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Supporting Server-Level Fault Tolerance in
Concurrent-Push-Based Parallel Video Servers

Jack Y. B. Lee

Abstract—Parallel video servers have been proposed for
building large-scale video-on-demand (VoD) systems from mul-
tiple low-cost servers. However, when adding more servers to scale
up the capacity, system-level reliability will decrease as failure of
any one of the servers will cripple the entire system. To tackle this
reliability problem, this paper proposes and analyzes architectures
to support server-level fault tolerance in parallel video servers.
Based on the concurrent push architecture proposed earlier, this
paper tackles three problems pertaining to fault tolerance, namely
redundancy management, redundant data transmission protocol,
and real-time fault masking. First, redundant data based on
erasure codes are introduced to video data stored in the servers,
which are then delivered to the clients to support fault tolerant.
Despite the success of distributed redundancy striping schemes
such as RAID-5 in disk array implementations, we discover that
similar schemes extended to the server context do not scale well.
Instead, we propose a redundant server scheme that is both scal-
able, and with lower total server buffer requirement. Second, two
protocols are proposed to manage the transmission of redundant
data to the clients, namely forward erasure correction which
always transmits redundant data, and on-demand correction
which transmits redundant data only after a server failure is
detected. Third, to enable ongoing video sessions to maintain
nonstop video playback during failure, we propose using fault
masking at the client to recompute lost video data in real-time. In
particular, we derive the amount of client buffer required so that
nonstop, continuous video playback can be maintained despite
server failures.

Index Terms—Concurrent push, fault tolerance, parallel video
server, scheduling algorithm, server failure, server push, video-on-
demand.

I. INTRODUCTION

WHILE video-on-demand (VoD) systems have been
available for many years, large-scale deployments of

VoD services are still uncommon. One reason is the high cost
involved in setting up a broadband network infrastructure,
acquiring high-capacity video servers, and installing a large
number of set-top boxes. For video servers, most large-scale
systems available today are of proprietary nature, employing
massively parallel processing (MPP) platforms (e.g., nCube [1]
and Magic [2]). While these platforms can provide capacities
far exceed that of conventional server platforms (e.g., PC
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Fig. 1. Architecture of a (5-server) parallel video server.

server), their costs are inherently higher due to the lower
production volume.

Recently, parallel video server has been proposed for
building large-scale VoD systems from multiple low-cost
servers [3]–[17] such as PC-based servers. One such architec-
ture—concurrent push [10]—comprises multiple autonomous
servers together with an admission scheduler connected to the
clients by an interconnection network (Fig. 1). By dividing a
video title into small, fixed-size units, and distributing them to
all servers, i.e.,server striping, this architecture can achieve
perfect load balancing among servers and yet does not require
video data replication. The servers simultaneously transmit
video data to a client continuously at a proportionally reduced
rate so that existing ATM quality-of-service (QoS) controls can
be employed. Results [10] showed that concurrent push can
potentially be scaled up to more than 10 000 concurrent video
streams using current PC platforms.

One potential problem with the concurrent push architecture,
and any parallel architecture including MPP, is reliability. As
the system distributes video data over multiple servers, failure
of a single server will cripple the entire system. Worse still,
as the system is scaled up to more users, more servers will be
needed and consequently the system-wide reliability will de-
crease accordingly. Drawing similar principles from disk array
researches, we propose improving system reliability by means
of introducing redundancy into the system.

The major contributions of this study are in tackling three
key problems pertaining to supporting fault tolerance under
the concurrent push architecture, namely redundancy manage-
ment, redundant data transmission protocol, and real-time fault

1051–8215/01$10.00 © 2001 IEEE



26 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 1, JANUARY 2001

masking. First, redundant data based on erasure codes are in-
troduced to video data stored in the servers, which are then
delivered to the clients to support fault tolerant. Despite the
success of distributed redundancy striping schemes such as
RAID-5 [18] in disk array implementations, we discover that
similar schemes extended to the server context do not scale
well. Instead, we propose a redundant server scheme that is
both scalable, and with lower total server buffer requirement.
Second, two protocols are proposed to manage the transmis-
sion of redundant data to the clients, namely forward erasure
correction (FEC), which transmits redundant data even when
there is no failure, and on-demand correction (ODC), which
transmits redundant data only after a server failure is detected.
These two protocols achieve different tradeoffs between band-
width overhead, implementation complexity, and client buffer
requirement. Third, to enable ongoing video sessions to main-
tain nonstop video playback during failure, we propose using
fault masking at the client to recompute lost video data in
real-time. In particular, we derive the amount of client buffers
required so that nonstop, continuous video playback can be
maintained.

The rest of the paper is organized as follows. Section II re-
views related works in this area and compares them with this
paper. Section III presents an overview of the concurrent push
architecture. Section IV presents how redundancy can be intro-
duced into concurrent push by extending the RAID-5 scheme to
the server level. Section V presents the FEC protocol for trans-
mitting redundant data. Section VI presents the ODC protocol
for transmitting redundant data. Section VII analyzes the FEC
protocol by deriving the amount of client buffer required to sus-
tain nonstop video playback despite failure. Section VIII ana-
lyzes the ODC protocol by deriving the amount of client buffer
required to sustain nonstop video playback despite failure. Sec-
tion IX presents the redundant server scheme (RSS) that solves
the scalability problem in ODC. Section X presents numerical
results computed from the derivations and analyzes the sensi-
tivity of the proposed algorithms and protocols to several key
system parameters. Finally, Section XI concludes the paper.

