
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007 129

Supporting Interactive Video-on-Demand With
Adaptive Multicast Streaming

Ying Wai Wong, Jack Y. B. Lee, Senior Member, IEEE, Victor O. K. Li, Fellow, IEEE, and
Gary S. H. Chan, Senior Member, IEEE

Abstract—Recent advances in multicast video streaming algo-
rithms have opened up new ways to provision video-on-demand
services to potentially millions of users. However, the spectacular
efficiency of multicast streaming algorithms can only be realized
by restricting or even prohibiting interactive playback control. Ex-
periments reveal that the performance of current state-of-the-art
multicast streaming algorithms will degrade significantly even at
very low levels of interactivity (e.g., one control per five users). This
study tackles this challenge by investigating the fundamental lim-
itations of multicast streaming algorithms in supporting interac-
tive playback control and presents a general solution—static full
stream scheduling (SFSS)—which can be applied to many of the
existing multicast streaming algorithms to substantially improve
their performance when interactive playback control is to be sup-
ported. Moreover, to solve the problem of optimizing the algorithm
for the often unknown client access patterns (e.g., arrival rates and
interactivity rates), we present a novel just-in-time simulation (JTS)
scheme to dynamically and automatically tune operating parame-
ters of the SFSS algorithm while the system is online. This JTS
scheme not only eliminates the need for a priori knowledge of the
often unknown system parameters, but also can adapt to changes
in the client access pattern over time. Extensive simulation results
show that the proposed adaptive algorithm can reduce the admis-
sion and interactive control latencies by as much as 90%.

Index Terms—Embedded simulator, interactive playback con-
trol, just-in-time, multicast streaming, video-on-demand (VoD).

I. INTRODUCTION

THE provisioning of large-scale video-on-demand (VoD)
services has attracted much attention in recent years. In

current VoD systems, whenever a new client starts a video ses-
sion, a dedicated stream is allocated to serve the user till the
end of the viewing session. Video data are transmitted to the
client in a point-to-point manner, known as unicast streaming.
In unicast streaming, clients can control playback of the video at
will, such as performing pause/resume and seeking (i.e., change

Manuscript received November 25, 2004; revised February 23, 2006. This
work was supported in part by a Direct Grant and Earmarked Grant CUHK
4328/02E from the Hong Kong Special Administrative Region (HKSAR) Re-
search Grant Council and in part by the Area of Excellence Scheme, established
under the University Grants Committee of the HKSAR, China under Project
AoE/E–01/99. This paper was recommended by Editor-in-Chief C. W. Chen.

Y. W. Wong and J. Y. B. Lee are with the Department of Information Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail: yblee@ie.
cuhk.edu.hk).

V. O. K. Li is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Hong Kong (e-mail: vli@eee.hku.hk).

G. S. H. Chan is with the Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong (e-mail:
gchan@cse.ust.hk).

Digital Object Identifier 10.1109/TCSVT.2006.888839

to a new playback position). However, as unicast streaming re-
quires separate streaming bandwidth for each and every client,
the server and network bandwidth resources consumed will in-
evitably grow linearly with the user population. Therefore, un-
like TV broadcasters, VoD service providers cannot benefit from
the economy-of-scale in serving large user populations. Worse
still, the need for specialized high-capacity streaming servers
and network equipment often increases the per-client cost when
scaling up such a system.

In response to this challenge, researchers have recently begun
to investigate the use of network multicast for video streaming.
Unlike unicast transmission, a multicast video stream can be
shared by more than one receiver. The network switches/routers
will automatically replicate the multicast data for multiple
receivers without adding any extra streaming workload at the
video server. Over the last decade researchers have developed a
number of innovative algorithms/protocols to take advantage of
network multicast to significantly reduce the resources required
for video streaming. Notable examples include batching [1]–[5],
patching/stream merging [6]–[13], piggybacking [14]–[17],
bandwidth skimming [18], and periodic broadcasting [19]–[22].
These techniques can also be further combined to form even
more efficient architectures [23]–[27].

With multiple clients sharing a multicast video stream, in-
dividual client thus cannot alter the playback sequence (e.g.,
performing a seek to another playback location) without af-
fecting other clients sharing the same data stream. One solution
is to dynamically allocate a separate interactive video stream to
perform interactive playback control and then merge the client
back to an existing multicast video stream afterwards (e.g., the
Split-and-Merge Protocol first pioneered by Liao and Li [28],
[29]). Our simulation study of a number of recently proposed
multicast streaming algorithms [9]–[11], [13] modified to sup-
port interactive playback control reveals that performance of
these algorithms will degrade significantly even at relatively low
levels of interactivity (e.g., mean access latency increases from
0.11 s with no interactivity to 698.28 s with only 0.39 interac-
tive control per viewing session for the Dyadic algorithm [11],
[13]). At higher levels of interactivity, the performance degrades
so much so that the performance differences between different
streaming algorithms diminish as most of the system resources
are then used to support interactive playback control instead of
serving new clients.

This study tackles this challenge by investigating the fun-
damental limitation of multicast streaming algorithms in
supporting interactive playback control. We present a general
solution—static full stream scheduling (SFSS)—which can

1051-8215/$25.00 © 2007 IEEE

130 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

Fig. 1. Merging clients using patching and caching.

be applied to many of the existing multicast streaming algo-
rithms to improve their performance when interactive playback
control is to be supported. Moreover, to solve the problem of
optimizing the algorithm for the often unknown client access
patterns (e.g., arrival rates and interactivity rates), we present
a novel just-in-time simulation (JTS) scheme to dynamically
and automatically tune operating parameters of the SFSS while
the system is online. This JTS scheme not only eliminates
the need for a priori knowledge of the often unknown system
parameters, but also can adapt to changes in the client access
pattern over time.

The remainder of this paper is organized as follows. Section II
reviews some previous works on multicast streaming algorithms
and existing approaches to support interactive playback con-
trol; Section III presents a client interaction model and studies
the performance impact of interactive playback control on the
existing multicast streaming algorithms; Section IV presents
the general SFSS technique and its applications to some ex-
isting multicast streaming algorithms; Section V presents the
JTS scheme to address parameter estimation and performance
optimization issues when applying the SFSS scheme in prac-
tice; Section VI presents simulation results to evaluate the per-
formance of SFSS; and Section VII summarizes the study.

II. BACKGROUND

In this section, we first review some current state-of-the-art
multicast streaming algorithms and then review the existing
methods to support interactive playback control in some of
these algorithms.

