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Supporting Server-Level Fault Tolerance in
Concurrent-Push-Based Parallel Video Servers

Jack Y. B. Lee

Abstract—Parallel video servers have been proposed for Parallel Video Server
building large-scale video-on-demand (VoD) systems from mul- g b Admission
tiple low-cost servers. However, when adding more servers to scale & servers, Sicheduler
up the capacity, system-level reliability will decrease as failure of
any one of the servers will cripple the entire system. To tackle this ==
reliability problem, this paper proposes and analyzes architectures E&H_Server S,
to support server-level fault tolerance in parallel video servers. — Interconnection
Based on the concurrent push architecture proposed earlier, this = Network

paper tackles three problems pertaining to fault tolerance, namely
redundancy management, redundant data transmission protocol,
and real-time fault masking. First, redundant data based on
erasure codes are introduced to video data stored in the servers,
which are then delivered to the clients to support fault tolerant.

Despite the success of distributed redundancy striping schemes Network link

such as RAID-5 in disk array implementations, we discover that (e.g Ethernet, ATM)
similar schemes extended to the server context do not scale well. Video Storage

Instead, we propose a redundant server scheme that is both scal- (e.g. Disk Array)

able, and with lower total server buffer requirement. Second, two
protocols are proposed to manage the transmission of redundant Fig. 1. Architecture of a (5-server) parallel video server.
data to the clients, namely forward erasure correction which
always transmits redundant data, and on-demand correction
which transmits redundant data only after a server failure is server), their costs are inherently higher due to the lower
detected. Third, to enable ongoing video sessions to maintain production volume.
nonstop video playback during failure, we propose using fault — pacently, parallel video server has been proposed for
masking at the client to recompute lost video data in real-time. In building large-scale VoD systems from multiple low-cost
particular, we derive the amount of client buffer required so that X
nonstop, continuous video playback can be maintained despite Servers [3]-[17] such as PC-based servers. One such architec-
server failures. ture—concurrent push [10]—comprises multiple autonomous
Index Terms—Concurrent push, fault tolerance, parallel video sgrvers together with an aFimission scheduler conngcieq to the
server, scheduling algorithm, server failure, server push, video-on- clients by an interconnection network (Fig. 1). By dividing a
demand. video title into small, fixed-size units, and distributing them to
all servers, i.e.server striping this architecture can achieve
perfect load balancing among servers and yet does not require
video data replication. The servers simultaneously transmit
HILE video-on-demand (VoD) systems have beevideo data to a client continuously at a proportionally reduced
available for many years, large-scale deployments @ite so that existing ATM quality-of-service (QoS) controls can
VoD services are still uncommon. One reason is the high caégf employed. Results [10] showed that concurrent push can
involved in setting up a broadband network infrastructur@otentially be scaled up to more than 10000 concurrent video
acquiring high-capacity video servers, and installing a larggreams using current PC platforms.
number of set-top boxes. For video servers, most large-scal@®ne potential problem with the concurrent push architecture,
systems available today are of proprietary nature, employia@id any parallel architecture including MPP, is reliability. As
massively parallel processing (MPP) platforms (e.g., nCube [He system distributes video data over multiple servers, failure
and Magic [2]). While these platforms can provide capacitieg a single server will cripple the entire system. Worse still,
far exceed that of conventional server platforms (e.g., P£s the system is scaled up to more users, more servers will be
needed and consequently the system-wide reliability will de-
crease accordingly. Drawing similar principles from disk array
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masking. First, redundant data based on erasure codes argha-placement of the replicated stripe units so that additional
troduced to video data stored in the servers, which are thiead in retrieving the backup copies are evenly distributed across
delivered to the clients to support fault tolerant. Despite thadl server nodes. Declustering has been studied extensively in
success of distributed redundancy striping schemes suchttescontext of disk arrays and the interested readers are referred
RAID-5 [18] in disk array implementations, we discover thato [23] for a study of declustering in a disk array.

similar schemes extended to the server context do not scal®ne tradeoff in data mirroring is doubled storage require-
well. Instead, we propose a redundant server scheme thamisnt, which could be expensive for applications like video li-
both scalable, and with lower total server buffer requiremerdrary or paid-movie service. A subtler tradeoff is the need for
Second, two protocols are proposed to manage the transndiselustering. As no known algorithm can automatically produce
sion of redundant data to the clients, namely forward eraswaleclustering scheme for an arbitrary number of servers, this
correction (FEC), which transmits redundant data even whanirroring approach would require more complex capacity plan-
there is no failure, and on-demand correction (ODC), whiaking and data reshuffling when being scaled up.

transmits redundant data only after a server failure is detectedln comparison, the architecture proposed in this paper does
These two protocols achieve different tradeoffs between bambt need full data replication (unless there are only two servers)
width overhead, implementation complexity, and client buffesr declustering. For example, with a server mean time to failure
requirement. Third, to enable ongoing video sessions to ma{MTTF) of 50 000 hours and a targeted system MTTF of 10 000
tain nonstop video playback during failure, we propose usitgurs (see Section X-D), the redundancy overhead is only
fault masking at the client to recompute lost video data #round 20%. The striping and placement policy is simple and
real-time. In particular, we derive the amount of client buffersan be scaled to any number of servers. In addition, although
required so that nonstop, continuous video playback can fpgrroring can sustain single-server failure, the proposed archi-
maintained. tecture can sustaik’ servers failing simultaneously. Last but

The rest of the paper is organized as follows. Section Il rgot least, reliability of the Tiger video server will inevitably
views related works in this area and compares them with thijecrease as the system is scaled up because only one server
paper. Section Il presents an overview of the concurrent puigilure can be sustained. By contrast, we show that the proposed
architecture. Section IV presents how redundancy can be intggehitecture can be scaled up to more servers and can still
duced into concurrent push by extending the RAID-5 schemeritaintain the same level of reliability.
the server level. Section V presents the FEC protocol for trans-The second related study by Tewatial. [15] investigated
mitting redundant data. Section VI presents the ODC protocglclustered multimedia server architecture that also employs
for transmitting redundant data. Section VIl analyzes the FEfgrver-level striping. They used simulation and queueing
protocol by deriving the amount of client buffer required to susnodels to analyze the QoS performance and to compare the
tain nonstop video playback despite failure. Section VIII angost-effectiveness of server-level striping with mirroring.
lyzes the ODC protocol by deriving the amount of client buffer This paper differs from their study in two major ways.
required to sustain nonstop video playback despite failure. Segrst, they employed different video distribution architecture in
tion IX presents the redundant server scheme (RSS) that solifgsir study. Specifically, their system has two types of nodes:
the scalability problem in ODC. Section X presents numericghck-end nodes for storage, and front-end nodes for data
results computed from the derivations and analyzes the seffitivery. Video data are striped across the back-end storage
tivity of the proposed algorithms and protocols to several kgjpdes while the front-end nodes assemble video data retrieved
system parameters. Finally, Section XI concludes the paper.from the back-end storage nodes for delivery to video clients.
This distribution architecture is calladdependent proxy9].

By contrast, the architecture proposed in this paper has no
intermediate delivery nodes—callpdoxy-at-client9].