II. RELATED WORKS

While many studies have investigated disk-level fault toler-
ance in video servers (e.g., [19]–[22]), only three studies [5],
[15], [16] known to the author have investigated server-level
fault tolerance in parallel video servers. In this section, we
briefly review these studies and compare them with the ap-
proach proposed in this paper.

Boloskyet al. [5] proposed the use of data mirroring to im-
prove reliability in their Tiger video server (now known as Mi-
crosoft NetShow Theatre). Similar to disk mirroring, they pro-
posed storing two copies of every stripe unit at the server nodes.
Hence, in case a server fails, rendering one of the copies unavail-
able, the system can still use the remaining copy for delivery.
Clearly, the two copies must reside at two different server nodes
so that a node failure will not render both copies unavailable si-
multaneously. Additionally, Boloskyet al.proposed the use of
declustering for stripe-unit placement. Briefly speaking, given
the number of server nodes, a declustering scheme determines

the placement of the replicated stripe units so that additional
load in retrieving the backup copies are evenly distributed across
all server nodes. Declustering has been studied extensively in
the context of disk arrays and the interested readers are referred
to [23] for a study of declustering in a disk array.

One tradeoff in data mirroring is doubled storage require-
ment, which could be expensive for applications like video li-
brary or paid-movie service. A subtler tradeoff is the need for
declustering. As no known algorithm can automatically produce
a declustering scheme for an arbitrary number of servers, this
mirroring approach would require more complex capacity plan-
ning and data reshuffling when being scaled up.

In comparison, the architecture proposed in this paper does
not need full data replication (unless there are only two servers)
or declustering. For example, with a server mean time to failure
(MTTF) of 50 000 hours and a targeted system MTTF of 10 000
hours (see Section X-D), the redundancy overhead is only
around 20%. The striping and placement policy is simple and
can be scaled to any number of servers. In addition, although
mirroring can sustain single-server failure, the proposed archi-
tecture can sustain servers failing simultaneously. Last but
not least, reliability of the Tiger video server will inevitably
decrease as the system is scaled up because only one server
failure can be sustained. By contrast, we show that the proposed
architecture can be scaled up to more servers and can still
maintain the same level of reliability.

The second related study by Tewariet al. [15] investigated
a clustered multimedia server architecture that also employs
server-level striping. They used simulation and queueing
models to analyze the QoS performance and to compare the
cost-effectiveness of server-level striping with mirroring.

This paper differs from their study in two major ways.
First, they employed different video distribution architecture in
their study. Specifically, their system has two types of nodes:
back-end nodes for storage, and front-end nodes for data
delivery. Video data are striped across the back-end storage
nodes while the front-end nodes assemble video data retrieved
from the back-end storage nodes for delivery to video clients.
This distribution architecture is calledindependent proxy[9].
By contrast, the architecture proposed in this paper has no
intermediate delivery nodes—calledproxy-at-client[9].

The primary advantage of the independent proxy architec-
ture is client transparency: the details of the server cluster can
be completely hidden because the client communicates with a
single delivery node only. However, as the delivery nodes do
not contribute to the system capacity, they will add to the cost
of the system. Second, for economical reasons, a delivery node
will likely serve many clients simultaneously. Hence, if a de-
livery node fails, services of all connected clients will be dis-
rupted. The architecture proposed in this paper does not have
this problem because no such delivery node is needed. Finally,
given the rapid progress in CPU processing power, overhead in
re-computing unavailable data due to server failures can readily
be absorbed by the client CPU. Our experiments showed that
even a low-end Pentium CPU can recompute lost data at a rate
of more than 100 Mbps. Hence, performing the recomputations
at the client not only better utilizes the client hardware, but also
avoids potential bottlenecks at the intermediate delivery nodes.
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Interested readers are referred to Lee [9] for more detailed com-
parisons of different parallel-server architectures.

The third related study is by Wonget al. [16]. Their RAIS
architecture employed striping with distributed redundant units,
which are computed from video data units. They proposed a spe-
cial video transfer protocol to detect server failure. The client,
armed with the redundant units and the survived data units, can
then compute the lost units in real-time. In the simplest form,
the redundant units are simply parity units, computed from ex-
clusive-or between the video data units of the same stripe. This
parity-based striping scheme can protect single-server failure
and their protocol can maintain continuous video playback by
means of additional buffering at the client.

This paper differs from RAIS [16] in three major ways. First,
RAIS employs the client-pull service model where a client peri-
odically sends requests to the servers to retrieve video blocks
for playback. By contrast, the proposed architecture is based
on the server-push service model where the servers continu-
ously transmit data to a client. Briefly speaking, the two service
models result in different designs for server and client, as well
as different system requirements. Interested readers are referred
to Lee [9] and Raoet al. [24] for comparisons between the two
service models. Second, while RAIS employed block striping
with distributed parity placement, we show that similar place-
ment policy is not scalable for concurrent push. To solve this
problem, we propose in Section IX a redundant server scheme
that can be scaled up to any number of servers. Third, the RAIS
study focused on implementation and experimentation. We es-
tablish in this paper a performance model for the proposed ar-
chitecture to show that it is scalable to a larger number of servers
and still can maintain the desired reliability.

III. T HE CONCURRENT-PUSH ARCHITECTURE

We present an overview of the concurrent-push architecture
in this section. Interested readers are referred to Lee [10]
for more details. As shown in Fig. 1, the concurrent-push
architecture is built on top of a cluster of homogenous servers,
an admission scheduler, and the video clients. Each server is
equipped with its own CPU, memory, disk storage, and network
interface. The concurrent-push architecture defines the server
striping policy, I/O scheduling policies, admission scheduling
scheme, and client buffer management scheme.

