
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 921

Optimizing Channel Allocation in a Unified Video-on-Demand System
Jack Y. B. Lee

Abstract—Unified video-on-demand (UVoD) is a recently
proposed architecture that integrates multicast transmission with
unicast transmission to improve system efficiency. Streaming
channels in a UVoD system are divided into unicast and multicast
channels, with the multicast channels further divided equally
among all videos. This uniform channel-allocation scheme is
simple to design and implement, but the performance may not
be optimal due to differences in video popularity. This paper
investigates this channel-allocation problem with the goal of opti-
mizing system efficiency. First, the uniform allocation assumption
is removed and the channel-allocation problem formulated as a
nonlinear integer optimization problem. This optimization model
results in nonuniform channel allocations that can save up to 10%
of channels. Second, to reduce the computational complexity in
solving the nonlinear optimization model, an approximate model
is derived and solved under small-latency conditions to obtain a
closed-form solution. Third, a much simpler class-based popu-
larity model is proposed and shown to achieve good efficiency,
even if the precise popularity of each video is not known. Lastly,
a zero-multicast channel-optimization algorithm is introduced
that can further reduce channel requirement for systems with
a large number of video selections. Numerical results show that
optimized nonuniform channel-allocation policies can achieve
channel reduction over uniform channel allocation by as much as
50% for a 1000-video system.

Index Terms—Channel allocation, NVoD, performance analysis,
TVoD, unified architecture, UVoD, video-on-demand.

I. INTRODUCTION

V IDEO-ON-DEMAND (VoD) systems have been commer-
cially available for many years. However, except for a

few cities, large-scale deployment of VoD service is still un-
common. One of the reasons is the high cost in provisioning
large-scale interactive VoD service. The traditional model of
true-video-on-demand (TVoD) calls for a dedicated channel,
both at the server and at the network, for each active user during
the entire duration of the session (e.g., 12 h for movies). In a
city with potentially millions of subscribers, the required infra-
structure investment would be immense.

To tackle this problem, a number of researchers have started
to investigate various innovative architectures in an attempt to
improve the scalability and efficiency of large-scale VoD sys-
tems [1]–[13]. Examples include the periodic broadcasting ap-
proach by Chiuehet al. [1], the batching approach by Danet al.
[2] and Shachnaiet al. [3], the split and merge protocol by Liao
et al. [4], the stream tapping scheme by Carteret al. [5], the

Manuscript received September 8, 2000; revised April 15, 2002. This work
was supported in part by the Hong Kong Special Administrative Region
(HKSAR) Research Grant Council under Grant CUHK6095/99E and Grant
CUHK4328/02E, and by the Area-of-Excellence in Information Technology.
This paper was recommended by Associate Editor H. Watanabe.

The author is with the Department of Information Engineering, the Chinese
University of Hong Kong, Shatin, N.T., Hong Kong (e-mail: jacklee@com-
puter.org).

Digital Object Identifier 10.1109/TCSVT.2002.804890

pyramid broadcasting approach by Viswanathanet al. [6] and
Aggarwalet al. [7], the piggybacking approach by Golubchik
et al. [8] and Aggarwalet al. [9], and so on. It is beyond the
scope of this study to compare these difference approaches and
the interested readers are referred to [5], [13] for some compar-
ative discussions.

This study focuses on one of these approaches: the unified
video-on-demand (UVoD) architecture [13], which combines
the efficiency of near-video-on-demand (NVoD) with the short
latency of TVoD by integrating multicast with unicast transmis-
sions.

Briefly speaking, UVoD divides available channels into uni-
cast and multicast channels. The multicast channels are then
allocated equally to all videos. Each video is multicast repeat-
edly over the allocated multicast channels similar to a NVoD
system. In NVoD, the startup latency is substantially longer than
TVoD because an arriving user must wait until the next multi-
cast cycle starts. UVoD solves this problem by allocating a tran-
sitory unicast channel to the user to start playback immediately
while the client concurrently caches video data from a multi-
cast channel. When the unicast stream catches up with the start
of the cached multicast stream, the client can then be switched
back to playback video data through the cache and releases the
unicast channel.

The study by Lee [13] employs a uniform channel-allocation
policy to divide multicast channels equally among all videos.
This policy simplifies system design and implementation but
can be suboptimal. Specifically, video popularity is highly
skewed in practice [14], i.e., a small fraction of videos account
for a large proportion of the traffic. Hence, allocating the same
number of multicast channels to both popular and unpopular
videos is intuitively suboptimal. For example, if a video is
so unpopular that no one ever requests it, then the allocated
multicast channels will be wasted.