A. Multicast Streaming Algorithms

There are two fundamental operations, namely patching
and caching, common in most multicast streaming algorithms.
When a client is admitted to the system, there may be one
or more ongoing multicast video streams transmitting the re-

quested video title. This newly admitted client can cache one or
more of these multicast video streams to share the transmitted
data—caching, but will not be able to begin playback as it
has missed the initial portion of the video stream. To tackle
this problem, the client can request another video stream to
transmit the missing initial video portion to enable playback to
begin—patching.

Fig. 1 illustrates the process of admitting new clients through
patching and caching. Two clients, denoted by and , arrive
at the system at time and , respectively, requesting the same
video. To facilitate discussion, we divide the whole video into
three logical segments to , and use to denote
the video data from the th to the th segment. We assume that
the video being requested is of length seconds encoded at a
constant bit rate of bps.

Assuming the system is idle when arrives, the server will
allocate a video stream to transmit to client the whole video
from the beginning to the end (i.e.,). We call this video
stream a full stream, denoted by . The cost of serving is
thus equal to the bandwidth-duration product LR bits. At time

, client arrives and caches video data from . As it has
missed the initial seconds of the video (i.e.,), the
system will need to initiate a new stream , called a partial
stream, to stream the missed portion to client to enable
it to begin playback (i.e., patching). Client can then simulta-
neously cache subsequent video data from for the
rest of the video session (i.e., caching). In this way, the cost of
serving clients and is reduced from 2LR bits as in a uni-
cast-based VoD system to bits. The tradeoffs
are the need for the client to receive two video streams simul-
taneously and the additional buffers needed to store the cached
data for later playback.

For clients arriving after , they can also be patched and even-
tually merged back to the full stream as long as they arrive be-
fore the full stream () ends. We can view this patching and

WONG et al.: SUPPORTING INTERACTIVE VIDEO-ON-DEMAND WITH ADAPTIVE MULTICAST STREAMING 131

Fig. 2. Merge tree for patching and caching. (a) S attaches to S . (b) S at-
taches to S .

caching process as a merge tree with the full stream as its
root and the partial streams (e.g.,) as its leaves as shown in
Fig. 2.

In Fig. 2(a), a later client is admitted into the system by
caching data from . In other words, the assigned new stream

is attached as a child of the full stream in the tree. Note
that in general a client is not limited to caching data from only a
full stream, but also ongoing partial streams as well. In our case,
as the client enters the system before the partial stream
ends, it can also cache video data from as shown in Fig. 2(b).
In this case client is assigned to cache data from while
playing back data received from . After that it follows the tree
structure to switch to cache data from in order to merge back
to the full stream . This may enable further resource reduction
because to the client the duration of initial video data missed
is less when caching from the partial stream instead of from
the full stream .

As Fig. 2(a) and (b) illustrates, there are in general more than
one way to admit a new client, i.e., there are different paths to
reach the root of the merge tree from the leaves. Different multi-
cast streaming algorithms will have different ways to select the
path to reach the root of the merge tree, and consequently, with
different performance and tradeoffs. We review in the following
some state-of-the-art algorithms in multicast video streaming.

Shi and Kuo [9] proposed two multicast streaming algo-
rithms, called Controlled Greedy Recursive Patching (CGRP)
and Cost-Aware Recursive Patching (CARP). A new partial
stream is always started when admitting a client. In CGRP, a
new client is assigned to cache data from the latest reachable
stream – defined as the partial stream already in the merge tree
that terminates after the newly started partial stream; and in
CARP a new client is inserted at a point in the merge tree so as
to minimize the additional server bandwidth consumed.

In another study [11], [13], Coffman et al. proposed the
Dyadic algorithm for merging streams. Assume a full stream

was started at time , then all subsequent clients arriving in
the time interval will join the tree with as the
root. To construct the tree, the time interval is further divided
into Dyadic intervals by the time instants , with

and being the Dyadic ratio. The earliest stream
in each Dyadic interval then becomes a child of . The same
procedure is then applied recursively to each Dyadic interval
until all clients are assigned.

In the previous three algorithms, the patching and caching
schedules, i.e., the merge tree, are assigned and fixed upon ad-
mission. In another study [10], Eager et al. proposed an Ear-
liest Reachable Merge Target (ERMT) algorithm that relaxes
this restriction and allows even ongoing patching and caching
schedules to be modified when admitting new clients, thereby
enabling further performance improvements.

To illustrate the efficiency of multicast streaming algorithms,
we plot in Fig. 3 the access latency—defined as the mean time a
client has to wait before playback can begin (ignoring network
delays and prefetch buffering delays), versus client arrival rates
ranging from 0.01/s up to 0.1/s for the four previously men-
tioned algorithms. Note that for the Dyadic algorithm we use
a Dyadic ratio of 1.62 instead of 2.0 proposed in the original
study [11], [13] according to the recent study by Bar-Noy et al.
[12]. There are a total of ten streaming channels available at the
server. Once all channels are occupied, subsequent arriving re-
quests will have to wait until a server channel is released. We can
observe that all four multicast streaming algorithms are very ef-
ficient, achieving relatively short latency even at heavy arrival
rates. For example, with a video length of 7200 s, an arrival rate
of 0.1 client/s will require on average 720 streaming channels
in a unicast-based VoD system to avoid overload. Using just ten
channels these multicast streaming algorithms manage to reduce
the resource requirements by as much as 98%.

However, these rather spectacular performance gains are
achievable only if the clients are not allowed to perform any in-
teractive playback control. In particular, common to the Dyadic,
CARP, CGRP, and many other multicast streaming algorithms,
a configurable system parameter denoted by —full-stream
restart threshold, is used to control the minimum duration
between the allocations of two consecutive full streams. De-

132 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

Fig. 3. Performance of different multicast streaming algorithms under zero user interactivity.

creasing will generate full streams more frequently, thereby
dividing the clients into larger number of independent merge
trees. Not surprisingly, the choice of has significant im-
pact on the system’s performance and each of the previously
discussed algorithms has its own way to set the threshold .
However, in Section III-D we show that these thresholds are
no longer valid when interactive playback control is supported,
and performance of these multicast streaming algorithms will
degrade dramatically.

B. Interactive Playback Support

In a unicast video streaming system, each video stream is ded-
icated to one client and any interactive playback operation can
be supported by simply adjusting the video content streamed
to the client. By contrast, this cannot be accomplished in the
same way in a multicast video streaming system without af-
fecting playback of other clients sharing the same multicast
video stream.