Each server’s storage space is divided into fixed-size units
of bytes each. Figs. 2 and 3 depict the two striping policies
in the concurrent-push architecture. We use to denote the
number of servers and to denote the number of clients in
the system. The one in Fig. 2 stripes video titles in fixed-size
blocks of bytes, called block striping. The other one in Fig. 3,
called sub-schedule striping scheme (SSS), stripes video titles
in smaller units of bytes, where . Note that despite
the difference in striping size, a disk transaction always retrieves
a -byte block, albeit containing stripe units instead of just
one stripe unit in the case of SSS. SSS is developed to remove
the client buffer requirement’s dependency on so that the
system can be scaled up to more servers.

For I/O scheduling, each server employs a modified version
of the group sweeping scheme (GSS): the asynchronous group

Fig. 2. Fixed-size block striping without redundancy.

Fig. 3. Fixed-size sub-schedule striping without redundancy.

sweeping scheme (AGSS). The primary difference being that
the assignment of a new video stream to a sweeping group is
done externally by an admission scheduler in AGSS rather than
internally by the server in GSS. This is necessary because server
clocks are, in general, not precisely synchronized and hence
server-based group assignment could become inconsistent,
increasing transmission jitter. To start a new video session, a
video client first sends a request to the admission scheduler.
The admission scheduler will then schedule the servers to begin
transmission to the client. Under concurrent-push, all servers
transmit data to a client concurrently. With an average video
bit-rate of , each server will transmit at a reduced rate of

to maintain an aggregate data rate of.
At the client side, it maintains a circular buffer comprising

fixed-size blocks of bytes. A number of the buffer blocks are
filled before video playback starts. These prefilled buffer blocks
are used to prevent buffer underflow, while the remaining empty
buffer blocks are used to prevent buffer overflow due to instanta-
neous variations in video-data consumption rate, network delay
jitter, transmission jitter, etc. A detailed performance model on
the concurrent-push architecture, including derivations on the
buffer requirement and system response time, can be found in
Lee [10].

IV. REDUNDANCY MANAGEMENT

To support server-level fault tolerance, we need redundant
data so that a client can recompute the unavailable video data
after server failures. The problem of correcting data errors has
been studied extensively in the literature. According to coding
theory [25], one can encode a set of symbols with redundan-
cies so that errors occurring within the set can be corrected
later. However, server failure is slightly different in the sense
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Fig. 4. Fixed-size block striping with redundancy of one.

Fig. 5. Fixed-size sub-schedule striping with redundancy of one.

that there is really no error in the coding sense. Instead, a server
failure introduces erasures—the absence of data.

Errors and erasures are different because for errors, data are
still being received, but the content may be corrupted. In case of
erasure, the expected data are simply missing, and hence no er-
roneous data will be received. Here we have implicitly assumed
that the server is fail-stop, i.e., it stops sending out data upon
failure. This type of failure could be caused by disk subsystem
failure, network failure, power lost, or even software crashes. In
any case, erasures are introduced into the video stream because
data stored in the failed server will become unavailable.

According to coding theory, to recover an erased symbol (a
unit of data) in a codeword (also called a parity group, or a
stripe), one need to encode the data with at least one redun-
dant symbol per codeword. One well-known coding algorithm
called Reed–Solomon (RS) code [25] can encode data with any
codeword size and level of redundancies. If one need to protect
the system from only single-server failure, then an even simpler
code—parity, can be used instead. For simplicity, we assume
in this paper a generic code where each additional redundant
symbol can recover one erasure.

Drawing related principles from RAID-5 [18], Figs. 4 and
5 depict the proposed redundant striping policies for block
striping and sub-schedule striping. The basic idea is the
same—introduces one or more redundant stripe units in every
stripe. The redundant units are precomputed and distributed to
the servers in a round-robin manner similar to a RAID-5 disk
array. Note that a parity group spans all servers, and hence, the
parity group size equals the number of servers in the system.

In [9], [16], two possible approaches are proposed for trans-
mitting redundant data to the clients, namely FEC and ODC.
These two schemes represent different tradeoffs: FEC simplifies
system implementation and has lower client buffer requirement

Fig. 6. Recovery of unavailable stripe units through erasure correction code.

and startup delay in certain cases, at the expense of network
bandwidth overhead during normal operation (i.e., no failure),
while ODC avoids this bandwidth overhead, at the expense of a
more complicated system implementation and potentially larger
buffer requirement and startup delay. We present a FEC-based
transmission scheme for concurrent push in the next section, and
a ODC-based transmission scheme in Section VI.

V. FEC

As the name suggests, servers under FEC transmit redun-
dant data regardless of server failure. As redundant data are al-
ways received, the client can recompute unavailable data by era-
sure correction computation (see Fig. 6 for the case under sub-
schedule striping). Hence, one does not need to detect server
failure1 for the sake of maintaining nonstop operation, and con-
sequently system reconfiguration is also unnecessary. Clearly,
this can greatly simplify the implementation and avoid other
complications such as false alarm or undetected failure. The
tradeoff is extra network bandwidth required to deliver redun-
dant data during normal-mode operation. Specifically, with
servers and a redundancy level of(i.e., up to simultaneous
server failures can be sustained), the network bandwidth over-
head incurred will be given by

(1)

For a small-scale system (i.e., small) with high level of
redundancy (i.e., large), this overhead could become pro-
hibitive. For example, with and , the overhead
would become 50%. Considering that a VoD system is expected
to operate mostly in normal mode, this overhead may not be ac-
ceptable for systems with a small number of servers. The ODC
scheme discussed next is designed to avoid this bandwidth over-
head.