In this study, we investigate this channel-allocation problem
with the goal of optimizing system efficiency. The contributions
of this study are as follows. First, we remove the uniform allo-
cation assumption in Lee [13] and show that the channel-alloca-
tion problem can be formulated as a nonlinear integer optimiza-
tion problem. This optimization model results in nonuniform
channel allocations that can save up to 10% channels. Second,
to reduce the computational complexity in solving the optimiza-
tion model, we derive and solve an approximation model for
small-latency conditions to obtain a close-form solution. Third,
using a class-based popularity model, we show that good effi-
ciency can still be obtained even if the precise popularity of each
video is not known. Last but not least, we introduce a zero-mul-
ticast-channel optimization algorithm to further reduce channel
requirement for systems with a large number of video selections.
With these nonuniform channel-allocation techniques, the mod-
ified UVoD architecture investigated in this study can achieve

1051-8215/02$17.00 © 2002 IEEE

922 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002

Fig. 1. Architecture of the UVoD system.

up to 50% resource reduction compared to the original UVoD
architecture in [13].

The rest of paper is organized as follows. Section II presents
an overview of the UVoD architecture; Section III presents the
formulation of the channel-allocation problem as a nonlinear in-
teger optimization problem; Section IV presents the small-la-
tency approximation; Section V presents the class-based popu-
larity model; Section VI presents the zero-multicast-channel op-
timization; Section VII evaluates and compares various channel-
allocation policies using numerical results; and Section VIII
concludes the paper.

II. UVoD A RCHITECTURE

In this section, we review the UVoD architecture and present
its basic properties. The UVoD architecture as proposed by Lee
[13] is depicted in Fig. 1. There are a total ofavailable chan-
nels, of which of them are unicast channels and

of them are multicast channels. A channel is defined as
the unit for resource allocation and includes network bandwidth
as well as server bandwidth. Let there bevideos of length
seconds each. Under the uniform channel-allocation policy, the

multicast channels will be divided equally among those
videos so that each video is multicast over multicast
channels, assuming is divisible by . For each multicast
channel, the assigned video is multicast repeatedly. Multicast
channels streaming the same video are offset by (in seconds)

(1)

as in a NVoD system.
The unicast channels share a common request queue and

serve incoming requests in a first-come-first-serve manner. In-
coming requests will have to wait in the queue if all uni-
cast channels are occupied. Finally, the video clients are capable
of receiving two video channels simultaneously and have local
storage to cache up to seconds of video data.

A. Admission Control

When a user requests a new video session, say at time, the
system first checks the multicast channels for the next upcoming
multicast of the requested video. Let be the time for the next
upcoming multicast. The system will assign the user to wait
for the upcoming multicast (henceforth referred asadmit-via-

Fig. 2. Admission procedure for an admit-via-multicast client.

Fig. 3. Admission procedure for an admit-via-unicast client.

multicast) if the waiting time is smaller than a predetermined
admission threshold

(2)

Otherwise, the system will assign the user to wait for a free uni-
cast channel to start playback (henceforth referred asadmit-via-
unicast). The admission threshold is introduced to reduce the
load of the unicast channels, and to maintain a uniform latency
experienced by both admit-via-multicast and admit-via-unicast
users.

For admit-via-multicast users, the operation is essentially the
same as in a NVoD system. The client just joins the upcoming
multicast channel at time , and then continues receiving video
stream data from that multicast channel, as shown in Fig. 2.

For admit-via-unicast users, the client first starts caching
video data from the previous multicast of the requested video, as
shown in Fig. 3. Then it waits for a free unicast channel to start
playback. For example, assume that the request arrives at time
, and let and be the nearest epoch times of multicast

channel and channel , for which .
Then at time , the client starts caching video data from channel

into the client’s local storage. At the same time, the
client enters the request queue and starts video playback using
unicast once a free unicast channel becomes available.

The admission process is not yet complete as the client still
occupies one unicast channel. Since the client concurrently

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 923

caches multicasted video data for the video starting from video
time1 (), the unicast channel can be released after a
time and the client can continue video playback
using the local cache. Since ,
we can see that the unicast channels are occupied for much
shorter duration when compared to TVoD. This reduction in
service time allows more requests to be served by the unicast
channels.