One way to alleviate this problem is to support only discon-
tinuous interactive playback control. Unlike continuous play-
back controls, where a client can change the playback point to
any point within the video, discontinuous playback control al-
lows the client to change to only a limited number of playback
points. For example, Almeroth and Ammar [30] considered a
staggered multicast video streaming system with consecutive
video streams offset by seconds. In this system, clients are
allowed to change the current playback point to a new play-
back point () seconds away in either forward
or reverse direction. Similarly, the client can pause for dura-
tions only in multiples of seconds. With these constraints, in-
teractive playback operations can then be implemented simply
by switching to another multicast stream that is offset by
seconds. Additionally, if the client has the buffering capacity, it
can also implement continuous pause of any duration simply by
buffering the incoming video data for later playback.

Clearly, while discontinuous playback controls do not con-
sume extra resources, the limited number of seekable playback
points will significantly degrade user experiences. To achieve
true VoD it is therefore necessary to support continuous play-
back controls. One solution is to initiate dedicated interactive
streams to support interactive playback control and to merge it

back to an existing multicast video stream with the patching al-
gorithm. This approach was first proposed by Liao and Li in
their Split-and-Merge (SAM) protocol for VoD systems em-
ploying batching [28], [29], and later on studied by Abram-Pro-
feta and Shin [31]. Specifically, a break-away client after per-
forming an interactive playback control is treated as a new client
arrival, albeit not necessarily starting video playback from the
beginning. The break-away client uses the patching stream to
sustain video playback while caching video data from an on-
going multicast stream that the client eventually merges back
to.

We illustrate the merging process with an example. At some
time after admission, a client may issue a forward seeking
(FSEEK) or backward seeking (BSEEK) request to an offset
seconds relative to the beginning of the video. As there are other
clients receiving data from the same multicast stream, the client

has to break away from the multicast stream and find a full
stream that has its current multicasting point ()
nearest to . Then the client simply merges back to this full
stream by patching and caching.

Fig. 4 illustrates this process. The full stream has started
for seconds and is about to multicast the data block .
In the first phase which lasts for () seconds, resumes
video playback from point with video data received from
a newly initiated partial stream . At the same time, buffers
data from . After () seconds, patching ends
and is released. The client continues its video playback
with data received from until another interactive playback
control is requested. In the process, a buffer large enough to
cache () seconds of video data is required. In case an
eligible full stream cannot be found, a partial stream will be
started to transmit video data from until the end of the video.

The two studies differ in that Abram-Profeta and Shin [31]
assumed the client has the buffer for caching video data while
in the SAM protocol [28], [29] the buffer can be located either in
the client or in a proxy shared by multiple clients. Alternatively,
the server can also initiate a new video stream at twice the video
bit rate to enable the client to catch up with an ongoing multicast
video stream [32].

In a more recent study, Ma and Shin [33] proposed an even
more sophisticated algorithm called Best-Effort Patching (BEP)
that uses a dynamic algorithm to merge clients after interactive

WONG et al.: SUPPORTING INTERACTIVE VIDEO-ON-DEMAND WITH ADAPTIVE MULTICAST STREAMING 133

Fig. 4. Illustration of merging a break-away client that performed an interactive playback control.

playback operations. This dynamic algorithm enables clients to
cache video data from more than one stream throughout the
whole merging process and thus can achieve further network
resource reduction compared to simple patching and caching.

Finally, researchers have also proposed other techniques to
reduce the resources required in implementing interactive play-
back control, including trading off seeking precision [30], [34]
and video quality [35]. These techniques are orthogonal to this
study and thus can be combined to yield further resource reduc-
tions. We refer the interested readers to the original studies for
more details [30], [34], [35].

III. INTERACTIVE MULTICAST STREAMING

While researchers have proposed algorithms and techniques
to support interactive video playback in multicast streaming
algorithms, so far there is no systematic study on the perfor-
mance degradation (or increase in resource requirements) that
results from supporting interactive playback control. Moreover,
the recent advances in multicast streaming algorithms (e.g.,
[9]–[11], [13]) have significantly increased the efficiency of
multicast video streaming systems and thus the performance
impact of supporting interactive playback control may be
further amplified.

In this section, we investigate this issue by first defining a user
interactivity model for issuing interactive playback control re-
quests. Next we discuss how admission and interactive requests
are scheduled and then present simulation results to evaluate the
performance impact of supporting interactive playback control
on the current state-of-the-art multicast streaming algorithms.

A. Interactivity Model

Interactive playback operations are commonly modeled after
their counterparts in video cassette recorders (VCRs). Common
playback controls include pause/resume, slow motion, frame
stepping, fast forward/backward visual search, as well as for-
ward/backward seeking. Over the years, researchers have de-
vised a number of user interactivity models [31], [36], [37] for
different applications.

For example, Branch et al. [37] reported user access statis-
tics collected from a multicampus interactive educational re-
source system. They showed that interactive behavior can be
adequately modeled by an exponential distribution, while the

Fig. 5. Client interaction model.

lognormal distribution gives an even closer match to the real
statistics. Since these statistical results are collected from ap-
plications where frequent repeated viewings of certain sections
are common (e.g., educational materials), they may not be suit-
able for other applications such as entertainment contents and
movie viewing. In another study, Li et al. [36] devised a two-
state model in which users are either in the NORMAL or the
INTERACTION state, and stay in that state for a random pe-
riod of time that is exponentially distributed. In a third study,
Abram-Profeta et al. [31] distinguished between different states
and devised a multi-state interaction model. We adopt this model
in this study to form the model depicted in Fig. 5.

Beginning at the NORMAL state, the client will transit to
the NORMAL, PAUSE, FSEEK, and BSEEK states with proba-
bility , , , and , respectively (i.e.,

). Once in the NORMAL or PAUSE state, the client will stay
there for a random duration that is exponentially distributed with
mean seconds. For FSEEK/BSEEK states, the client will
perform a random seek to a new position with a seek distance
exponentially distributed with mean seconds. This interac-
tivity model can capture several characteristics of user interac-
tions, including the level of client interactivity, the relative fre-
quency of individual control requests, and the duration of inter-
active playback control.

