case andthe per-disk buffer requirement increases with the scale of the

equal to((Np + 2)Lp + M + My, — 2) for the disk bound system. To solve this problem, one can stagger the disk sched-
case, we have ules, as shown in Fig. 10 to avoid unnecessary buffer-holding

time. This reduces the buffer requirement fép + 1) NpLp
(2NpLp + M + Minin = 2) buffers per disk [23]. To further reduce thg buffer rZaquirement,
—((Np +2)Lp + M + Myin — 2) the video streams can be divided into multiple groups, with the
=(Np—2)Lp >0, forNp>2. (67) groups served sequentially in different disk cycles (Fig. 11).
Therefore, for more than two disks per server, the buffer rT_his split-schedule scheme can reduce the per-disk buffer re-
. A . . ' uirement to onl2 1. buffers, i.e., independent of the number
quirement will be larger if the server is network bound. Inters. . :
. : e ; of disks in the system [23].
estlr_1gly, i one artificially reduce the disk throughput_ (e.g., by For the pull-based design studied in this paper, the buffer
adding artificial delay to make the round lendth, slightly requirement for the network-bound case(3VpLp + M +

larger tharil’y) to turn the system from network bound to disk, "~ . o
bound, the buffer requirement can be reduced. This could be sl|\g/[1—“”f1 2). Compared with the split-schedule scheme

nificant for high-capacity servers with a large number of disks (2NpLp +M + My — 2) — 2NpLp
(i.e., Np large). _ .
On the other hand, the derived bounds are also independent =M+ Myin =22 0. (68)

of the number of servers in the system. In other words, ser heeM > M. > 1. the pull-based design requires at least as

buffer requirement in this pull-based parallel video server wi any buffers as the split-schedule scheme. However, in practice,

not become a limiting factor to the system’s scalability. Thisig, ;o417 - are usually proportional to the number of video

n SharP contrast to many buffgr-management algorlt_hms €8reams to support, hence the difference will increase for servers

ployed in push-based parallel video servers (see Section VI- th more disks

in which the per-server buffer requirement increases as theq, e other hand, if the server is disk bound, the buffer re-

system is scaled up. quirement will becomé(Np +2) L + M + My, — 2). Again,
compared with the split-schedule scheme

. Single-Server Architectures

VI. RELATED WORKS

There are a large body of works on VoD system designs (Np+2)Lp + M + Muyin —2) —2NpLp
and implementations. In this section, we compare the existing =(2—Np)Lp + M + My, — 2. (69)



LEE: BUFFER MANAGEMENT AND DIMENSIONING FOR A PULL-BASED PARALLEL VIDEO SERVER 495

freed buffers are reused for the new round
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Fig. 10. Offset-schedule scheme for push-based, multiple-disk video server.

In this case, the pull-based design could require fewer buffe
than split-schedule for larg¥p, and smallM andM,,;,. HOW-  Transmission
ever, if we setVl = Np Lp (which is the case in [11]), then the
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pull-based design will require more buffers.
The previous results show that the pull-based design gen Disk 0 M 1
ally requires more buffers than good push-based designs (e
split schedule). This is expected as the server-push serv Disk 1 D.D_D_|
model is centralized, and the disk-retrieval process is period
For example, in the system implementation in [11], the autho Disk 2 MDD_D _
usedM = 10, M, = 2, Lp = 10, Q@ = 64 KB, and hence —
the server needs 1.875 MB if it is network bound, and 2.5 ML one round

ifitis dISk_bound' The same hardware_ would require 1.25 M%g. 11. Split-schedule scheme for push-based, multiple-disk video server.
for the split-schedule server-push design.

The main problem with the previous designs is that the per-
B. Parallel-Server Architectures server buffer requirement increases when scaling up the system
by adding more servers. Furthermore, existing server nodes may
While server buffer management and dimensioning has begfve to be upgraded with more memory when adding more
studied extensively for single-server, push-based video servegsivers to the system. Finally, the maximum server memory size
only a few recent studies [9], [10], [12], [16] have investigatedill limit the ultimate scale of the system. Unlike these push-
the corresponding issue in parallel push-based video servérssed architectures, the buffer requirementin the pull-based par-
Other studies such as [8], [11], [13]-[15], [17]-[19] focused oallel video server studied in this paper is constant regardless
other system issues and did not consider buffer management gfithe number of servers (i.e., scale) in the system. Therefore
dimensioning in detail. the server memory constraint will not limit the scalability of the
The studies by Tewast al.[16] investigated a two-tiered ar- system.
chitecture where video data blocks are stored in multiple storageAnother study by Freedmaat al. in [10] investigated a
nodes connected to multiple delivery nodes by a high-speed parallel-server architecture with semi-client-pull service model
terconnect. A client connects to one of the delivery nodes, whiglith predictive prefetching at the server nodes. They used
in turn prefetches video data from the storage nodes and trsémulation to evaluate various algorithms in managing the
transmits to the client at a controlled data rate. Their study cdmiffer pool at the server as well as the effect of other system
sidered the buffer requirement at the delivery nodes and showedameters (e.g., stripe size, disk-scheduling alg orithm, etc.).
that the buffer requirementis linearly proportional to the numb@iheir simulation results show that a four-node configuration
of video clients served by the delivery node. Their study did natith four disks per node, 512-KB stripe size, and elevator
consider buffer requirement at the storage nodes. Another stis@gking serving 220 video streams requires 128-MB buffer
by Buddhikotet al.[9] employed a custom-designed high-speechemory per server. For comparison, to support similar number
ATM interconnect to wire up and synchronize all servers. Thedf video streams in a four-node, four-disk parallel video server
design is push-based and requires one buffer per stream p&ng the buffer-management scheme studied in this paper, we
storage node. In the study by Lee [12] using another push-basedl|d setL, = 14, andM = M,,;, = 14. With 512-KB stripe
architecture, the server buffer requirement is also linearly preize, the derived buffer requirement is only 69 MB for the
portional to the scale of the system. network-bound case, and only 55 MB for the disk-bound case.
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