B. Optimizing Uniform Channel Allocation

The uniform channel-allocation policy has one controllable
parameter, namely —the number of channels allocated for
multicast. Allocating too few multicast channels, and the unicast
channels will become overloaded due to the long service time

[cf. (1)]. Allocating too many multicast channels, and there
will be too few unicast channels left for serving admit-via-uni-
cast users. Therefore one needs to find a balancing point so that
the system performance (i.e., latency) is optimized.

Lee [13] suggested that since the latency depends on the load
at the unicast channels, one can minimize latency by simply
minimizing the load at the unicast channels. Specifically, the
probability for an incoming user to be admitted via a unicast
channel is given by

(3)

Given an arrival rate of users per second, users will arrive at
the unicast channels with a reduced rate equal to

(4)

The service times of these users depend on the arrival time
and the time for the previous multicast of the requested
video. Since , the service time

for requests entering the unicast-channel queue is uniformly
distributed between

(5)

Hence, the traffic intensity at the unicast channels can be com-
puted from

(6)

where is the average service time. Given there
are multicast channels, the load at the unicast channels,
denoted by , is then given by

(7)

1Video time is the time offset relative to the beginning of the video.

By differentiating (7) with respect to , it can be shown
[13] that the optimal number of multicast channels that mini-
mizes the unicast channel load is given by

(8)

where rounds the argument to the nearest integer.

III. N ONUNIFORM CHANNEL ALLOCATION

In this section, we relax the uniform allocation assumption
and investigate nonuniform channel-allocation policies that can
further improve system efficiency. Specifically, given the re-
quest arrival rate , the desired mean waiting time, we want to
find the minimum number of channels required, and the corre-
sponding allocation vector (defined below) for the video titles.

First, we assume that videos have an arbitrary popularity pro-
file specified by where is the prob-
ability that a user requests video. Without loss of generality,
we can assume that the videos are numbered according to de-
creasing popularity, i.e., , . Clearly, we must
have

(9)

Let be the number of unicast channels, and,
be the number of multicast channels

allocated to video . Then the set
forms the channel-allocation vector. Consider video, the
corresponding traffic intensity going into the unicast channels
is given by

(10)

where is the proportion of requests routed to the
unicast channels, and is the average service
time. We can obtain the utilization of the unicast channels, de-
noted by , from

(11)

Since lower utilization results in shorter queuing delay at the
unicast channels, our goal is to find a channel-allocation vector
such that is minimized. This can be formulated as

minimize

subject to (12)

924 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002

which is a nonlinear integer optimization problem. This opti-
mization model does not have simple closed-form solutions and,
therefore, numerical methods are needed to obtain solutions.

The previous optimization model still does not provide a di-
rect answer to our question posted at the beginning of the sec-
tion. In particular, and must be given in order to find the
channel-allocation vector. Given a desired latency of, it is easy
to see that , considering that the latency is half of the ad-
mission threshold for admit-via-multicast users. However,is
not knowna priori, and so we still need to perform an additional
step: iteratively find the minimum that can meet the service
specifications, namely arrival rateand latency .

To find the latency given , we model the unicast channels
as a queuing system and apply the Allen–Cunneen ap-
proximation [15] to compute the average wait (i.e., latency)

(13)

where and are the coefficient of variation (CoV) for
inter-arrival time and service time, respectively, is the av-
erage service time, is the traffic intensity, is the server uti-
lization as given in (11), and is the Erlang- func-
tion, as given by

(14)

Now we need to derive the input parameters for (13). Given
a channel-allocation vector, we can compute the traffic param-
eters for each of the video. Specifically, the service time for
an admit-via-unicast user requesting videois uniformly dis-
tributed between 0 and for . For ,
the service time is simply the video length. Hence, the mean ser-
vice time can be computed from

.

(15)

The arrival rate of admit-via-unicast users requesting videois
given by

(16)

As there are different videos, the combined traffic entering
the unicast channels will have the following parameters:

arrival rate: (17)

mean service time: (18)

For simplicity, we assume that the combined traffic have a
CoV of (i.e., same as Poisson). The CoV for the service

time can be computed from

(19)

where and

(20)

where

.
(21)

Now all input parameters for the Allen–Cunneen formula is
known, we can proceed to compute the minimumrequired to
satisfy the latency constraint from

(22)

using conventional numerical methods. Onceis known, the
complete channel-allocation vector can then be computed from
the optimization model in (12).