It is worth noting that it is possible to implement a richer set of
interactive functions using the basic interactive controls such as
FSEEK and BSEEK as basic building blocks. For example, one
can implement two-way interactive video streaming in the sense

134 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

that the user can directly or indirectly choose between alterna-
tive sequences of video segments, i.e., different developments
of the same story, to be played back. This feature can be im-
plemented by concatenating all alternative video sequences as
a single stream for periodic multicast, and then invoke FSEEK
or BSEEK to jump to the desired video sequence to continue
playback based on the user’s interactive inputs.

On the other hand, instead of allowing the user to actively
choose the video sequences for playback, the user can let the
system choose the particular video sequences to playback base
on popularity or even randomly. These rich interactive functions
will open up new dimensions to the VoD experience.1 The chal-
lenge, obviously, will be the capability to support interactive
playback efficiently in a large-scale VoD system.

B. Request Scheduling

In interactive multicast streaming, there are two types of
streaming requests, namely admission requests generated by
newly arrived clients; and merging requests generated by
clients performing interactive playback control. Intuitively, to
the end users admission delay is far more tolerable than delay
in performing interactive playback control. To account for this
observation, we can separately place admission requests in an
admission queue and merging requests in a merging queue.
Then we give priority to waiting requests in the merging queue
whenever server resources become available. However, this
approach suffers from a significant problem.

Specifically, if merging requests have absolute priority over
admission requests, the available resources will be dominated
by them at high system load. Now as merging requests gen-
erate only partial streams, the system will eventually run out
of full stream to serve as the root of merge trees for admitting
new clients and merging break-away clients. Consequently, the
break-away clients will not be able to merge back to an ongoing
full stream and thus cannot release their assigned stream for
reuse by other clients, leading to inefficient resource utilization.

Therefore, instead of simply giving absolute priority to
merging requests, the system will try to schedule a full stream
every seconds, where is the full-stream restart threshold.
In particular, whenever a streaming channel becomes available,
the server will allocate it as a new full stream (and admitting
waiting admission requests in the process) if the time since the
last full stream allocation is equal to or longer than seconds.
Otherwise the available streaming channel will be allocated first
to waiting merging requests, and then to admission requests if
the merging queue is empty.

This request scheduling algorithm together with the merging
algorithm for break-away clients can be applied to the Dyadic,
CARP, and CGRP algorithms. For ERMT, as it has no equivalent
parameter as the full-stream restart threshold , the above algo-
rithm is not directly applicable. Instead, we modify the ERMT
algorithm to give priority to admission request if the time lapse
since the last full stream generation is equal to or longer than

seconds. This prevents the server channels from being mo-
nopolized by merging requests. For simplicity, we will refer to
these modified versions of Dyadic, CARP, CGRP, and ERMT
by their original names in the rest of the paper.

1The authors wish to thank the anonymous reviewer for this idea.

C. Client Buffer Management

During patching and caching, a client will receive data at a
rate of bps while playing back video at bps. Thus, video
data will accumulate in the client buffer at a rate of bps. For
the Dyadic, CARP, and CGRP algorithms, a client arriving
seconds after the last full stream will need to perform patching
and caching for seconds, buffering bits of video data in the
process. Now given that a new full stream is started whenever
the time lapsed since the last full stream exceeds seconds,
the maximum duration of patching and caching process in the
interactive Dyadic, CARP, and CGRP algorithms is seconds
and thus they require a client buffer size of bits. As the
parameter does not exist in ERMT, we cannot control the
starting frequency of full streams. To determine the maximum
client buffer requirement, we note that video data accumulate in
the client buffer at bps when a client is performing patching
and caching. During that phase, seconds of video is received
in seconds. Since the maximum buffer size required
is equal to half of the video, i.e., bits.

In case the client buffer size is limited to say bits, the
maximum duration of patching and caching during admission
will then be limited to seconds, which implies that the
parameter is limited by (i.e.,). On the other
hand, due to server bandwidth constraint, consecutive full
streams may be offset by more than seconds, so is the
duration of patching and caching during the merging process of
break-away clients after interactive playback operations. Thus,
we have to impose an additional constraint of
on the merging operation described in Section II-B. In other
words, if the constraint is not satisfied then a partial stream will
be started to serve the merging client till the end of the video.
In this case the stream is held for a much longer duration, and
thus will incur heavier load on the system when compared to
merging by patching and caching. Nevertheless this scenario
only occurs at extremely low arrival rates when the time offset
between two consecutive full streams is usually much larger
than seconds.

With client buffer we can further optimize the PAUSE oper-
ation. Specifically, instead of immediately breaking away from
the video stream, once a PAUSE operation is executed, the client
can continue to receive and cache video data at a rate of
bps if patching and caching is in progress or bps otherwise.
Thus, with a buffer of bits, no matter whether a client is
in the progress of patching and caching or not, it can implement
resource-free PAUSE operation if , where
and are duration of PAUSE and duration of patching and
caching, respectively. Otherwise, the client will issue a merging
request to merge back to an existing full stream.

D. Performance Impact

With the previously described modification to support in-
teractive playback operations in Dyadic, CARP, CGRP, and
ERMT, we investigate in the following the performance impact
of interactive playback operations on the system performance
using discrete-event simulations. The simulation results are
obtained from a simulator written based on the CNCL sim-
ulation library [38] and the system parameters employed are
summarized in Table I.

WONG et al.: SUPPORTING INTERACTIVE VIDEO-ON-DEMAND WITH ADAPTIVE MULTICAST STREAMING 135

TABLE I
DEFAULT SYSTEM PARAMETERS

Fig. 6. Performance of different multicast streaming algorithms under various
levels of client interactive control intensities.

We use two measures, namely access latency and interactive
playback latency to compare the performance of different mul-
ticast streaming algorithms under various interactive playback
interaction intensities. For interactive playback latency, it is mea-
sured from the time the client issues a FSEEK or a BSEEK op-
eration to the time video playback resumes at the new playback
point. For PAUSE operation, it is the waiting time measured from
the time a client requests to return from the PAUSE state to the
NORMAL playback state to the time video playback resumes.

Fig. 6(a) and (b) plots, respectively, the access latency and the
interactive playback latency for the interactive Dyadic, CARP,
CGRP, and ERMT algorithms. In this experiment, we set
(number of server channels) to 10, (probability of BSEEK)
and (probability of PAUSE) to 0, while (probability of
FSEEK) varies from 0.0 to 0.1. After a client entered the system,
it will issue different interactive playback commands (i.e., tran-
siting between different states in the model depicted in Fig. 5)
according to the set of transition probabilities. The horizontal

axes in Fig. 6(a) and (b) are measured in mean interactive play-
back requests per client (in units of requests/client). To compute
this we count the total number of interactive playback commands
issued during the whole simulation, and then divide it by the total
numberofclients served in thesimulation.Thismeasure, referred
to hereafter as the interactive playback intensity, represents the
average frequency at which a client generates interactive play-
back controls. In the simulations in Fig. 6(a) and (b) each client
on average issues 0 to 1.24 interactive playback requests.