While many studies have investigated disk-level fault toler- The primary advantage of the independent proxy architec-
ance in video servers (e.g., [19]-[22]), only three studies [Slre is client transparency: the details of the server cluster can
[15], [16] known to the author have investigated server-levbe completely hidden because the client communicates with a
fault tolerance in parallel video servers. In this section, wangle delivery node only. However, as the delivery nodes do
briefly review these studies and compare them with the apet contribute to the system capacity, they will add to the cost
proach proposed in this paper. of the system. Second, for economical reasons, a delivery node

Bolosky et al. [5] proposed the use of data mirroring to im-will likely serve many clients simultaneously. Hence, if a de-
prove reliability in their Tiger video server (now known as Midivery node fails, services of all connected clients will be dis-
crosoft NetShow Theatre). Similar to disk mirroring, they prorupted. The architecture proposed in this paper does not have
posed storing two copies of every stripe unit at the server nod#ss problem because no such delivery node is needed. Finally,
Hence, in case a server fails, rendering one of the copies unavgien the rapid progress in CPU processing power, overhead in
able, the system can still use the remaining copy for deliveng-computing unavailable data due to server failures can readily
Clearly, the two copies must reside at two different server nodes absorbed by the client CPU. Our experiments showed that
so that a node failure will not render both copies unavailable siven a low-end Pentium CPU can recompute lost data at a rate
multaneously. Additionally, Bolosket alproposed the use of of more than 100 Mbps. Hence, performing the recomputations
declustering for stripe-unit placement. Briefly speaking, giveat the client not only better utilizes the client hardware, but also
the number of server nodes, a declustering scheme determiamesids potential bottlenecks at the intermediate delivery nodes.

Il. RELATED WORKS
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Interested readers are referred to Lee [9] for more detailed cog
parisons of different parallel-server architectures. ’
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The third related study is by Wonet al. [16]. Their RAIS &
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architecture employed striping with distributed redundant unilS
which are computed from video data units. They proposed as|
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cial video transfer protocol to detect server failure. The cliers;
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Video Client

armed with the redundant units and the survived data units, ¢ s

then compute the lost units in real-time. In the simplest forn*
the redundant units are simply parity units, computed from e
clusive-or between the video data units of the same stripe. T...c
parity-based striping scheme can protect single-server failyre .,
and their protocol can maintain continuous video playback by
means of additional buffering at the client.

T
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Fixed-size block striping without redundancy.

This paper differs from RAIS [16] in three major ways. First s,
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RAIS employs the client-pull service model where a client per
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odically sends requests to the servers to retrieve video blo¢®
for playback. By contrast, the proposed architecture is bass,

]
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A

on the server-push service model where the servers contil
ously transmit data to a client. Briefly speaking, the two servic®:

IR

Video Client

models result in different designs for server and client, as ws,

as different system requirements. Interested readers are refe
to Lee [9] and Raet al.[24] for comparisons between the two
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(Transaction Size)  (Striping Size)

service models. Second, while RAIS employed block stripiny
with distributed parity placement, we show that similar placesg. 3. Fixed-size sub-schedule striping without redundancy.
ment policy is not scalable for concurrent push. To solve this

problem, we propose in Section IX a redundant server scheme | . . .
that can be scaled up to any number of servers. Third, the R yeeping scheme (AGSS). The primary difference being that

study focused on implementation and experimentation. We die assignment of a new \_/|d(_ao stream to a sweeping group 1
tablish in this paper a performance model for the proposed ne externally by an admission scheduler in AGSS rather than

chitecture to show thatitis scalable to a larger number of Serv@}gernally by.the serverin GSS. Th's IS necessary because server
and still can maintain the desired reliability. clocks are, in general, not precisely synchronized and hence

server-based group assignment could become inconsistent,
increasing transmission jitter. To start a new video session, a
video client first sends a request to the admission scheduler.
. . The admission scheduler will then schedule the servers to begin
We present an overview of the concurrent-push archltectl{re . .

6jnsm|ssmn to the client. Under concurrent-push, all servers

In this section. Interested readers are referred to Lee []trr) nsmit data to a client concurrently. With an average video

for more details. As shown in Fig. 1, the concurrent-pu ; .
. . . it-rate of Ry, each server will transmit at a reduced rate of
architecture is built on top of a cluster of homogenous servers, .
i-/Ns to maintain an aggregate data rateliyf.

:nu?drzjiil?t?\ ;gzwnuggUanrget;eor\lld;gkcshgr];s'eE:ﬁg rslgtrv\\//?)r kli‘t the client side, it maintains a circular buffer comprising
in?er?gce The concurrent-, ush arcyﬁitecture dgfir;es the serﬁ)«rad_Size blocks ofy bytes. A number of the buffer blocks are

S P . o ¥l d before video playback starts. These prefilled buffer blocks
striping policy, I/O scheduling policies, admission schedullngr
scheme, and client buffer management scheme.

Each server’s storage space is divided into fixed-size un

I1l. THE CONCURRENTFPUSH ARCHITECTURE

e used to prevent buffer underflow, while the remaining empty
ﬁuffer blocks are used to prevent buffer overflow due to instanta-

of © bytes each. Figs. 2 and 3 depict the two striping policia ous variations in video-data consumption rate, network delay

) . jﬁter, transmission jitter, etc. A detailed performance model on
Ir?utmhﬁecrogfcggr(\algtr-sp;igfsrtcgI;Zﬁg{:.tr\genfrfbtgrdo?nc?itgnizeinthe concurrent—push architecture, including derivations on th(_e
S . . . e . buffer requirement and system response time, can be found in
the system. The one in Fig. 2 stripes video titles in flxed—sq_eee [10]
blocks of(2 bytes, called block striping. The other one in Fig. 3, '
called sub-schedule striping scheme (SSS), stripes video titles
in smaller units of/ bytes, wher&) = Ngsl/. Note that despite
the difference in striping size, a disk transaction always retrievesTo support server-level fault tolerance, we need redundant
a@-byte block, albeit containing/s stripe units instead of just data so that a client can recompute the unavailable video data
one stripe unit in the case of SSS. SSS is developed to remaiter server failures. The problem of correcting data errors has
the client buffer requirement’s dependency 8@ so that the been studied extensively in the literature. According to coding
system can be scaled up to more servers. theory [25], one can encode a set of symbols with redundan-
For 1/0 scheduling, each server employs a modified versiaies so that errors occurring within the set can be corrected

of the group sweeping scheme (GSS): the asynchronous grtater. However, server failure is slightly different in the sense

IV. REDUNDANCY MANAGEMENT
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Fig. 4. Fixed-size block striping with redundancy of one. No recovery needed —?
Stripe unit 3 recovered

So| - D:I:m m:m 1] 3P Fig. 6. Recovery of unavailable stripe units through erasure correction code.

s (IJ] ﬁw . and startup delay in certain cases, at the expense of network
]

i

Sp| --- mm Dﬂ] lI ; 3210!:> Playout j bandwidth overhead during normal operation (i.e., no failure),