VI. ODC

Under ODC, the system does not transmit redundant data un-
less a server failure is detected, thereby avoiding the network
bandwidth overhead incurred during normal-mode operation. In
return, the system must detect server failures so that the system

1In practice, failure detection is still needed to notify the operator so that the
failed server can be repaired or replaced.
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can be reconfigured to start transmitting redundant data. This
extra step of failure detection is not needed in FEC.

In theory, with servers and a video data rate of ,
each server only needs to transmit at a rate of ; we
call it Min-Rate transmission. Upon a simultaneous-server
failure , the surviving servers will have to
increase the transmission rate from to
to maintain the same aggregate video bit-rate. This Min-Rate
transmission scheme thus requires dynamic reconfiguration of
the server scheduler as well as network bandwidth allocations.
Alternatively, the system can maintain the transmission rate at

; we call it Std-Ratetransmission, even when
there is no failure. The servers just skipped transmitting the
redundant units. When a-server failure occurs, the system
will simply reconfigure of the servers to start transmitting
redundant data, thereby maintaining enough data for erasure
correction at the clients. This approach eliminates the need
to dynamically reconfigure the server scheduler and network
connections.

If the network does not require per-channel resource alloca-
tion (e.g., FastEthernet), Min-Rate transmission will have no
advantage over Std-Rate transmission, as the average rate is
the same for both schemes. On the other hand, if the network
requires per-channel resource allocation such as CBR service
in ATM, then under Min-Rate transmission, the servers will
need to re-negotiate a higher bandwidth allocation from the
network upon detecting a failure. However, reconfiguring
hundreds or even thousands of connections simultaneously
could overload the network management center, which in turn
could delay the reconfiguration process significantly. Therefore
we conclude that the Min-Rate transmission scheme does not
offer significant advantage over Std-Rate and is difficult to
implement efficiently. By contrast, the Std-Rate transmission
scheme is much simpler to implement, and so we will only
consider the Std-Rate transmission scheme in the rest of the
paper.

A. Failure-Detection Protocol

As discussed in the previous section, failure detection is nec-
essary in ODC because redundant data are not normally trans-
mitted. The goal is to detect a server failure quickly and accu-
rately, so that the remaining servers can be reconfigured to begin
transmitting redundant data. If thedetection delay—defined as
the time from a server fails to the time the remaining servers
are notified of the failure, is too large then video playback hic-
cups can occur at the clients. On the other hand, the detection
algorithm should not be overly sensitive in order to avoid false
alarms. We propose an admission-scheduler-based (ASB) pro-
tocol for detecting server failures in this section.

In our previous investigations [8], [16], we found that
incoming control requests could be delayed for a substantial
amount of time (e.g., more than 1 s) due to intense I/O activities
at the servers. Consequently, it would be more difficult to im-
plement server-based fault-detection protocols that can quickly
detect a failure. This motivates us to propose implementing
fault-detection at the admission scheduler rather than at the
servers. The admission scheduler is originally proposed to
tackle the uneven group assignment problem arising from

server clock jitters [10]. We propose extending the admission
scheduler to simulate a video client. Unlike real video clients,
however, received video data are simply discarded at the ad-
mission scheduler after bookkeeping is done, and the scheduler
never performs any interactive control nor will the stream ever
terminate (until system shutdown). At the servers, video data
destined to the admission scheduler are not retrieved from
the disks, but rather generated on-the-fly. Since the generated
video data will not be interpreted at the admission scheduler,
the server can avoid disk overhead by sending the same buffer
repeatedly after updating header information such as stream
offset or sequence number.

When a server fails, it simply stops transmitting data. Hence,
a server failure can be inferred from the missing of video data at
the admission scheduler. We assume that the admission sched-
uler is located close to the servers so that worst-case arrival
deadlines are known for each and every video packets. Then the
admission scheduler can declare a server to have failed if the ar-
rival deadline is exceeded by a threshold of, say, seconds.
This threshold is introduced to reduce the possibility of false
alarms caused by unexpected data delivery delays or occasional
packet losses.

Note that the admission scheduler itself could also fail.
However this type of failure will be less problematic because:
1) while new streams cannot be started, the failure will not
affect existing streams and 2) compared to the video servers,
the admission scheduler is much simpler and hence potentially
far more reliable. For example, the admission scheduler can be
diskless, so that disk failure can be avoided. ECC memory can
be used to protect from memory faults, etc. We are currently
investigating potential solutions such as replicated admission
schedulers to tackle this final weak link.

B. Server Reconfiguration for Block Striping

Upon declaring that a server has failed, the admission
scheduler will multicast a message to the surviving servers to
notify them of the failure. The delay incurred will obviously
be implementation dependent. For simplicity, we assume that
the failure-detection delay is bounded and the maximum is
given by seconds. Upon receiving the failure notification,
the servers will initiate a reconfiguration process to begin
transmitting redundant blocks and toretransmitthe necessary
redundant blocks.

Fig. 7 depicts the scenario for reconfiguring a 5-server
system under block striping. Note that we consider only one
video stream for illustration and analysis, while in practice the
same process occurs for all active video streams. All algorithms
and procedures still apply and no modification is needed to
extend to the multi-stream case. Note also that redundant video
blocks are always retrieved, just not transmitted when there
is no failure. One might notice that during normal operation,
some disk bandwidth would then be wasted in retrieving
redundant blocks that are not needed. It is conceivable that one
can reuse this wasted bandwidth to serve extra video sessions
during normal operation. However, these sessions will have
to be disconnected upon server failure. More investigations
are therefore needed to quantify the gains and the associated
tradeoffs.
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Fig. 7. Server reconfiguration under ODC with block striping.