At zero interactive playback intensity, all four algorithms per-
form extremely well with access latency well within 10 s. How-
ever, when we increase the interactive playback intensity to just
0.2 requests/client, i.e., on average one interactive playback con-
trol is performed for every five clients, the access latency in-
creases dramatically to tens of seconds. For even higher inter-
active playback intensity, the performance degrades so much so
that the performance differences of different algorithms (e.g.,
CARP versus ERMT) diminish. Similarly, the interactive play-
back latency also increases dramatically for higher interactive
playback intensity, reaching hundreds of seconds even for in-
tensity less than 1 request/client.

These results clearly show that these multicast streaming
algorithms are not designed to support interactive playback
control. Although we can extend them to support interactive
playback control, the system resources will be dominated by the
resulting merging requests, leading to unacceptable performance
even at very low levels of interactivity (e.g., 0.1 request/client).

It may appear surprising that the performance degradation is
so substantial even for interactive playback intensity of only
0.1 request/client. After all, the system can serve interactive
playback requests in the same way as admission requests using
batching, patching, and caching. However, one fundamental dif-
ference is that while admission request always begins video
playback from the beginning of the video, interactive playback
requests can request playback to resume at any playback points
over the entire duration of the video. Consequently, while all the
waiting admission requests can be batched and served together
once a free channel becomes available, the differing playback
points of waiting merging requests render batching improbable.
As a result, each merging request will require a dedicated par-
tial stream to resume playback and this significantly increases
resource consumption.

To further investigate the performance impact of each type
of interactive playback operations, we simulated a system with

channels and interactive playback transition probabili-
ties given by . Then we vary in
turn the transition probability of one of the interactive playback
operations from 0.01 to 0.1 and plot the results in Fig. 7(a) and
(b). We observe that generally BSEEK results in higher laten-
cies than FSEEK. This is because a BSEEK effectively extends
the duration of the video session which in turn will generate
more merging requests. By contrast, a FSEEK will skip some
of the video and thus effectively shortening the video session,
thereby also reducing the number of merging requests gener-
ated. The PAUSE operation, on the other hand, incurs signifi-
cantly less overhead as most of them can be handled in a re-
source-free manner through client-side buffering as described
in Section III-C.

136 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

Fig. 7. Effect of interaction parameters on system performance.

Nevertheless, the previous results clearly show that current
multicast streaming algorithms will suffer from significant
performance degradation if interactive playback control is
supported. We address this challenge in the next section by
analyzing the cause of the performance degradation and then
present a solution.

IV. STATIC FULL STREAM SCHEDULING (SFSS)

To obtain insights into the dynamics of the system when in-
teractive playback control is present, we first formulate a simpli-
fied system model that accounts for the cost of serving interac-
tive playback requests. Recall from Section II that there are full
streams and partial streams in a multicast streaming system. As-
suming full streams are generated once every seconds, then
the mean number of full streams in the system will be equal
to . Thus, on average, the playback point after interactive
playback control of a client will be offset by seconds when
compared to the full stream with the nearest playback point. To
merge this request back to the full stream, the system will thus
incur a mean merging cost of

(1)

where () is the mean merging time and is the video bit
rate.

Now as merging requests generally cannot be batched, with
a merging request rate of requests/second, the resulting
merging operations will consume system resources at a rate of

(2)

Fig. 8. Illustration of different optimal full-stream restart thresholds for dif-
ferent sets of client interactivity patterns.

Similarly, the resource consumption rate of full streams is
equal to

(3)

Therefore, summing (2) and (3) we obtain the total resource
consumption rate

(4)
Differentiating both sides with respect to we have

(5)

with the minimum occurring at

(6)

Thus is a decreasing function of , suggesting that
as the merging request rate increases, we should use a smaller

in order to minimize the resource consumption rate. Clearly,
this simple analysis does not take into account factors such as
playback request admissions and server bandwidth constraint.
Nevertheless it reveals that the full-stream restart threshold em-
ployed in existing multicast streaming algorithms may no longer
be optimal when interactive playback control is supported.

To verify this hypothesis, we simulated the Dyadic multi-
cast streaming algorithm with three sets of interactive playback
parameters and plot in Fig. 8 the normalized in-
teractive playback latency for full-stream restart threshold
ranging from 100 to 750 s. In the original Dyadic algorithm
the restart threshold is derived to be s. However
the results show that this threshold is no longer optimal when
interactive playback is allowed. Moreover, the actual optimal
threshold varies with different sets of interactive playback pa-
rameters 620 s (Set A), 490 s (Set B), and 260 s (Set C). The
results also confirm that as we increase the interactive playback
intensity (e.g., from in Set A to in Set C),
the resultant optimal threshold also decreases.

WONG et al.: SUPPORTING INTERACTIVE VIDEO-ON-DEMAND WITH ADAPTIVE MULTICAST STREAMING 137

Clearly, one solution to improve the algorithms’ performance
is to adjust the full-stream restart threshold for a given set
of operating parameter—SFSS. However given the complexity
of the multicast streaming algorithms, an analytical model cap-
turing all the essential features of the system does not appear to
be tractable. Alternatively we can use simulations to find the op-
timal full-stream restart threshold. However, even this approach
can only be done if all the system parameters, such as arrival rate
and the respective transition probabilities for various interactive
controls, are all known in advance. This is clearly not possible
in practice and thus we investigate in the next section an adap-
tive approach to solve this problem.

V. ADAPTIVE FULL STREAM SCHEDULING

It is clearly not possible to find the optimal full-stream
restart threshold without knowing all the system parame-
ters, which themselves are not known a priori. To tackle this
problem, we propose a JTS technique to estimate the system
parameters while the system is online, and then dynamically
adjust the system threshold based on results obtained from
an embedded simulator. The embedded simulator is built into
the video streaming system to perform simulations similar to
those in Section IV for finding the optimal full-stream restart
threshold . Once completed, the system uses the newly
obtained threshold and the JTS algorithm is restarted and the
whole process repeats until the threshold converges. With
this JTS technique a service operator then no longer needs to
know the system parameters in advance and can let the system
dynamically adjusts itself according to the actual measured
system parameters. An additional advantage is that if the system
parameter changes (e.g., when a new video is introduced into
the system or due to time of day, day of week changes), the
JTS technique can also adapt to the new system parameters
automatically.