8| .- m M Mﬂ | ] . while ODC gvoids this ban_dwidth overhead, at the expense ofa
more complicated system implementation and potentially larger
SRS mm [mﬂ buffer requirement and startup delay. We present a FEC-based
R transmission scheme for concurrent push in the next section, and
Taneommsize)  (Stopy oz a ODC-based transmission scheme in Section VI.
Fig. 5. Fixed-size sub-schedule striping with redundancy of one. V. FEC

) ) ] As the name suggests, servers under FEC transmit redun-
that there is really no error in the coding sense. Instead, a serygf data regardless of server failure. As redundant data are al-
failure introduces erasures—the absence of data. ways received, the client can recompute unavailable data by era-

Errors and erasures are different because for errors, datagfg correction computation (see Fig. 6 for the case under sub-
still being received, but the content may be corrupted. In case@hequle striping). Hence, one does not need to detect server
erasure, the expected data are simply missing, and hence Nqgfgret for the sake of maintaining nonstop operation, and con-
roneous data will be received. Here we have implicitly assumegdqyently system reconfiguration is also unnecessary. Clearly,
that the server is fail-stop, i.e., it stops sending out data Up@fis can greatly simplify the implementation and avoid other
failure. This type of failure could be caused by disk subsyste@mpjications such as false alarm or undetected failure. The
failure, network failure, power lost, or even software crashes. {fdeoff is extra network bandwidth required to deliver redun-
any case, erasures are introduced into the video stream becsg gata during normal-mode operation. Specifically, wth
data stored in the failed server will become unavailable. servers and a redundancy levelff(i.e., up tok simultaneous

According to coding theory, to recover an erased symbol {ayer fajlures can be sustained), the network bandwidth over-
unit of data) in a codeword (also called a parity group, or Gead incurred will be given by
stripe), one need to encode the data with at least one redun-
dant symbol per codeword. One well-known coding algorithm Hppo = K 1)
called Reed—Solomon (RS) code [25] can encode data with any Ns— K

codeword size and level of redundancies. If one need to proteck, 5 small-scale system (i.&V,s small) with high level of

the system from only single-server failure, then an even Simpt‘érdundancy (i.e.K large), this overhead could become pro-

code—parity, can be used instead. For simplicity, we assuRitive. For example, withVs = 3 andK = 1, the overhead

in this paper a generic code where each additional redundgj; g hecome 50%. Considering that a VoD system is expected

symbol can recover one erasure. _ to operate mostly in normal mode, this overhead may not be ac-
Drawing related principles from RAID-5 [18], Figs. 4 andcepaple for systems with a small number of servers. The ODC

5 depict the proposed redundant striping policies for blockheme discussed nextis designed to avoid this bandwidth over-
striping and sub-schedule striping. The basic idea is thg,q.

same—introduces one or more redundant stripe units in every
stripe. The redundant units are precomputed and distributed to

) X e . VI. ODC
the servers in a round-robin manner similar to a RAID-5 disk ]
array. Note that a parity group spans all servers, and hence, the/nder ODC, the system does not transmit redundant data un-
parity group size equals the number of servers in the system!€SS & server failure is detected, thereby avoiding the network
mitting redundant data to the clients, namely FEC and OD¢€turn, the system must detect server failures so that the system

These tWO schemes _represent different tr_adeOﬁS: FEC S'_mp“f'eﬁn practice, failure detection is still needed to notify the operator so that the
system implementation and has lower client buffer requiremetited server can be repaired or replaced.
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can be reconfigured to start transmitting redundant data. Tkirver clock jitters [10]. We propose extending the admission
extra step of failure detection is not needed in FEC. scheduler to simulate a video client. Unlike real video clients,

In theory, with Ns servers and a video data rate Bf-, however, received video data are simply discarded at the ad-
each server only needs to transmit at a rateRef/Ns; we mission scheduler after bookkeeping is done, and the scheduler
call it Min-Ratetransmission. Upon a simultaneousserver never performs any interactive control nor will the stream ever
failure (0 < z < K), the surviving servers will have to terminate (until system shutdown). At the servers, video data
increase the transmission rate frdiy /Ns to Ry /(Ns — ) destined to the admission scheduler are not retrieved from
to maintain the same aggregate video bit-rate. This Min-Réatee disks, but rather generated on-the-fly. Since the generated
transmission scheme thus requires dynamic reconfigurationvideo data will not be interpreted at the admission scheduler,
the server scheduler as well as network bandwidth allocatiotise server can avoid disk overhead by sending the same buffer
Alternatively, the system can maintain the transmission raterapeatedly after updating header information such as stream
Ry (Ns — K); we call it Std-Ratetransmission, even whenoffset or sequence number.
there is no failure. The servers just skipped transmitting theWhen a server fails, it simply stops transmitting data. Hence,
redundant units. When a-server failure occurs, the systema server failure can be inferred from the missing of video data at
will simply reconfigurex of the servers to start transmittingthe admission scheduler. We assume that the admission sched-
redundant data, thereby maintaining enough data for erasuker is located close to the servers so that worst-case arrival
correction at the clients. This approach eliminates the neddadlines are known for each and every video packets. Then the
to dynamically reconfigure the server scheduler and netwaskimission scheduler can declare a server to have failed if the ar-
connections. rival deadline is exceeded by a threshold of, §ayg seconds.

If the network does not require per-channel resource allocBhis threshold is introduced to reduce the possibility of false
tion (e.g., FastEthernet), Min-Rate transmission will have radarms caused by unexpected data delivery delays or occasional
advantage over Std-Rate transmission, as the average ratpaisket losses.
the same for both schemes. On the other hand, if the networkNote that the admission scheduler itself could also fail.
requires per-channel resource allocation such as CBR sendit@vever this type of failure will be less problematic because:
in ATM, then under Min-Rate transmission, the servers will) while new streams cannot be started, the failure will not
need to re-negotiate a higher bandwidth allocation from tladfect existing streams and 2) compared to the video servers,
network upon detecting a failure. However, reconfigurinthe admission scheduler is much simpler and hence potentially
hundreds or even thousands of connections simultaneouslymore reliable. For example, the admission scheduler can be
could overload the network management center, which in tudiskless, so that disk failure can be avoided. ECC memory can
could delay the reconfiguration process significantly. Therefobe used to protect from memory faults, etc. We are currently
we conclude that the Min-Rate transmission scheme does mestigating potential solutions such as replicated admission
offer significant advantage over Std-Rate and is difficult techedulers to tackle this final weak link.
implement efficiently. By contrast, the Std-Rate transmission
scheme is much simpler to implement, and so we will onl§. Server Reconfiguration for Block Striping
consider the Std-Rate transmission scheme in the rest of thejpon declaring that a server has failed, the admission