Now assuming that failure occurs during service round, then
the servers will receive the failure notification latest by round

(2)

where is the length of a service round defined in (5) below.
Knowing the failure, the servers will transmit redundant video

blocks in addition to video blocks in the next round if
there is one (e.g. P4 in Fig. 7). However, the stripes
that are transmitted after the failure but before the failure is de-
tected will have no redundant blocks transmitted (e.g., stripes 2
and 3). To enable the client to re-compute the lost stripe units, it
is therefore necessary toretransmitthe required redundant units
(e.g., P2 and P3) for these stripes.

In a system with servers and redundant blocks per
stripe, a maximum of redundant blocks will have
to be retransmitted. Note that this is the maximum because re-
transmission is not needed for lost redundant blocks. Assume
the failure is a simultaneous -server failure (worst-case sce-
nario), leaving working servers, the remaining servers
can then retrieve and transmit redundant units in a
service round. Hence, a maximum of

(3)

additional service rounds are required to retransmit the neces-
sary redundant units. Consequently, transmission of subsequent
stripes will be delayed by at most rounds.

Now consider the recovery of stripe(e.g. stripe 2 in Fig. 7).
At the time (round ) the failure is detected, the current disk
cycle is already retrieving stripe units for the next transmission
cycle . Hence, redundant units for stripecan only be
scheduled for retrieval in the next disk retrieval cycle, which in
turn will be sent in transmission round . Therefore, delivery
of the redundant block required to recover stripewill be de-
layed by

(4)

service rounds. For a transmission rate of bytes/s
under Std-Rate transmission, the time it takes to transmit a video
block of bytes, i.e., length of a service round, is equal to

(5)

Therefore, using (4) and (5), we can compute the delay for de-
livering the redundant block for stripefrom

(6)

Provided that , (6) also bounds the delay for
all stripes. To see why begins with (3)

(7)

This shows that the delay experienced by stripes
transmitted after the failure is detected

( ) is smaller than the delay experienced by stripe .
Therefore, the worst-case delay in (6) also bounds the delay for
all stripes.

The additional delay will likely lead to video playback hic-
cups at the clients. If temporary service interruption can be tol-
erated, then the clients can simply suspend playback for
seconds to resynchronize with the new transmission schedule.
Otherwise, we can introduce additional buffers at the client to
sustain nonstop video playback during reconfiguration (Sec-
tion VIII).

C. Server Reconfiguration for Sub-Schedule Striping

Fig. 8 depicts the server reconfiguration process for
sub-schedule striping, with and . Instead of
considering service rounds, we consider micro-rounds, defined
as the period for transmitting a stripe. Hence, a system with

servers will have micro-rounds per service round. Note
that in each service round, a server retrieves

(8)

bytes of video data (instead of bytes in block striping) for
every video stream and the length of a service round is

(9)

seconds (instead of seconds in block striping).
We assume that a -server failure occurs during micro-round

and is detected in micro-round. Similar to (2), we can obtain
from

(10)

Once notified of the failure, the servers will begin transmit-
ting redundant units for subsequent stripes ( . As each stripe
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Fig. 8. Server reconfiguration under ODC with sub-schedule striping.

contains redundant units, the system needs to retransmit up
to redundant units. This will require up to

(11)

micro-rounds for retransmitting the redundant units.
Note that this process has two subtle constraints. First, re-

transmission cannot start immediately in the next service round
because the servers need another service round to retrieve the
required redundant units. Second, even if , the last
service round for retransmission cannot be shortened because
the disk requires a full service round to retrieve video blocks for
transmission in the next round.

Similar to the block-striping case, the worst-case delay will
be experienced by the stripe that is being transmitted when the
failure occurs, provided that . The worst-case
delay can be up to

(12)

micro-rounds,where is the worst-casedelay due to failure
detection, is the worst-case delay to wait for the current
service round toend,and is thedelaydue to the first constraint
discussed previously. Noting that the length of a micro-round is
equal to seconds, the delay is then given by

(13)

seconds.

VII. A NALYSIS OF FEC

In this section, we derive the amount of client buffer needed
to support fault tolerance under FEC so that nonstop playback
can be sustained. Client buffers are originally introduced to ab-
sorb jitters in video-block playback times and delivery delays
[10]. To support fault tolerance using FEC, we need additional

client buffers to store a complete stripe (with redundant units)
for erasure-correction computation. The derivations in the fol-
lowing sections are based on the model introduced in Lee [10].
The overall approach is to obtain upper and lower bounds for
stripe unit arrival times and stripe unit consumption times. Then
using the continuity condition, i.e., the latest arrival time for a
stripe unit must not be later than the earliest consumption time,
we can obtain the number of buffers required to prevent buffer
underflow. We can obtain the number of buffers required to pre-
vent buffer overflow in a similar way.

A. Buffer Requirement under Block Striping

We first consider the case for block striping. Let there be
buffers (each bytes) at the client, organized as a

circular buffer. Video playback starts once the firstbuffers
are completely filled with video data. The client prefills the first

buffers to prevent buffer underflow, and reserves the last
buffers for incoming data to prevent buffer overflow.

Since all servers transmit data to a client concurrently,
the client will be receiving video blocks simultaneously, of
which blocks containing video data and the rest con-
taining redundant data. This suggests thatmust be multiples
of . Therefore, we consider groups of buffers (i.e., group
zero consists of blocks 0 to , group one consists of blocks

to , and so on) and let be the number of
buffer groups prefilled.