The JTS technique comprises three steps. First we need an ini-
tial full-stream restart threshold to allow the system to begin op-
erations such that system parameters can be measured. Second,
once the system parameters are measured, we need to run the
embedded simulator with the measured system parameters to
find the optimal threshold. This process is repeated until the
obtained threshold converges. Finally, we need to detect any
changes in the system parameters which may require adjustment
of the threshold again, i.e., repeating step two.

When the system is first started, it clearly does not have any
past statistics for the embedded simulator to optimize . Nev-
ertheless, we can choose an initial threshold based on offline
simulation results. The JTS algorithm can then collect statis-
tics from subsequent requests to refine the threshold to improve
performance.

Specifically, the system needs to estimate five system pa-
rameters: the client arrival rate , probability of FSEEK ,
probability of BSEEK , probability of PAUSE and mean
seek distance . Given a set of sampled data values
() with sample mean , the confidence interval
(CI) bounding the estimated mean is calculated as

(7)

where

(8)

(9)

is the standard deviation of the samples, and the parameter can
be found from a -value lookup table.

Using this CI method we can obtain estimates of the system
parameters for use in the embedded simulator to obtain an up-
dated threshold . This updated threshold is then adopted in
the system for new requests while the system continues to col-
lect access statistics for the next round of embedded simulations.
The JTS scheme can be executed repetitively or we can also de-
fine a stopping condition to free up the server processor to carry
out other tasks. For example, we can define a stopping condition
such as

(10)

where the numerator represents the 95% confidence interval.
The server then continues updating the threshold until the
index of all five parameters fall below , where is a
configurable parameter. After which the server completes the
initiation and optimization steps.

If the system parameters do not change, then the previous ini-
tialization and optimization steps will be sufficient to optimize
the full-stream restart threshold. In practice however, these pa-
rameters can change dynamically with changes in the video col-
lection, the time of the day, or the day of the week. For example,
the client arrival rate in a day can vary substantially from a low
rate at the morning to a high rate at peak hours from about 7:00
pm to 1:00 am.

To address this problem, the system continues to collect ac-
cess statistics even after system initialization is completed. In
particular, the system uses a sliding window to collect the ac-
cess statistics and periodically compute the statistical index in
(10). Once the index of any system parameter exceeds a preset
threshold, say , the JTS scheme will be restarted
to optimize the threshold again as in the system initialization
phase. This is further illustrated in the next section on perfor-
mance evaluation.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance gains achievable
by the proposed SFSS scheme when applied to existing multi-
cast streaming algorithms and also study the dynamic behavior
of the JTS scheme when the system parameters change dynami-
cally. The simulation results are generated from a discrete-event
simulator written based on the CNCL simulation library [38].
For the multicast streaming algorithms, unless stated otherwise
we adopt the configurations proposed in their original studies
and use the default parameters in Table I.

138 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

Fig. 9. Optimal full stream restart threshold versus (a) transition probabilities,
(b) mean seeking distance, and (c) arrival rate.

A. Optimization of the Full Stream Restart Threshold

We first study the sensitivity of the optimal full-stream restart
threshold with respect to the system parameters, namely the ar-
rival rate , the probability of FSEEK , the probability of
BSEEK , the probability of PAUSE , and the mean seeking
distance . For all the simulations, we set , default in-
teraction parameters and make
use of the interactive Dyadic algorithm for illustration.

Fig. 9(a) plots the optimal threshold versus the transition
probabilities for the three types of interactions. We observe that
in general the optimal threshold decreases with increases in the
interaction probability, e.g., the threshold decreases from 650
to 240 s () and 190 s (), respectively, when the transition
probability is increased from 0.0 to 0.7. For PAUSE the optimal
threshold fluctuates between 650 and 550 s, indicating that
PAUSE operations incur insignificant performance impacts.

Fig. 10. Effect of interactive playback control intensity on (a) access latency
and (b) interactive playback latency.

Fig. 9(b) plots the optimal threshold versus mean seek dis-
tance ranging from 100 to 900 s. We observe that the optimal
threshold can vary significantly, in this case from 330 to 1340
s. Similarly, as shown in Fig. 9(c), the optimal threshold can
also vary widely when the arrival rate varies from 0.006 o 0.02
client/s. These two sets of results show that it is undesirable to
employ a constant full-stream restart threshold, thus confirming
the need for the adaptive JTS scheme presented in Section V.

B. Latencies Comparisons

In this section, we compare the performance gains achiev-
able by the proposed SFSS algorithm when applied to three ex-
isting multicast streaming algorithms, namely Dyadic [11], [13],
CARP [9], and BEP [33].

In the first set of results, we compare the admission latency
[Fig. 10(a)] and interactive playback latency [Fig. 10(b)] of two
categories of algorithms. The first category comprises the inter-
active Dyadic, interactive CARP, interactive ERMT, and BEP
algorithms using full-stream restart thresholds as proposed in
their original studies [9]–[11], [13], [33]; and the second cat-
egory comprises the interactive Dyadic, interactive CARP, and
BEP algorithms equipped with the SFSS algorithm to determine
the full-stream restart threshold.

The results in both Fig. 10(a) and (b) show that the
SFSS algorithm can significantly reduce the admission
and interactive playback latencies. We set

, where to , resulting in inter-
active playback intensities from 1.02 to 9.68 requests/client.
Inspecting the figures, for examples, SFSS reduces the inter-
active playback latency of the Dyadic algorithm by 99.92%,
98.58%, and 93.41%, respectively, at interactive playback

WONG et al.: SUPPORTING INTERACTIVE VIDEO-ON-DEMAND WITH ADAPTIVE MULTICAST STREAMING 139

Fig. 11. Comparison of (a) access latency and (b) interactive playback latency,
versus arrival rate.

intensities of 1.97, 3.92, and 5.86 requests/client. It is worth
noting that the performance gains achieved by the SFSS algo-
rithm far exceed the performance differences between different
multicast algorithms, especially at high interactive playback
intensities.