paper. scheduler will multicast a message to the surviving servers to
notify them of the failure. The delay incurred will obviously
be implementation dependent. For simplicity, we assume that
As discussed in the previous section, failure detection is neahe failure-detection delay is bounded and the maximum is
essary in ODC because redundant data are not normally tragisen by7» seconds. Upon receiving the failure notification,
mitted. The goal is to detect a server failure quickly and accthe servers will initiate a reconfiguration process to begin
rately, so that the remaining servers can be reconfigured to beggansmitting redundant blocks and rigtransmitthe necessary
transmitting redundant data. If tlietection delay-defined as redundant blocks.
the time from a server fails to the time the remaining serversFig. 7 depicts the scenario for reconfiguring a 5-server
are notified of the failure, is too large then video playback hisystem under block striping. Note that we consider only one
cups can occur at the clients. On the other hand, the detectidtheo stream for illustration and analysis, while in practice the
algorithm should not be overly sensitive in order to avoid falssame process occurs for all active video streams. All algorithms
alarms. We propose an admission-scheduler-based (ASB) pand procedures still apply and no modification is needed to
tocol for detecting server failures in this section. extend to the multi-stream case. Note also that redundant video
In our previous investigations [8], [16], we found thablocks are always retrieved, just not transmitted when there
incoming control requests could be delayed for a substantigino failure. One might notice that during normal operation,
amount of time (e.g., more than 1 s) due to intense I/O activitiseme disk bandwidth would then be wasted in retrieving
at the servers. Consequently, it would be more difficult to inredundant blocks that are not needed. It is conceivable that one
plement server-based fault-detection protocols that can quicklgn reuse this wasted bandwidth to serve extra video sessions
detect a failure. This motivates us to propose implementiigiring normal operation. However, these sessions will have
fault-detection at the admission scheduler rather than at tileebe disconnected upon server failure. More investigations
servers. The admission scheduler is originally proposed dce therefore needed to quantify the gains and the associated
tackle the uneven group assignment problem arising framadeoffs.

A. Failure-Detection Protocol
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g 2 2 2 2 2 2 2 service rounds. For a transmission rat&gf/( Ns— K) bytes/s
o o & & @ n = o under Std-Rate transmission, the time it takes to transmit a video
v v o v v U U 0 block of Q bytes, i.e., length of a service round, is equal to
5T PaT BFTeT5T0] o Ns— K
S, T = QW5 = K) (5)
v | Ry
S, [26 121 7PIT 16 LT & 1T 11 = .
1 Therefore, using (4) and (5), we can compute the delay for de-
v | livering the redundant block for strigefrom
S, EPEI 2 PZII7 [12] 717277 =
' ByTp Q(Ns — K)
D =Nglp = | | =——= 2)———2. (6
s, o oo r=vete = ([ g S| +2) e ©
YR -2 7 R s = Provided that Ns — K) > K, (6) also bounds the delay for
T, e all stripes. To see why begins with (3)
—p S, failed
m i F;ilure detected (k—j+ 1K
Failure mode C'_”] Reconfig I:> Normal mode NR = ( NS _ K)
Fig. 7. Server reconfiguration under ODC with block striping. S(k-g+1), ((Ns-K)z K)
<(k—j+2)=Npg. @)

Now assuming that failure occurs during service rogyttien
the servers will receive the failure notification latest by roun

k=j+ E—ﬂ 2)

d This shows that the delay experienced by stripes
{il¢ > Kk + 1} transmitted after the failure is detected
(IVg) is smaller than the delay experienced by strjgeVr).
Therefore, the worst-case delay in (6) also bounds the delay for

. . ' . all stripes.
whereTr is the length of a service round defined in (5) below. The additional delay will likely lead to video playback hic-

bl Krllovylng(;cz_et_falllire,_tge s:,;lrvelis v_wllt:]ransm;t redundalnt_\;ldegups at the clients. If temporary service interruption can be tol-
thOC S In addi |onPZ Vi If'o 7OCHS In the nex fP”qd+t .) : erated, then the clients can simply suspend playbaclfer
ere is one (€.g. P4 in Fig. 7). However, e +1) s MPES " seconds to resynchronize with the new transmission schedule.

S'herwise, we can introduce additional buffers at the client to

tected will have no redundant blocks transmitted (e.g., stripeg stain nonstop video playback during reconfiguration (Sec-
and 3). To enable the client to re-compute the lost stripe unitstign VD)

is therefore necessarytetransmitthe required redundant units
(e.g., P2 and P3) for these stripes. C. Server Reconfiguration for Sub-Schedule Striping

In a system withNs servers and< redundant blocks per ) ] ] )
stripe, a maximum ofk — 5 + 1)K redundant blocks willhave ~Fig- 8 depicts the server reconfiguration process for
to be retransmitted. Note that this is the maximum because $&P-Schedule striping, with’s = 5 and K = 1. Instead of
transmission is not needed for lost redundant blocks. AssuffSidering service rounds, we consider micro-rounds, defined
the failure is a simultaneous -server failure (worst-case sce-2S the penod_ for transmitting a stripe. Henc_e, a system with
nario), leaving Ns — K ) working servers, the remaining serverd¥s Servers will haveVs micro-rounds per service round. Note
can then retrieve and transnfiVs — K) redundant units in a thatin each service round, a server retrieves

service round. Hence, a maximum of Ng g
Ne — [(k—j+1)Kw _[((TD/TF1+1)KW 3) QS_Q(NS—K) ®
B7 |l (Ns—K) | | (Ns—-K)

bytes of video data (instead ¢f bytes in block striping) for
additional service rounds are required to retransmit the necégery video stream and the length of a service round is
sary redundant units. Consequently, transmission of subsequent

. . Ns
stripes will be delayed by at moatg rounds. Ts = TFﬁ

Now consider the recovery of strigge.g. stripe 2 in Fig. 7). (Ns — K)
At the time (roundk) the failure is detected, the current diskseconds (instead @ seconds in block striping).
cycle is already retrieving stripe units for the next transmission\ye assume that& -server failure occurs during micro-round

cyclek + 1. Henge, reQundant uniFs for ;trig‘ecan only pe 7 and is detected in micro-rourid Similar to (2), we can obtain
scheduled for retrieval in the next disk retrieval cycle, which ip fom

turn will be sent in transmission roud- 2. Therefore, delivery
of the redundant block required to recover strjpeill be de- =+ IVNSTD—‘ ' (10)
layed by ’ Ts

©)

ve=tmi=(|

RyIp 9 4 Once notified of the failure, the servers will begin transmit-
Q(Ns — K)) + “) ting redundant units for subsequent stripegy). As each stripe
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Fig. 8. Server reconfiguration under ODC with sub-schedule striping.

containsK redundant units, the system needs to retransmit afient buffers to store a complete stripe (with redundant units)
to (k — j + 1)K redundant units. This will require up to for erasure-correction computation. The derivations in the fol-
. lowing sections are based on the model introduced in Lee [10].
ng = [(k —J+ 1)Kw — [(RNS — K)Tp/TF] + 1)Kw The overall approach is to obtain upper and lower bounds for
(Ns — K) (Ns — K) stripe unit arrival times and stripe unit consumption times. Then

(11)  using the continuity condition, i.e., the latest arrival time for a
stripe unit must not be later than the earliest consumption time,
we can obtain the number of buffers required to prevent buffer

Note_ th_at this process _has two sub_tle constraints. _F'rSt’ {fiderflow. We can obtain the number of buffers required to pre-
transmission cannot start immediately in the next service rougglnt buffer overflow in a similar way.

because the servers need another service round to retrieve the

required redundant units. Second, evenif < Ng, the last A, Buffer Requirement under Block Striping
service round for retransmission cannot be shortened becau
the disk requires a full service round to retrieve video blocks f
transmission in the next round.