IV. SMALL -LATENCY APPROXIMATION

Using the previous optimization model, a system designer
can perform system dimensioning and determine the channel-al-
location vector simultaneously. However, this optimization ap-
proach is not without limitation. In particular, the optimization
problem in (12) must be solved using numerical methods and
the computational complexity is relatively high. Worst, each it-
eration in finding the minimum in (22) requires solving (12),
thereby further multiplying the computation time.

As an illustration, using the numerical solver in MathCAD
Professional 20012 on a Compaq Professional Workstation
AP550 with Dual Pentium III 728-MHz processors, it takes
13, 81, and 235 s to solve (12) with equal to 50, 100, and
150, respectively. Moreover, the MathCAD solver failed to
obtain solution for . We were able to overcome this
by installing the optional Solving and Optimization Extension
Pack3 for MathCAD and obtained a solution for in
660 s. Nonetheless, even the advanced solver failed to obtain
solution for larger values of tested (e.g., ,
etc.).

While one can still obtain solutions for large using other
optimization tools or methods, the nature of the model (non-
linear with integer solutions) suggests that the results obtained
may only be a local optimum rather than a global optimum.
Moreover, the computational complexity and unpredictability
of the result will limit the optimization process to be manually
conducted offline.

2Information on MathCAD Professional 2001 can be found at
http://www.mathcad.com.

3Information on the Solving and Optimization Extension Pack can be found
at http://www.mathcad.com/addons/soe_pack_ben.asp.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 925

To tackle this limitation, we present in this section an ap-
proximate model for (12), where the closed-form solution for
the channel-allocation vector can be obtained. This approximate
model can be used in place of the nonlinear model in (12) to re-
duce the computation time, or in combination with the nonlinear
model in (12) to ensure that a solution is available and it will
not be poorer than the approximated solution. Apart from these
practical uses, the small-latency approximation also provides
important insight into the performance model. For example, the
approximate model reveals that the optimal allocation always
reserves half of the channels for multicast and the other half for
unicast, regardless of other system parameters.

Formally, theapproximatemodel isbasedon themethodofLa-
grange multiplier [16] under three assumptions: 1) the integer so-
lution can be obtained from a continuous approximation; 2) each
video is allocated with at least one multicast channel; and 3) the
latency under consideration is small. The last assumption is mo-
tivated by the observation that VoD services in practice require
short response time in order to provide good quality of service,
thereby making the small-latency approximation applicable.

To derive the approximation model, we first form an auxiliary
function according to the method of Lagrange from the objective
function and the constraint function

(23)

where is given in (11) and is the Lagrange multiplier.
With the first and second assumptions, this function becomes

differentiable with respect to the function arguments, :
. As the admission thresholdis equal to double

the latency, the admission threshold will be small given the third
assumption. In particular, we assume thatis sufficiently small
compared to , such that

(24)

and

(25)

This enables us to simplify (23) to

(26)

and obtain the partial derivatives

for (27)

(28)

(29)

Equating (27)–(29) to zero gives the following set of ()

equations in () unknowns

for (30)

(31)

(32)

To solve for the channel-allocation vector, we first use (30)
and (31) to solve for

(33)

Now consider the total number of multicast channels

(34)

Substituting (33) in place of in (34) gives a surprising result

(35)

In other words, under optimal allocation, the number of chan-
nels assigned to multicast and unicast is always thesame. As we
have not assumed any particular values for , , , , and

, this result is true for all systems as long asis small.
Using this property, we can immediately obtainfrom

(36)

Equating (36) with (33), we have

(37)

which can be solved to obtain

(38)

Finally, substituting and into (30) gives all ’s

for (39)

for the channel-allocation vector.

926 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002

V. CLASS-BASED POPULARITY MODEL

In developing the optimization model in Section III and the
approximate model in Section IV, we have assumed that indi-
vidual video popularities are known.
In practice, a service provider can estimate the video populari-
ties by collecting the on-going user access statistics over a pe-
riod of time (e.g., several days) for computing and updating the
channel-allocation vector. Interested readers are referred to the
study by Griwodzet al.[17] for a more in-depth study of movie
popularity models.

Nevertheless, when adding new video titles to an existing
system or when setting up a new system, prior access statistics
will not be available and it would be difficult to estimate the rel-
ative popularity of the new video titles.