In the second set of results, we set
and plot in Fig. 11(a) and (b) the laten-

cies for different algorithms under different client arrival rates.
The observations are consistent with those in Fig. 10(a) and (b),
showing that the proposed SFSS algorithm again significantly
reduces the admission latency, e.g., by 89.96%, 92.71%, and
92.88%, respectively, at arrival rates of 0.03/s, 0.06/s, and
0.09/s for the Dyadic algorithm.

C. Effect of Client Buffer Constraint

In the previous results, we have set the client buffer size to
half of the video length (i.e.,) as suggested in the
original studies. If we reduce the buffer size, then some admis-
sion or merging requests will force the system to generate a full
stream instead of merging with a partial stream. Fig. 12 plots
the interactive playback latency versus client buffer size from
100 to 7200 s, with , , and

. The results show that the latency decreases rapidly
when we increase the buffer size from 100 to around 1000 s. Be-
yond that the improvements are less significant. Thus, the buffer
sizes suggested in the original studies (e.g., s)
are more than sufficient for achieving good performance in the
SFSS algorithm.

D. Just-in-Time Simulation (JTS)

In this section we study the performance of the JTS scheme,
in particular the time for the JTS scheme to reach the optimal

Fig. 12. Performance impact of client buffer constraint.

Fig. 13. Parameter estimation at system initialization. (a) Estimated optimal
W . (b) Time needed for accurate estimation.

threshold, and JTS’s ability to adapt to changes in system
parameters.

First we consider JTS’s convergence time in Fig. 13(a). At
time zero the system is started with no knowledge of the system
parameters. The server collects access statistics and then in-
vokes the JTS module to continuously refine the full- stream
restart threshold. With an initial threshold value of 600 s, the
JTS scheme initially adjusted the threshold to a range of values
around 300 s. However, as more access statistics are collected,
the system parameters are better estimated and thus JTS pro-
gressively refined the threshold to approach the optimal value
of 590 s. In this simulation run JTS took about 8500 s to con-
verge to the optimal full-stream restart threshold.

140 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

Fig. 14. Automatic adaptation to changing system parameters using JTS.
(a) Estimated arrival rate. (b) Estimated optimalW .

Not surprisingly, the convergence time depends on the system
parameters, and in particular the arrival rate as it determines the
rate at which access statistics are collected. Fig. 13(b) illustrates
this relation by plotting the convergence time against arrival
rates ranging from 0.01 to 0.1 clients/second. We can observe
that higher arrival rates can substantially reduce the convergent
time, but in all cases the convergent time is relatively modest
compared to the duration of a video session.

Next, we investigate JTS’s ability to adapt to varying system
parameters. In this experiment, we set ,

, but vary the arrival rate between 0.02 and
0.04 clients/s, with a cycle time of one day. To study the adaptive
ability of JTS under different variation patterns, we modulate the
value of between 0.02 and 0.04 clients/s using three modula-
tion patterns, namely square, triangular, and sinusoidal waves.
In all cases, JTS can adapt to the variations in client access
parameters. As an example, Fig. 14(a) and (b) shows, respec-
tively, the estimated arrival rate and estimated optimal threshold
against time for the square wave modulation pattern. We can ob-
serve that the system can estimate the arrival rates and obtain the
corresponding optimal thresholds, which equal to 610 and 260 s
for arrival rates of 0.02 and 0.04 clients/s, respectively.

To illustrate the performance gain achievable by JTS, we plot
in Fig. 15 the access and interactive playback latencies for a
Dyadic multicast system with and without JTS. In this simula-
tion, we set and arrival rate

varying between 0.02 and 0.04 clients/s, with a cycle time of
one week. The results show that without JTS, both access and
interactive playback latencies are substantially higher regardless

Fig. 15. Performance of JTS compared to a Dyadic multicast system enhanced
with SFSS.

of the value chosen for the full-stream restart threshold. This is
because the optimal restart threshold varies with time and so a
fixed restart threshold cannot adapt to the changing arrival rates.
By contrast, the proposed JTS scheme can dynamically optimize
the restart threshold to achieve over 23% and 11% reductions in
access and interactive playback latencies, respectively.

VII. CONCLUSIONS

In this study, we show that current state-of-the-art multicast
streaming algorithms, while extremely efficient, all suffer
from significant performance degradations when interactive
playback controls are supported. To tackle this problem, we
present a SFSS algorithm that schedules admission requests and
merging requests using two separate queues, and optimizes the
full stream restart threshold with interactive playback controls
accounted for. Simulation results show that this SFSS algo-
rithm can significantly reduce the performance degradation.
Nevertheless, the SFSS algorithm requires a priori knowledge
of system parameters that are clearly not available in practice.
Thus, we present a novel JTS technique to embed a system
simulator within the video streaming system to dynamically
measure and estimate the required system parameters for ob-
taining the optimal full stream restart threshold while the system
is online serving users. Results show that this JTS technique
can accurately estimate the system parameters as well as adapt
to changes in the system parameters to reoptimize the system
automatically. This general technique can be applied to many
of the current state-of-the-art multicast streaming algorithms,
including but not limited to Dyadic, CARG, CGRP, and BEP
to significantly improve their performance in providing true
interactive VoD services for a large user population.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
constructive comments and suggestions in improving this paper.

REFERENCES

[1] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an
on-demand video server with batching,” in Proc. 2nd ACM Int. Conf.
Multimedia, 1994, pp. 15–23.

[2] A. Dan, P. Shahabuddin, D. Sitaram, and D. Towsley, Channel alloca-
tion under batching and interactive playback control in movie-on-de-
mand servers IBM, Yorktown Heights, NY, 1994, Res. Rep. RC19588.

WONG et al.: SUPPORTING INTERACTIVE VIDEO-ON-DEMAND WITH ADAPTIVE MULTICAST STREAMING 141

[3] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching poli-
cies for an on-demand video server,” ACM Multimedia Syst., no. 4, pp.
112–121, 1996.

[4] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal batching policies
for video-on-demand storage servers,” in Proc. Int. Conf. Multimedia
Syst., Jun. 1996.

[5] H. Shachnai and P. S. Yu, “Exploring wait tolerance in effective
batching for video-on-demand scheduling,” in Proc. 8th Israeli Conf.
Comput. Syst. Softw. Eng., Jun. 1997, pp. 67–76.

[6] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for
true video-on-demand services,” in Proc. 6th Int. Conf. Multimedia,
Sep. 1998, pp. 191–200.

[7] Y. Cai, K. A. Hua, and K. Vu, “Optimizing patching performance,” in
Proc. SPIE/ACM Conf. Multimedia Comput. Netw., San Jose, CA, Jan.
1999, pp. 204–215.