Similar to the block-striping case, the worst-case delay wi ]
be experienced by the stripe that is being transmitted when %
failure occurs, provided thdtVs — K) > K. The worst-case
delay can be up to

micro-rounds for retransmitting the redundant units.

We first consider the case for block striping. Let therd be

?5/ + Z) buffers (each? bytes) at the client, organized as a

Ixﬁircular buffer. Video playback starts once the fikstbuffers

e completely filled with video data. The client prefills the first
uffers to prevent buffer underflow, and reserves the fast

buffers for incoming data to prevent buffer overflow.

Since all Ns servers transmit data to a client concurrently,

Np=k—j+(Ns—1)+Ns the. client will be receivingVs yideo k_)locks simultaneously, of
(Ns — K)Tp which (Ns — K) blocks containing video data and the rest con-
= [T—w +2Ng —1 taining redundant data. This suggests Hanust be multiples
F of Ng. Therefore, we consider groups &% buffers (i.e., group
= [R"TDW +2Ng—1, . Tp= Q(NS - K) (12) zero consists of blocks 0 t¥s — 1, group one consists of blocks
Q ’ Ry Nst02Ng —1,and soon) and let = Y/Ngs be the number of

ebuffer groups prefilled.
Using techniques similar to Lee [10], we can obtain (see Ap-
endix A.1 for derivations)

micro-rounds, whergk — j) is the worst-case delay due to failur
detection(Ns — 1) is the worst-case delay to wait for the current
service roundto end, ands isthe delay due to the first constraint”

discussed previously. Noting that the length of a micro-round is [ Tt = TE]
equal tol’s /Ns seconds, the delay is then given by Y =11+ (N5 — K)Tog Ns (14)
T oy
Dp — NFN—S _ <’7RLQ D—‘ 4 oNg - 1) Q (13) for the number of buffers needed to prevent underflow, and
g v [ T+ T
zZ=|1 N, 15
seconds. + (Ns — K)oy S (%)

for the number of buffers needed to prevent overflow. Note
VIl ANALysIs OF FEC that T andTy, are jitter bounds for video block consumption,
In this section, we derive the amount of client buffer neededis the clock jitter among servers, arfd (f+(f > 0) and
to support fault tolerance under FEC so that nonstop playbatk(f~ < 0) are used to model the maximum transmission
can be sustained. Client buffers are originally introduced to atime deviation due to randomness in the system, including
sorb jitters in video-block playback times and delivery delaytsansmission rate deviation, CPU scheduling, bus contention,
[10]. To support fault tolerance using FEC, we need additionalc. See Table | for a summary of symbols and interested
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TABLE |
SYSTEM PARAMETERS USED IN COMPUTING NUMERICAL RESULTS

System Parameters Symbol Value
Video block size o 65536 Bytes
Video data rate Ry 150KB/s
Maximum advance in decoding time Tz -130ms
Maximum lag in decoding time T, 160ms
Transmission time deviation £t Oms
Server clock jitter T 100ms
Failure-detection delay Tp 2s

readers are referred to Lee [10] for formal definitions of these VIII. ANALYSIS OF ODC

parameters. Unlike FEC, ODC requires additional buffers to sustain con-

By setting’ = 0in (14) and (15), the equations reduce to thf’alnuous video playback during system reconfiguration. Incor-

non-fault-tole_rance version in Lee [10]. The total client buﬁep';orating this requirement, we derive the corresponding buffer
requirement is thus given by

requirement for block striping and sub-schedule striping in the
BBS. — <2 N [T +ft—f = TEW following sections.
(Ns — K)Tayg
T+t - +TL
+ [ (Ns — K)Tyvg D NsQ. (16) Unlike FEC, a client operating under ODC will simultane-
) ) . ously receivd Ns — K) instead ofNVs video blocks. Therefore,

Note the independence of (16).frdﬁ‘b. as fa|lure—detect|on a group of video blocks comprises offliys — K) video blocks.
and, consequently, server reconfiguration is not needed unggfiixe FEC, derivations for the buffer requirements depend on
FEC. However, we can also observe that the buffer requiremgfiether the failure occurs before or after video playback starts.
will increase when more servers are added to the system, SHgr the case where the failure occurs before video playback
gesting that more buffers will be needed when scaling up tg,ts, the playback schedule will be delayed because playback
system. cannot start until the required number of buffers are prefilled.
The buffer requirements are found to be (see Appendix A.3 for
derivations)

A. Buffer Requirement under Block Striping

B. Buffer Requirement under Sub-Schedule Striping

Under sub-schedule striping, each video blogk (bytes) at
a server comprises multiple stripe unité bytes each) and the T+ fT—fT—Tg
size of avideo block is given in (8). The client buffers now com- YBefore = [1 - (Ns — K)Tnyg w
prisesl. = Y + Z buffer units of each)s bytes. Again we
consider stripe units in groups éfs units, i.e., groug com- and
prises stripe unit§iNg, iNs + 1,...,(i + 1)Ng — 1}. Then b
a group ofNg stripe units will correspond to exactly one buffer ZBefore = [1 + TH T +T+ Dﬂ 1)
unit at the client. Using similar techniques (see Appendix A.2 (Ns — K)Tavg
for derivations), the buffer requirements can be found to be

(20)

For the case where the failure occurs after video playback

v - ft—f =T+ +1 17) starts, the playback schedule will not be affected. The buffer
Tove requirements are found to be
and + -
T+ fT—f"—Tg+ Dp
— After — 1 + (22)
+ _ T yAff ’7 — —‘
7 [f f~+ rﬁﬂ ey (18) (N5 — K)Tpg
Tavg
and
Surprisingly, these are the same as the non-fault-tolerant case.
This counter-intuitive result is explained by the fact that each tamer = |1+ T+t +TL (23)
group of buffers here has the size@§ bytes instead of bytes “Adver (Ns — K)Toyg
in the non-fault-tolerant case. Hence, the system does indeed ) ) o
need additional buffers to support fault tolerance and the totalHence, the client buffer requirement is either
client buffer requirement is given by
Ieore: efore T ZBefore 24
S8 T+ ft—f-Tg Bt et Bt e4)
Brge = (2+
Tavg or
T+ -+ T
. 19
+ ’7 Tavg —‘> QS ( ) IAfter = YAfter + ZAfter (25)
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The retrieved redundant units have
been discarded here because the
failure is not yet detected.

Failure occurs here \ / Failure detected here
Transmission | ' /r? JREE
Server 0 [/‘

Retrieval —| l H/, { s

Hence the needed redundant units
have to be retrieved again.

Fig. 9. The AGSS scheduler discards retrieved video blocks once transmission is completed.

whichever is larger. However, from (6)9r = NgTr and which obviously is proportional to the system scale. Second, re-
Tr = (Ns — K)T,,. Therefore, the two equations are in factransmissions cannot start even in the next service round due
equivalent. The total client buffer requirement is thus given byo the need to retrieve redundant stripe units, incurring another
delay of NsT,., seconds, which again is proportional to the
+_ o _ system scale.