Using techniques similar to Lee [10], we can obtain (see Ap-
pendix A.1 for derivations)

(14)

for the number of buffers needed to prevent underflow, and

(15)

for the number of buffers needed to prevent overflow. Note
that and are jitter bounds for video block consumption,

is the clock jitter among servers, and and
are used to model the maximum transmission

time deviation due to randomness in the system, including
transmission rate deviation, CPU scheduling, bus contention,
etc. See Table I for a summary of symbols and interested
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TABLE I
SYSTEM PARAMETERS USED IN COMPUTING NUMERICAL RESULTS

readers are referred to Lee [10] for formal definitions of these
parameters.

By setting in (14) and (15), the equations reduce to the
non-fault-tolerance version in Lee [10]. The total client buffer
requirement is thus given by

(16)

Note the independence of (16) from as failure-detection
and, consequently, server reconfiguration is not needed under
FEC. However, we can also observe that the buffer requirement
will increase when more servers are added to the system, sug-
gesting that more buffers will be needed when scaling up the
system.

B. Buffer Requirement under Sub-Schedule Striping

Under sub-schedule striping, each video block (bytes) at
a server comprises multiple stripe units (bytes each) and the
size of a video block is given in (8). The client buffers now com-
prises buffer units of each bytes. Again we
consider stripe units in groups of units, i.e., group com-
prises stripe units . Then
a group of stripe units will correspond to exactly one buffer
unit at the client. Using similar techniques (see Appendix A.2
for derivations), the buffer requirements can be found to be

(17)

and

(18)

Surprisingly, these are the same as the non-fault-tolerant case.
This counter-intuitive result is explained by the fact that each
group of buffers here has the size of bytes instead of bytes
in the non-fault-tolerant case. Hence, the system does indeed
need additional buffers to support fault tolerance and the total
client buffer requirement is given by

(19)

VIII. A NALYSIS OF ODC

Unlike FEC, ODC requires additional buffers to sustain con-
tinuous video playback during system reconfiguration. Incor-
porating this requirement, we derive the corresponding buffer
requirement for block striping and sub-schedule striping in the
following sections.

A. Buffer Requirement under Block Striping

Unlike FEC, a client operating under ODC will simultane-
ously receive instead of video blocks. Therefore,
a group of video blocks comprises only video blocks.
Unlike FEC, derivations for the buffer requirements depend on
whether the failure occurs before or after video playback starts.
For the case where the failure occurs before video playback
starts, the playback schedule will be delayed because playback
cannot start until the required number of buffers are prefilled.
The buffer requirements are found to be (see Appendix A.3 for
derivations)

(20)

and

(21)

For the case where the failure occurs after video playback
starts, the playback schedule will not be affected. The buffer
requirements are found to be

(22)

and

(23)

Hence, the client buffer requirement is either

(24)

or

(25)
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Fig. 9. The AGSS scheduler discards retrieved video blocks once transmission is completed.

whichever is larger. However, from (6): and
. Therefore, the two equations are in fact

equivalent. The total client buffer requirement is thus given by

(26)

B. Buffer Requirement under Sub-Schedule Striping

To derive the client buffer requirement for sub-schedule
striping, we again consider stripe units in groups of ,
i.e., group comprises stripe units

. Now unlike FEC, each group of
stripe units has the size of bytes, instead of bytes under
FEC. Hence, the client buffer comprises buffer
units, each of size bytes. Proceeding the derivations in the
same manner (see Appendix A.4 for details), we can obtain the
total buffer requirements from

(27)

From (12), we can see that is proportional to . This
implies that the buffer requirement is also proportional to.
As sub-schedule striping is originally proposed [10] to maintain
a constant client buffer requirement independent of system scale
(i.e., ), the extension to ODC appears to have defeated this
goal. We propose a redundant server scheme in the next section
to tackle this problem.

IX. REDUNDANT SERVER SCHEME

A closer look at Fig. 8 reveals why buffer requirement in-
creases with system scale under ODC. First, retransmission of
redundant stripe units cannot start in the current service round.
This incurs a worst-case delay equal to seconds,

which obviously is proportional to the system scale. Second, re-
transmissions cannot start even in the next service round due
to the need to retrieve redundant stripe units, incurring another
delay of seconds, which again is proportional to the
system scale.

The key to the previous two observations is in the server
scheduler. First, under the AGSS scheduler [10], redundant units
are discarded together with the video data units once the service
round ends to allow buffer reuse. Hence if the failure-detection
period spans two service rounds as shown in Fig. 9, redundant
units for the previous round will have been discarded by the time
the failure is detected, rendering immediate retransmission of
redundant stripe units impossible.

To tackle this problem, one can modify the AGSS scheduler
such that redundant units are retained longer to cater for server
failure. However, we propose a redundant server scheme (RSS)
to store all redundant units centrally in one or more (to be
exact)redundantservers instead of distributing them over all
servers. RSS has three advantages over simply increasing the
buffer holding time in AGSS.

First, RSS requires only the redundant servers, instead of
all servers, to have the additional memory to buffer redundant
units. Therefore, the total server buffer requirement is reduced.
Second, redundant units can be stored continuously on the disks
in the redundant servers such that retrievals are much more ef-
ficient. By contrast, redundant units in the original distributed
scheme are scattered on the disk and hence a separate disk I/O
is required to retrieve each redundant unit. Third, under RSS,
retransmission of the redundant units can start as soon as the
failure is detected, without the need to wait for the current stripe
unit to complete transmission. This is possible because the re-
dundant servers are idle before a failure is detected.