To tackle this problem, we propose dividing videos into
a smaller number of popularity classes. Each video is then
classified into one of the popularity classes. All videos in a
popularity class are allocated the same number of multicast
channels. By decreasing the number of classes, we can simplify
the classification process as well as the system implementation
(e.g., disk and transmission scheduling). We will evaluate the
performance tradeoff of this class-based popularity model in
Section VII-C.

Let be the number of popularity classes. Then rep-
resents the uniform channel-allocation model as investigated by
Lee [13] and represents the individual popularity model
as investigated in Sections III and IV. Let()
be the aggregate popularity for class, defined as

(40)

and let () be the aggregate arrival rate for
class , defined as

(41)

where . As the number of classes is likely to be small
to be practical, we assume that is divisible by to simplify
notations. The model can be modified to cater for nondivisible
cases by choosing explicit class boundaries.

To incorporate this class-based popularity model into the op-
timization model in Sections III and IV, we only need to replace
individual video popularity with aggregate class popularity in
(40), replace individual arrival rate with aggregate class arrival
rate in (41), and round the resultant channel-allocation vector el-
ements to integral multiples of class sizes. The rest of the deriva-
tions will be the same.

VI. ZERO-MULTICAST-CHANNEL OPTIMIZATION

One of the assumptions in deriving the short-latency approx-
imation in Section IV is that each video is allocated at least
one multicast channel. For systems where the expected arrival

Fig. 4. Pseudocode for the zero-multicast-channel optimization algorithm.

rate is large, this assumption is valid (e.g., arrival rate of 0.5
customers/s). However, for systems designed for small arrival
rate, and in particular, with a large number of videos, this as-
sumption may lead to inefficient channel allocations. As an ex-
ample, consider a system serving 100 videos with a latency con-
straint of one second and an arrival rate of 0.02 customers/s.
The channel requirement for UVoD with uniform channel al-
location and nonuniform channel allocation are 193 and 203
channels, respectively. However, TVoD under the same arrival
rate requires only 174 channels. We present below a zero-mul-
ticast-channel optimization (ZMO) algorithm to tackle this de-
ficiency under light traffic conditions.

ZMO is a post-processing procedure that attempts to adjust
the computed channel-allocation vector to further reduce the
total channel requirement. The ZMO algorithm is shown in
Fig. 4 in the form of pseudocode. The algorithm has two nested
loops. The outer loop (Step 3) iterates through elements in the
channel-allocation vector in reverse popularity order. For each
video class where exactly one multicast channel is allocated to
each video, the allocated multicast channels are first removed
(Step 8). This renders videos in this class to be served solely by
the unicast channels. Next, the inner loop (Step 9) computes the
new latency of the system, and increases the number of unicast
channels until the latency constraint is satisfied (Step 13). If the
latency constraint cannot be satisfied, even if all saved channels
are returned to the unicast pool, then the original multicast
channels will be restored (Steps 15–19).

This ZMO algorithm can be generalized to an-multicast-
channel optimization (MC) algorithm, which either allocates

or more channels for each video or none is allocated. This is
useful in cases where the video client has limited storage for
caching the multicast stream. In particular, one can adjust the
channel-allocation vector to conform to the client storage spec-
ification by setting , such that

(42)

is within the client’s storage capacity.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 927

TABLE I
LIST OF SYSTEM PARAMETERS

Fig. 5. Verification of the small-latency approximation model (latency constraint= 1 s).

VII. PERFORMANCEEVALUATION

In this section, we present numerical results to evaluate the
channel-allocation algorithms studied in this paper. The system
parameters are summarized in Table I.

A. Verification of the Small-Latency Approximation

First, we compare results computed from the nonlinear opti-
mization model in Section III with the small-latency approxi-
mation model in Section IV. We set a target latency constraint
of 1 s and then compute the channel-allocation vector from
the small-latency approximation model for arrival rates ranging
from 0.5 to 5 customers/s. Next, we use the total channel re-
quirement obtained from

(43)

where is the total number of popularity classes and is
the computed channel-allocation vector, and repeat the channel-
allocation process using the nonlinear optimization model.

To solve the nonlinear optimization model, we make use of
MathCAD’s solver with initial guess values set according to

(44)

which is motivated by the observation that at small latency half
of the channels are allocated for unicast (cf. Section IV) and the
other half for multicast.

To compare the channel-allocation policies, we compute the
latency using the channel-allocation vectors and plot the result
in Fig. 5. Two sets of channel-allocation vectors at and

, respectively, are also listed in Table II for comparison.
Clearly, both models produce very close results, verifying the
small-latency approximation model.