Bgsnc = <2 + Np + F J(erS — kf)T TEW The key to the previous two observations is in the server
ey e scheduler. First, under the AGSS scheduler [10], redundant units
+ [ (Ns — K)T, w ) (Ns — K)Q. (26) arediscarded together with the video data units once the service

o ave round ends to allow buffer reuse. Hence if the failure-detection
period spans two service rounds as shown in Fig. 9, redundant
B. Buffer Requirement under Sub-Schedule Striping units for the previous round will have been discarded by the time

the failure is detected, rendering immediate retransmission of
To derive the client buffer requirement for sub-scheduledundant stripe units impossible.

striping, we again consider stripe units in groupgd8t — K), o tackle this problem, one can modify the AGSS scheduler
i.e., group: comprises stripe unitg(Ns — K),i(Ns — K) +  sych that redundant units are retained longer to cater for server
L...,(¢+1)Ns — K) — 1)}. Now unlike FEC, each group of 5jjyre. However, we propose a redundant server scheme (RSS)
stripe units has the size 6] bytes, instead of)s bytes under 14 store all redundant units centrally in one or maké to be
FEC. Hence, the client buffer comprisés= Y + Z buffer gy4ct)redundantservers instead of distributing them over all

units, each of siz€ bytes. Proceeding the derivations in th@gpers. RSS has three advantages over simply increasing the
same manner (see Appendix A.4 for details), we can obtain tlg‘l?ffer holding time in AGSS

total buffer requirements from

First, RSS requires only the redundant servers, instead of
all servers, to have the additional memory to buffer redundant

B5S. — (o4 Np+ T+ ft—f-Tg units. Therefore, the total server buffer requirement is reduced.
©bc F Tovg Second, redundant units can be stored continuously on the disks
T4+ ft—f~+1y in the redundant servers such that retrievals are much more ef-
+ [ Tove D Q- (@7) ficient. By contrast, redundant units in the original distributed

scheme are scattered on the disk and hence a separate disk I/O
From (12), we can see thafy is proportional toNs. This is required to retrieve each redundant unit. Third, under RSS,
implies that the buffer requirement is also proportionaMg. retransmission of the redundant units can start as soon as the
As sub-schedule striping is originally proposed [10] to maintaiilure is detected, without the need to wait for the current stripe
a constant client buffer requirement independent of system scait to complete transmission. This is possible because the re-
(i.e., Ns), the extension to ODC appears to have defeated tiigndant servers are idle before a failure is detected.
goal. We propose a redundant server scheme in the next sectioAssume failure occurs at timg during the transmission of

to tackle this problem. stripey, then it will be detected latest by tinfe; + I'p). Since
retransmission of redundant stripe units can start immediately
IX. REDUNDANT SERVER SCHEME upon failure detection, as shown in Fig. 10, the required redun-

_ _ ~ dant unit will be transmitted by timé s + 7'» + Ty ). Now,
A closer look at Fig. 8 reveals why buffer requirement inet ¢; be the time for which transmission of stripends. Then,
creases with system scale under ODC. First, retransmissioritaé easy to see that

redundant stripe units cannot start in the current service round.
This incurs a worst-case delay equal fés — 1)7%,, seconds, tr <t; <ty+Tayg. (28)
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Fig. 10. Transmission scenario for the redundant server scheme.

Since the client will need to wait for the redundant unit befor 15 T T T T T T

stripej can be recomputed, the delay incurred in receiving strij —
4 will be given by
(tf +1p +Tavg) —t; < (tf +1p) — ty
10 “I
=Tp+ Tavg (29)

which, finally, is independent of the system scale. Using deriv
tions similar to Section VIII, we can obtain the client buffer re
quirement from

s —/SSS (ODC)
T+ f—|— _ f— _ TFJ +TD /BS (non-FT)
= (| | /

BS (ODC)

BS (FEC)

Client Buffer Requirement (MB)

Tavg 8§88 (ODC & RSS)
T4+ ft— 4T /SSS(FEC)
n [ T I —D 0 (30) '
Tave -FT)
1 2 3 4 5 6 7 8
for the case where failure occurs after playback have begun, c.... Level of Redundancy (K0
+_ - _p Fig. 11. Client buffer requirement versus level of redundancy.
R e
r+ fivi T 4T X. NUMERICAL RESULTS
- L D
- [ Tove w ) Q (1 Based on the performance models derived in the previous sec-

tions, we compute and present numerical results in this section
for the case where failure occurs before playback begins.  to illustrate the system resource requirement under various sce-
To support immediate retransmission of redundant units, tharios and study the sensitivity to key system parameters. Table |
redundant servers will need to retain redundant units longer tHasts the values for the system parameters used in the calcu-
in the original AGSS scheduler. In particular, the server wilation. The parametersg and7;, are determined empirically
need to keep retrieved redundant units (in blockgvgfunits) by collecting the video block consumption times of a hardware
for MPEG-1 decoder [8].

[ To w+1 (32) A. Buffer Requirement versus Level of Redundancy

NsTavg Fig. 11 plots the client buffer requirement versus the level of

service rounds (instead of one round in AGSS). Hence, tfRfundancy. There are a total @f+ ) servers in the system.
buffer requirement for the redundant servers will be given byThere are two observations. First, sub-schedule striping in gen-
eral requires less client buffer than block striping. Second, sub-

Tp schedule striping with ODC and RSS is the only scheme that has
IVNSTan—‘> (33) constant client buffer requirement irrespective of redundancy
level. Even the buffer requirement for the FEC case increases

whereA is the client-server ratio an@d is the number of groups with K. This is explained by the fact that under FEC, the client
per service round [10]. must receive and process video data in parity groups. Hence,

1
Bserver = QNSA <1 + 5 +



LEE: SUPPORTING SERVER-LEVEL FAULT TOLERANCE IN CONCURRENT-PUSH-BASED PARALLEL VIDEO SERVERS 35

40 T T / BS (ODC) / BS (FEC)

2 T T = T
30 —+—+—+—+—+—+—+++ - ;
@ s
z R 15 ," ~ —
£ @ g
8 =
E BS (ODC, Ng=5 4
5‘ 20 _\ ( ™ ) E
& BS (ODC, Ng=9) £
2 & II
2 g . -
s BS (ODC, Ne=13) = . 888 (0DC)
g £ s
SSS (ODC, Ng=5 a g
ok ] ( =5) z 4 K AN BS (non-FT)
""" SSS (ODC, Ng=9) 5 Dabb L L e e T e
$SS (ODC & RSS)
SSS (ODC, Ng=13) 0.5 N
SSS (FEC)
+—— 558 (ODC & RSS)
O 2 4 6 8 10 SSS (non-FT)
Failure-detection Delay (seconds) 0 1 1 | ]
2 4 6 8 10 12
Fig. 12. Client buffer requirement versus failure-detection delay. Number of Servers

. . . Ff .13. Client buffer requirement versus number of servers.
as K increases, so do the parity group size and, consequent 9

the buffer requirement. By contrast, redundant stripe units are
not transmitted until failure is detected under ODC with RS 0 l T .
Therefore, the buffer requirement does not depend aat all.