Assume failure occurs at time during the transmission of
stripe , then it will be detected latest by time . Since
retransmission of redundant stripe units can start immediately
upon failure detection, as shown in Fig. 10, the required redun-
dant unit will be transmitted by time . Now,
let be the time for which transmission of stripeends. Then,
it is easy to see that

(28)
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Fig. 10. Transmission scenario for the redundant server scheme.

Since the client will need to wait for the redundant unit before
stripe can be recomputed, the delay incurred in receiving stripe

will be given by

(29)

which, finally, is independent of the system scale. Using deriva-
tions similar to Section VIII, we can obtain the client buffer re-
quirement from

(30)

for the case where failure occurs after playback have begun, and

(31)

for the case where failure occurs before playback begins.
To support immediate retransmission of redundant units, the

redundant servers will need to retain redundant units longer than
in the original AGSS scheduler. In particular, the server will
need to keep retrieved redundant units (in blocks ofunits)
for

(32)

service rounds (instead of one round in AGSS). Hence, the
buffer requirement for the redundant servers will be given by

(33)

where is the client-server ratio and is the number of groups
per service round [10].

Fig. 11. Client buffer requirement versus level of redundancy.

X. NUMERICAL RESULTS

Based on the performance models derived in the previous sec-
tions, we compute and present numerical results in this section
to illustrate the system resource requirement under various sce-
narios and study the sensitivity to key system parameters. Table I
lists the values for the system parameters used in the calcu-
lation. The parameters and are determined empirically
by collecting the video block consumption times of a hardware
MPEG-1 decoder [8].

A. Buffer Requirement versus Level of Redundancy

Fig. 11 plots the client buffer requirement versus the level of
redundancy. There are a total of servers in the system.
There are two observations. First, sub-schedule striping in gen-
eral requires less client buffer than block striping. Second, sub-
schedule striping with ODC and RSS is the only scheme that has
constant client buffer requirement irrespective of redundancy
level. Even the buffer requirement for the FEC case increases
with . This is explained by the fact that under FEC, the client
must receive and process video data in parity groups. Hence,
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Fig. 12. Client buffer requirement versus failure-detection delay.

as increases, so do the parity group size and, consequently,
the buffer requirement. By contrast, redundant stripe units are
not transmitted until failure is detected under ODC with RSS.
Therefore, the buffer requirement does not depend onat all.

B. Buffer Requirement versus Failure-detection Delay

Fig. 12 studies the sensitivity of buffer requirement with re-
spect to failure-detection delay for various ODC system con-
figurations. FEC is not plotted because the buffer requirement
is independent from the failure-detection delay. For all cases in
Fig. 12, the buffer requirement increases with longer failure-de-
tection delay. The results show that sub-schedule striping again
achieves lower buffer requirement in general, with ODC/RSS
achieving the smallest buffer requirement.

C. Buffer Requirement versus System Scale

Fig. 13 plots the client buffer requirement versus the number
of servers in the system (i.e. system scale). The level of redun-
dancy is one (i.e., ) and the failure-detection delay is 2 s.
The first result is that block striping is nonscalable. This extends
the results in Lee [10] for the non-fault-tolerant case to FEC and
ODC. The second result is that sub-schedule striping with ODC
is also nonscalable, although the slope is smaller than block
striping. Finally, we can observe that only sub-schedule striping
under FEC, and under ODC with RSS are scalable, the latter
being completely independent of the system scale. Interestingly,
buffer requirements under FEC decreases for more servers and
approaches the non-fault-tolerant case. This is because the level
of redundancy is fixed and hence the redundancy overhead in-
curred decreases when more servers are added.

D. Scalability under Constant Reliability

The previous results are obtained with constant redundany
level. However, the system-level reliability will inevitably de-
crease with more servers if the redundancy level is kept con-
stant. To the service provider, it would be desirable to obtain the
system requirement under a given minimum system-level reli-
ability. Formally, we assume that the servers are homogeneous

Fig. 13. Client buffer requirement versus number of servers.

Fig. 14. Proportion of redundancy versus system scale with system MTTF of
10 000 hours.

with an exponentially-distributed life time. Let be the MTTF
for a server node, and let be the MTTF for the system. Then
given , the desired system capacity, defined as ,
and , we can obtain from [26]

(34)

Next, we can determine such that the system MTTF is
equal to or larger than a minimum, denoted by

(35)

Fig. 14 plots the amount of redundancy required versus the
system scale under a system MTTF requirement of 10 000
hours. The results suggest that the amount of redundany
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Fig. 15. Client buffer requirement versus system scale with system MTTF of 10 000 hrs.

required depends primary on the server MTTF and not on the
system scale.

Once is known, we can obtain the client buffer requirement
accordingly. The results are plotted in Fig. 15, with the vertical
axis representing client buffer requirement and the horizontal
axis representing . The minimum system MTTF is fixed at
10 000 hours. The results show that sub-schedule striping with
both ODC/RSS and FEC are scalable under the given system
MTTF constraint. On the other hand, we note that while the
buffer requirement for FEC depends on the server MTTF, the
buffer requirement for ODC/RSS is constant and independent
of server MTTF. We also note that FEC requires less buffer if
server MTTF is significantly larger than system MTTF (e.g., for
cases with server MTTF = 25 000 and 50 000 hours). Otherwise
(e.g. server MTTF = 10 000 hours) ODC/RSS will achieve a
lower buffer requirement.