To check how the approximation performs at larger latency,
we repeat the same procedure with a latency constraint of 60
s. The resultant latency is plotted in Fig. 6. We can see that in
this case the approximation model produces channel-allocation
vectors with higher latency than the nonlinear optimization
model.Consequently, theminimumnumberof channels required
to satisfy the latency constraint of 60 s are also higher (see
Table III).

928 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002

TABLE II
COMPARISON OFCHANNEL ALLOCATION VECTORS

Fig. 6. Deviation of the small-latency approximation model under latency constraint of 60 s.

TABLE III
COMPARISON OFCHANNEL REQUIREMENT UNDER LARGE-LATENCY CONDITION (60 S)

B. Sensitivity to Arrival Rate

To facilitate comparison of nonuniform and uniform channel-
allocation algorithms, we define a normalized channel reduction
factor

(45)

where and are the channel requirements under
the uniform and nonuniform channel-allocation policies,
respectively. The value can be interpreted as the
proportion of channels saved by the use of nonuniform channel
allocation.

The results for light traffic range and heavy traffic range are
plotted in Figs. 7 and 8, respectively. We observe that channel
reduction generally increases with more video selections, except
at very small arrival rates. For example, the 1000-video curve

drops significantly for arrival rates smaller than 0.28. In
some cases (e.g.,), the reduction is in fact negative,
i.e., more channels are required by using nonlinear channel
allocation.

This poor performance at small arrival rate is a result of the
requirement that each video is allocated at least one channel.
Applying the zero-multicast-channel optimization increases
the channel reduction dramatically as evident in Fig. 9. In
particular, channel reduction for the 1000-video case increases
to 55% at . Moreover, the reduction never drops
below zero, even at extremely small arrival rates. This is
because at extremely small arrival rates, multicasting video
offers no performance advantage and all the multicast channels
are removed by the ZMO algorithm. The system in this case
degenerates into a TVoD system and serves users using only
unicast channels.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 929

Fig. 7. Normalized channel reduction versus arrival under light traffic conditions.

Fig. 8. Normalized channel reduction versus arrival under heavy traffic conditions.

C. Sensitivity to Video Popularity Model

Fig. 10 plots the normalized channel reduction versus video
popularity skewness ranging from 0.02 to 0.5. The result shows
that nonuniform channel allocation achieves better channel re-
duction for increased popularity skewness (note that skewness
increases with decreasing value of). At an arrival rate of ,
as shown in Fig. 10, the performance gain of ZMO is negligible,

except for slight improvement in the 1000-videos case. By con-
trast, ZMO dramatically raises channel reduction at a lower ar-
rival rate of , as shown in Fig. 11. These results demon-
strate that the ZMO algorithm is most effective at medium traffic
range with high popularity skewness.

The previous results were computed by dividing the video se-
lections into ten popularity classes, which reflects the practical
difficultyofknowingtheexactvideopopularity.Toinvestigatethe

930 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002

Fig. 9. Normalized channel reduction versus arrival rate with zero-multicast-channel optimization.

Fig. 10. Normalized channel reduction versus video popularity skewness at arrival rate� = 1.

performanceimpactof thissimplification,wecomputeandplot in
Fig.12thenormalizedchannelreductionfor1,2,5,10,25,50,and
100popularityclasses,respectively.Surprisingly,channel-reduc-
tion levels off for ten or more popularity classes. This renders
exactknowledgeofthevideopopularityunnecessaryandenhance
the practicality of nonuniform channel allocation.

D. Channel Reduction Over TVoD

Figs. 13 and 14 plot the channel reduction over TVoD versus
arrival rate, comparing the three channel-allocation algorithms:

uniform channel allocation, nonuniform channel allocation, and
nonuniform channel allocation with ZMO. There are two ob-
servations. First, the nonuniform channel-allocation algorithms
outperform uniform channel allocation except for very small ar-
rival rates, where they perform equally. Second, the ZMO algo-
rithm offers substantial improvement over a range of medium
arrival rates. The exact range depends on the total number of
videos (e.g., for 100 videos,
for 1000 videos), but the improvements are consistent as evident
in Figs. 13 and 14.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 931

Fig. 11. Normalized channel reduction versus video popularity skewness at arrival rate� = 0:1.