Server MTTF=25,000 hrs

B. Buffer Requirement versus Failure-detection Delay ®

Fig. 12 studies the sensitivity of buffer requirement with re
spect to failure-detection delay for various ODC system co
figurations. FEC is not plotted because the buffer requireme
is independent from the failure-detection delay. For all cases %
Fig. 12, the buffer requirement increases with longer failure-d *
tection delay. The results show that sub-schedule striping ag
achieves lower buffer requirement in general, with ODC/RS 10
achieving the smallest buffer requirement.

30
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C. Buffer Requirement versus System Scale 0g n
0 20 30 40 50

Fig. 13 plots the client buffer requirement versus the numb System Scale (Equilvalent # of Servers)
of servers in the system (i.e. system scale). The level of redun-
dancy is one (i.e KX = 1) and the failure-detection delay is 2 gFig. 14.  Proportion of redundancy versus system scale with system MTTF of
The first result is that block striping is nonscalable. This extendg 2 nours:
the results in Lee [10] for the non-fault-tolerant case to FEC and
ODC. The second result is that sub-schedule striping with ODgith an exponentially-distributed life time. L&t be the MTTF
is also nonscalable, although the slope is smaller than blddk a server node, and |18 be the MTTF for the system. Then
striping. Finally, we can observe that only sub-schedule stripigivenn, the desired system capacity, definedas (Ns — K),
under FEC, and under ODC with RSS are scalable, the latterd V', we can obtairi¥ from [26]
being completely independent of the system scale. Interestingly,

buffer requirements under FEC decreases for more servers and K
approaches the non-fault-tolerant case. This is because the level Wn,K)=V Z -, (34)
of redundancy is fixed and hence the redundancy overhead in- i—

curred decreases when more servers are added. _ )
Next, we can determin&’ such that the system MTTF is

D. Scalability under Constant Reliability equal to or larger than a minimum, denotedy;;,,
The previous results are obtained with constant redundany
level. However, the system-level reliability will inevitably de- K = min{k|W(n, k) > Wpin, k=0,1,...}.  (35)

crease with more servers if the redundancy level is kept con-

stant. To the service provider, it would be desirable to obtain thég. 14 plots the amount of redundancy required versus the
system requirement under a given minimum system-level rediystem scale under a system MTTF requirement of 10000
ability. Formally, we assume that the servers are homogenetasirs. The results suggest that the amount of redundany
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Fig. 15. Client buffer requirement versus system scale with system MTTF of 10 000 hrs.

required depends primary on the server MTTF and not on thecome scalable to any number of servers. Finally, we compute

system scale. numerical results to show the feasibility of the proposed
OnceK is known, we can obtain the client buffer requiremerdrchitecture under real-world conditions. With the proposed

accordingly. The results are plotted in Fig. 15, with the verticakchitecture, a concurrent-push-based parallel video server will

axis representing client buffer requirement and the horizontag able to sustain multiple simultaneous-server failure and yet,

axis representing.. The minimum system MTTF is fixed at can maintain nonstop continuous video playback for all clients.

10000 hours. The results show that sub-schedule striping with

both ODC/RSS and FEC are scalable under the given system APPENDIX

MTTF constraint. On the other hand, we note that while the

buffer requirement for FEC depends on the server MTTF, the Derivations of Buffer Requirement for Block Striping Under

buffer requirement for ODC/RSS is constant and independé:rﬁC

of server MTTF. We also note that FEC requires less buffer if Among theNs servers, assume the earliest transmission for

server MTTF is significantly larger than system MTTF (e.qg., fothe first round starts at timig, then the last transmission for the

cases with server MTTF = 25 000 and 50 000 hours). Otherwifigst round must start at the latest by titaie+ , wherer is the

(e.g. server MTTF = 10000 hours) ODC/RSS will achieve @ock jitter among servers. The time for video block grétmpbe

lower buffer requirement. completely filled, denoted b¥'(¥), is therefore bounded by [10]

XI. CONCLUSION ((i(+D)Tp+to+f7) < F(i) < (((H1)Tp+to+7+fT)  (36)

In this paper, we investigate various protocols and alghereZr is asgivenin (4) ang™ (f* > 0)andf~ (f~ <0)
rithms to support server-level fault tolerance in the concurredte Useéd to model the maximum transmission time deviation
push architecture. In particular, we propose and compa%e, tq randomness in t_he system, mclt_Jdlng transmission rate
two fault-tolerant protocols, FEC and ODC, and two striping€viation, CPU scheduling, bus contention, etc. ,
policies, block striping and sub-schedule striping. The first Since the client starts pIaymg_ video a_fter filling the first y
resultis that FEC is simpler in implementation, does not requifoups of buffers, the playback time for video block group 0 is
failure detection, and is inherently scalable to any numbg{mPly equal tof'(y — 1). Hence, the playback time for video
of servers under sub-schedule striping. The only downsi@PCk group:, denoted byP(¢), is bounded by
is add_itional ne_tvyork bandwi_dth overhead during normgl (iNsTavg + F(y — 1) + Tg)
operation. Surprisingly, analytical results show that ODC is < P(i) < (iN Flu— 37
not scalable if redundant data is distributed over all servers < P(i) < (iNsTovg + Py — 1) + 1) (37)
(similar to RAID-5 in disk arrays), even with sub-schedulgpere
striping. To tackle this problem, we propose storing redundant
data centrally in redundant servers to avoid the reconfiguration Tovg = }? (38)
delay. We increase the buffer holding time at the redundant v
servers to enable quick redundant data transmission. Analytisahe average playback time for one video block, apdZ;, are
results prove that this redundant server scheme enables OD@ojitter bounds for video-block consumption variations [10].
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To guarantee video playback continuity, we must ensure thatSince the client starts video playback after filling the first
a video block group arrives before its playback deadline. In tiggoups of buffers, the playback time for video block group O is
worst case, the latest filling time must be smaller than the eaimply equal toF'(Y" — 1). Hence, the playback time for video
liest playback time, i.e., block groupt, denoted byP(¢), is bounded by

max{F(1)} < min{P(i)}. (39) (iTowg + F(Y = 1)+ TE)
For the LHS, noting thal» = (Ns — K)Th, (c.f. (5) and < P(1) < (iTavg + F(Y = 1) + 1), (48)

(38)), we then have Substituting the upper bound of (47) and the lower bound of (48)

max{F(i)} = (i + 1)(Ng — K)Tag +to+7 + f+. (40) into the continuity condition in (39) gives
Similarly, the RHS is (i + DTavg +to+ [T +7)
< (Tavg +min{F(Y — 1)} + TF) (49)
min{P(é)} = iNsToye + min{F(y — 1)} + Tg
= iNsTag +Y(Ns — K)Tayg +to+ "+ T OF