XI. CONCLUSION

In this paper, we investigate various protocols and algo-
rithms to support server-level fault tolerance in the concurrent
push architecture. In particular, we propose and compare
two fault-tolerant protocols, FEC and ODC, and two striping
policies, block striping and sub-schedule striping. The first
result is that FEC is simpler in implementation, does not require
failure detection, and is inherently scalable to any number
of servers under sub-schedule striping. The only downside
is additional network bandwidth overhead during normal
operation. Surprisingly, analytical results show that ODC is
not scalable if redundant data is distributed over all servers
(similar to RAID-5 in disk arrays), even with sub-schedule
striping. To tackle this problem, we propose storing redundant
data centrally in redundant servers to avoid the reconfiguration
delay. We increase the buffer holding time at the redundant
servers to enable quick redundant data transmission. Analytical
results prove that this redundant server scheme enables ODC to

become scalable to any number of servers. Finally, we compute
numerical results to show the feasibility of the proposed
architecture under real-world conditions. With the proposed
architecture, a concurrent-push-based parallel video server will
be able to sustain multiple simultaneous-server failure and yet,
can maintain nonstop continuous video playback for all clients.

APPENDIX

A. Derivations of Buffer Requirement for Block Striping Under
FEC

Among the servers, assume the earliest transmission for
the first round starts at time, then the last transmission for the
first round must start at the latest by time , where is the
clock jitter among servers. The time for video block groupto be
completely filled, denoted by , is therefore bounded by [10]

(36)

where is as given in (4) and and
are used to model the maximum transmission time deviation
due to randomness in the system, including transmission rate
deviation, CPU scheduling, bus contention, etc.

Since the client starts playing video after filling the first y
groups of buffers, the playback time for video block group 0 is
simply equal to . Hence, the playback time for video
block group , denoted by , is bounded by

(37)

where

(38)

is the average playback time for one video block, and, are
the jitter bounds for video-block consumption variations [10].
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To guarantee video playback continuity, we must ensure that
a video block group arrives before its playback deadline. In the
worst case, the latest filling time must be smaller than the ear-
liest playback time, i.e.,

(39)

For the LHS, noting that (c.f. (5) and
(38)), we then have

(40)

Similarly, the RHS is

(41)

Substituting (40), (41) into (39) gives

(42)

Rearranging, we can then obtain

(43)

Knowing the number of groups required, we can then obtain
from

(44)

On the other hand, to guarantee that the client buffer will not
be overflowed by incoming video data, we need to ensure that
the th video block group starts playback before the th
video block group is completely received, where .
This is because the client buffers are organized as a circular
buffer, and we must always have at least one group offree
buffers to receive video blocks arriving simultaneously from
servers. Therefore we need to ensure that the earliest filling time
for group must be larger than the latest playback time
for group

(45)

Using similar derivations, we can obtain the number of buffers
needed to prevent buffer overflow as

(46)

B. Derivations of Buffer Requirement for Sub-Schedule
Striping Under FEC

The filling time for group i of a video stream started at time
is bounded by

(47)

Since the client starts video playback after filling the first
groups of buffers, the playback time for video block group 0 is
simply equal to . Hence, the playback time for video
block group , denoted by , is bounded by

(48)

Substituting the upper bound of (47) and the lower bound of (48)
into the continuity condition in (39) gives

(49)

or

(50)

Rearranging, we can obtain from

(51)

Using similar derivations, we can obtainfrom

(52)

C. Derivations of Buffer Requirement for Block Striping
Under ODC

Assume that a failure occurs during the transmission of group
, then for those groups received before a failure (i.e.,
, the filling time is bounded by

(53)

However, groups transmitted after the failure will
be deferred due to server reconfiguration. According to Sec-
tion VI-B, the worst-case delay due to reconfiguration is
seconds. Hence, the maximum filling time is bounded by

(54)

Merging (53) and (54) gives bounds for the general case

(55)

The bounds for depend on whether a failure occurs be-
fore or after playback has begun. Specifically, if a failure occurs
before playback begins, then playback will be delayed up to
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seconds due to the need to reconfigure the servers to complete
the prefill process

(56)

Otherwise, if the failure occurs after playback has begun, then
the playback schedule will not be affected

(57)

Now if the failure occurs before playback begins, then in-
voking the continuity condition gives

(58)

or

(59)

Substituting the lower bound of (54) into (59) and noting
, we get

(60)

Rearranging, we can obtainfrom

(61)

Similarly, if the failure occurs after playback has begun, then
the continuity condition becomes

(62)

or

(63)

Solving, we can obtain from

(64)

Similarly for , we also need to consider the two cases. For
first the case where failure occurs before playback begins, we
have

(65)

or

(66)

Substituting the upper bound of (54) into (66), we have

(67)

Rearranging, we can obtain as

(68)

For the second case, playback is not delayed by the failure.
Hence, we have

(69)

or

(70)

Substituting the upper bound of (53) into (70), we have

(71)

Rearranging, we can obtain as

(72)

D. Derivations of Buffer Requirement for Sub-Schedule
Striping Under ODC

Assuming failure occurs during transmission of group, then
the filling time for group of a video stream started at time
is bounded by

(73)

(74)

Merging (73) and (74) gives the universal bounds for

(75)

Similarly, the playback schedule is bounded by

(76)
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for the case where failure occurs before playback begins, and

(77)

for the case where failure occurs after playback has begun.
Invoking the continuity condition, we can obtain the corre-

sponding bounds for as follows:

(78)

(79)

Using similar derivations, we can obtain the corresponding
bounds for as follows:

(80)

(81)
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