Fig. 12. Normalized channel reduction versus number of popularity classes.

VIII. C ONCLUSION

In this study, we investigated the channel-allocation problem
in a UVoD system with the goal of minimizing the channel
requirement. While uniform channel allocation is simple to
implement, we show that the resultant resource requirement will
not be minimal as video popularity is highly skewed in practice.
Nonuniform channel allocation provides a solution to this

popularity skewness problem by allocating available channels
according to the video popularity. In practice, a system designer
can start with the small-latency approximation model to perform
initial dimensioning, and then use the nonlinear optimization
model for more accurate results. Provided that the video
selection can be separated into around ten popularity classes,
nonuniform channel allocation can offer channel reduction
by as much as 50% compared to uniform channel allocation.

932 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002

Fig. 13. Comparison of channel reductions over TVoD (M = 100

videos).

Fig. 14. Comparison of channel reductions over TVoD (M = 1000 videos).

ACKNOWLEDGMENT

The author would like to express his gratitude to the anony-
mous reviewers for their constructive comments and sugges-
tions in improving this paper.

REFERENCES

[1] T. C. Chiueh and C. H. Lu, “A periodic broadcasting approach to
video-on-demand service,”Proc. SPIE, vol. 2615, pp. 162–169, 1996.

[2] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an
on-demand video server with batching,” inProc. 2nd ACM Int. Conf.
Multimedia, 1994, pp. 15–23.

[3] H. Shachnai and P. S. Yu, “Exploring waiting tolerance in effective
batching for video-on-demand scheduling,” inProc. 8th Israeli Conf.
Computer Systems and Software Engineering, June 1997, pp. 67–76.

[4] W. Liao and V. O. K. Li, “The split and merge protocol for interactive
video-on-demand,”IEEE Multimedia, vol. 4, pp. 51–62, 1997.

[5] S. W. Carter, D. D. E. Long, K. Makki, L. M. Ni, M. Singhal, and N.
Pissinou, “Improving video-on-demand server efficiency through stream
tapping,” in Proc. 6th Int. Conf. Computer Communications and Net-
works, Sept. 1997, pp. 200–207.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 12, NO. 10, OCTOBER 2002 933

[6] S. Viswanathan and T. Imielinski, “Metropolitan area video-on-demand
service using pyramid broadcasting,”ACM Multimedia Syst., vol. 4, no.
4, pp. 197–208, 1996.

[7] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “A permutation-based pyramid
broadcasting scheme for video-on-demand systems,” inProc. Int. Conf.
Multimedia Computing and Systems, June 1996, pp. 118–126.

[8] L. Golubchik, J. C. S. Lui, and R. R. Muntz, “Adaptive piggybacking: A
novel technique for data sharing in video-on-demand storage servers,”
ACM Multimedia Syst., vol. 4, no. 30, pp. 14–55, 1996.

[9] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal piggyback merging
policies for video-on-demand systems,” inProc. Int. Conf. Multimedia
Systems, June 1996, pp. 253–258.

[10] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to
provide a scalable and interactive video-on-demand service,”IEEE J.
Select. Areas Commun., vol. 14, pp. 1110–1122, Aug. 1996.

[11] H. K. Park and H. B. Ryou, “Multicast delivery for interactive video-on-
demand service,” inProc. 12th Int. Conf. on Information Networking,
Jan. 1998, pp. 46–50.

[12] E. L. Abram-Profeta and K. G. Shin, “Providing unrestricted VCR func-
tions in multicast video-on-demand servers,” inProc. IEEE Int. Conf.
Multimedia Computing and Systems, July 1998, pp. 66–75.

[13] J. Y. B. Lee, “UVoD—A unified architecture for video-on-demand ser-
vices,” IEEE Commun. Lett., vol. 3, no. 9, pp. 277–279, Sept. 1999.

[14] G. Zipf, Human Behavior and the Principle of Least Effort: Addison-
Wesley, 1994.

[15] A. O. Allen,Probability, Statistics, and Queuing Theory With Computer
Science Applications, 2nd ed. New York: Academic, 1990.

[16] D. P. Bertsekas,Nonlinear Programming, 2nd ed. Belmont, MA:
Athena Scientific, 1999.

[17] C. Griwodz, M. Bar, and L. C. Wolf, “Long-term movie popularity
models in video-on-demand systems,” inProc. 1997 ACM SIGMM,
Seattle, WA, Nov. 1997, pp. 349–357.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