“D ((G 4+ )Tag +to + f+ +7)
Substituting (40), (41) into (39) gives < (Tavg + YTavg +to+ f7)+Tr).  (50)
(i 4+ 1)(Ns — K)Toyg +to+7+ 1) Rearranging, we can obtain from
< (iNsTavg + y(Ns — K)Tavg +to + [~ +TE). (42) v [ﬁ —f —TE—i—T—‘ ) (51)
Rearranging, we can then obtajn Tavg
+ _ = _ Using similar derivations, we can obtaihfrom
yr14 L TEtT (43)
(s = )T Z:["H_fﬂrTLJ”WH (52)
Knowing the number of groups required, we can then obain Tavg
from
_ T+ —f"-Tg C. Derivations of Buffer Requirement for Block Striping
Y= [1 + (N5 — K )Tag w Ns (44)  Under ODC

Assume that a failure occurs during the transmission of group
then for those groups received before a failure (@eg, ¢ <
the filling time is bounded by

On the other hand, to guarantee that the client buffer will not
be overflowed by incoming video data, we need to ensure thl; t
theith video block group starts playback before ¢he-{ —2)th Ih
video block group is completely received, whére- L /Ns. p _
This is because the client buffers are organized as/a circular ((E+ DTk tho +‘f )
buffer, and we must always have at least one grouly effree < Fy(i) < (((+ DT +to+7+ 1),
buffers to receive video blocks arriving simultaneously frm 0<i <y (53)
servers. Therefore we need to ensure that the earliest filling time
for group(i+1 — 2) must be larger than the latest playback time However, groups transmitted after the failuge> ;) will

for groupi be deferred due to server reconfiguration. According to Sec-
tion VI-B, the worst-case delay due to reconfiguratiorig
min{ F(¢ + [ — 2)} > max{P(i)}. (45) seconds. Hence, the maximum filling time is bounded by
Using similar derivations, we can obtain the number of buffers  ((4 + 1)Tr +to + f~ + D)
needed to prevent buffer overflow as < Fp(i) < ((i + 1)Tp +to+ 7+ T+ Dp),
+_ -7 i> . 54
Z:[HTJ(FN’{ f(f)TJr LWNS. (46) b= (4)
s e Merging (53) and (54) gives bounds for the general case
B. Derivations of Buffer Requirement for Sub-Schedule (G+1)Tr+to+ )
Striping Under FEC <FG) < (Gi+1)Tp+to+7+ ft+Dp), Vi
The filling time for group i of a video stream started at time (55)

to is bounded by
The bounds forP(¢) depend on whether a failure occurs be-
G+ D) Tvg +to+ f7) fore or after playback has begun. Specifically, if a failure occurs
SF@E) < ((i4 DTavg +to+ fT+7).  (47) before playback begins, then playback will be delayed up to
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seconds due to the need to reconfigure the servers to compfetstituting the upper bound of (54) into (66), we have
the prefill process
| (i 1= 1)(Ns = K)Tavg +to+ 1)
(Z(NS B K)Tavg.—i_ FF(y B 1) + TE) > (iNSTan + (y(NS - K)Tavg
SPBefore(Z) S (Z(NS_K)Tavg+FF(y_1)+T€)') +t0+7'+f++DF)+TL)- (67)
56

o _ Rearranging, we can obtain= (I — y) as
Otherwise, if the failure occurs after playback has begun, then

the playback schedule will not be affected

e L B

ZBefore = |1
O et s

(L(NS - K)Tavg + FN(y - 1) + TE)
< Paprer(i) < (i(Ns — K) Ty + Fn(y — 1) + 1) For the second case, playback is not delayed by the failure.
(57) Hence, we have

Now if the failure occurs before playback begins, then in- min{F'(i + 1 — 2)} > max{Page:(1)} (69)

voking the continuity condition gives
or

max{F(4)} < min{Ppefore(%)} (58) ) _
(((+1-1)(Ns = K)Tavg +to+ )

or > (i(Ns — K)Tnyg + max{Fy(y — 1)} + T1). (70)
; +
(@+DTp +to+ 7+ f7+Dr) Substituting the upper bound of (53) into (70), we have
< (i(Ns — K)Tayg + min{Fr(y — 1)} +Tg)  (59)

t4+1—1)(Ns— K)The +to+ [~
Substituting the lower bound of (54) into (59) and notifig = (¢ )W Towve 10 +/7)

(Ns = K)Tayy, We get > (iNsTavg + (y(Ns = K)Tavg +to +7+ 1) + T1)-
(71)
((Z+1)(NS - K)Tavg+t0 +T+f+ +DF)
< (i(Ns — K)Tayg + (y(Ns — K)Tag Rearranging, we can obtain= (I — y) as
+tot+ f +Dr)+1Ek). (60) Ty
. . ZAlter = 14— (72)
Rearranging, we can obtainfrom (Ns — K)Tavg
+ /- -Ts
YBefore — 1 + T f f & (61) H : H
(Ns — K)Tavg D. Derivations of Buffer Requirement for Sub-Schedule

Striping Under ODC
Similarly, if the failure occurs after playback has begun, then ping

the continuity condition becomes As_s_umir?g failure occurs durir_lg transmission of grg’ur_hen
the filling time for groupé of a video stream started at ting
max{F(1)} < min{Paser(4)} (62) is bounded by
or ((t+1)Tavg +to+ )
(i 4+ 1)Tr +to+7+ T+ Dp) SEN@ S (4 DTag +to+ fT47), 05 <
< (i(Ns — K )Ty + min{Fy(y — D} +Tg). (63) (73)
(i 4+ 1D)Twg +to+ f~ + Dr)
Solving, we can obtaip from < Fp(i) < ((i+ VDTavg +to+ fT+7+Dp), i > 4.
T+ ft—f"-Tp+Dr (74)
After = |1 4
. o FCD

Merging (73) and (74) gives the universal bounds i)
Similarly for Z, we also need to consider the two cases. For
first the case where failure occurs before playback begins, wé(i + 1)Tavg +to + /)

have SF(Z)S((Z+1)Tavg+t0+f++T+DF)a VZ
min{F (¢ + 1 — 2)} > max{Pretore(¢)} (65) (75)
or Similarly, the playback schedule is bounded by
((i+1—=1)(Ns — K)Toyg +to+ ) (iTovg + Fr(Y — 1) + Tg)

> (i(Ns — K)Toyg + max{Fp(y — 1)} + T1). (66) < Pregore(i) < (iTavg + Fe(Y — 1) +11) (76)
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for the case where failure occurs before playback begins, and [7]

(iTan + FN(Y — 1) + TE) [8]
S PAfter(i) S (iTavg + F]\T(Y - 1) + TL) (77)
(9]
for the case where failure occurs after playback has begun. [10]
Invoking the continuity condition, we can obtain the corre-
sponding bounds foY™ as follows: a1
11
[Tt
YBefore - ’7 Tavg +1 (78) [12]
t—fT—-Tg+74+D
Vatier = [f ! T FW 179 g
avg

Using similar derivations, we can obtain the corresponding14]

bounds forZ as follows:
[15]

t—f+Tr+74+D
ZBefore = ’7f f T L F—‘ + 1 (80) [16]
avg
f+ —f~+Tr+ 7'—‘
ZAtter = ’7 +1 (81)

Tavg [17]
[18]
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