[8] Y. Cai and K. A. Hua, “An efficient bandwidth-sharing technique for
true video on demand systems,” in Proc. 7th ACM Int. Multimedia
Conf., Orlando, FL, Nov. 1999, pp. 211–214.

[9] Z. Shi and C. C. J. Kuo, “Recursive patching for video-on-demand
(VOD) systems with limited client buffer constraint,” in Proc. IEEE
Int. Symp. Circuits Syst., 2002, vol. 1, pp. 373–376.

[10] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Optimal and efficient
merging schedules for video-on-demand servers,” in Proc. 7th ACM
Int. Multimedia Conf., pp. 199–203.

[11] E. G. Coffman, P. Jelenkovic, and P. Momcilovic, “Provably efficient
stream merging,” presented at the 6th Int. Workshop Web Caching Con-
tent Distribution, Boston, MA, 2001.

[12] A. Bar-Noy, J. Goshi, R. E. Ladner, and K. Tam, “Comparison of
stream merging algorithms for media-on-demand,” in Proc. SPIE
Multimedia Comput. Netw., San Jose, CA, Jan. 2002, pp. 115–129.

[13] E. G. Coffman, P. Jelenkovic, and P. Momcilovic, “The Dyadic stream
merging algorithm,” J. Algorithms, vol. 43, no. 1, pp. 120–137, Apr.
2002.

[14] L. Golubchik, J. C. S. Lui, and R. Muntz, “Reducing I/O demand in
video-on-demand storage servers,” in Proc. 1995 ACM SIGMETRICS
Joint Int. Conf. Meas. Modeling Comput. Syst., Ottawa, ON, Canada,
May 1995, pp. 25–36.

[15] ——, “Adaptive piggybacking: A novel technique for data sharing in
video-on-demand storage servers,” ACM Multimedia Syst., vol. 4, no.
3, pp. 140–155, 1996.

[16] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optimal piggyback
merging policies for video-on-demand systems,” in Proc. Int. Conf.
Multimedia Syst., Jun. 1996, pp. 253–258.

[17] S. W. Lau, J. C. S. Lui, and L. Golubchik, “Merging video streams in
a multimedia storage server: Complexity and heuristics,” ACM Multi-
media Syst., vol. 6, no. 1, pp. 29–42, 1998.

[18] D. L. Eager, M. K. Vernon, and J. Zahorjan, “Bandwidth skimming:
A technique for cost-effective video-on-demand,” in Proc. IS&T/SPIE
Conf. Multimedia Comput. Netw. 2000 (MMCN 2000), San Jose, CA,
Jan. 2000, pp. 206–215.

[19] S. Viswanathan and T. Imielinski, “Pyramid broadcasting for video on
demand service,” in Proc. SPIE Multimedia Comput. Netw. Conf., San
Jose, CA, 1995, pp. 66–77.

[20] K. A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting
scheme for metropolitan video-on-deman systems,” in Proc. ACM SIG-
COMM ’97, Sep. 1997, pp. 89–100.

[21] J. F. Paris, S. W. Carter, and D. D. E. Long, “A low bandwidth broad-
casting protocol for video on demand,” in Proc. 7th Int. Conf. Comput.
Commun. Netw. (IC3N’98), Oct. 1998, pp. 690–697.

[22] W. C. Liu and J. Y. B. Lee, “Constrained consonant broadcasting
– A generalized periodic broadcasting scheme for large scale video
streaming,” in Proc. IEEE Int. Conf. Multimedia Expo, Baltimore,
MD, Jul. 2003, vol. 1, pp. 805–808.

[23] L. Gao and D. Towsley, “Supplying instantaneous video-on-demand
services using controlled multicast,” in Proc. IEEE Int. Conf. Multi-
media Comput. Syst., Florence, Italy, Jun. 1999, vol. 2, pp. 117–121.

[24] L. Gao, Z. L. Zhang, and D. Towsley, “Catching and selective catching:
Efficient latency reduction techniques for delivering continuous multi-
media streams,” in Proc. 7th ACM Int. Multimedia Conf., Orlando, FL,
Nov. 1999, pp. 203–206.

[25] S. Ramesh, I. Rhee, and K. Guo, “Multicast with cache (Mcache): An
adaptive zero-delay video-on-demand service,” IEEE Trans. Circuits
Syst. Video Technol., vol. 11, no. 3, pp. 440–56, Mar. 2001.

[26] J. Y. B. Lee and C. H. Lee, “Design, performance analysis, and
implementation of a super-scalar video-on-demand system,” IEEE
Trans. Circuits Syst. Video Technol., vol. 12, no. 11, pp. 983–997,
Nov. 2002.

[27] C. W. Kong, J. Y. B. Lee, M. Hamdi, and V. O. K. Li, “Turbo-slice-
and-patch: An algorithm for metropolitan scale VBR video streaming,”
IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp. 338–353,
Mar. 2006.

[28] W. Liao and V. O. K. Li, “The split and merge protocol for interactive
video-on-demand,” IEEE Multimedia, vol. 4, no. 4, pp. 51–62, Apr.
1997.

[29] V. O. K. Li and W. Liao, “Interactive Video-on-Demand System,” U.S.
Patent 6 543 053 B1, Apr. 1, 2003.

[30] K. C. Almeroth and M. H. Ammar, “On the performance of a multicast
delivery video-on-demand service with discontinuous VCR actions,”
in Proc. IEEE Int. Conf. Commun., 1995, vol. 3, pp. 1631–1635.

[31] E. L. Abram-Profeta and K. G. Shin, “Providing unrestricted VCR
functions in multicast video-on-demand servers,” in Proc. IEEE Int.
Conf. Multimedia Comput. Syst., 1998, pp. 66–75.

[32] W. F. Poon, K. T. Lo, and J. Feng, “Design and analysis of multicast
delivery to provide VCR functionality in video-on-demand systems,”
in Proc. 2nd Int. Conf. ATM, 1999, pp. 132–139.

[33] H. Ma and K. G. Shin, “A new scheduling scheme for multicast true
VoD service,” in Proc. PCM2001, Springer LNCS 2195, 2001, pp.
708–715.

[34] J. B. Kwon and H. Y. Yeom, “Providing VCR functionality in staggered
video broadcasting,” IEEE Trans. Consum. Electron., vol. 48, no. 1, pp.
41–48, Feb. 2002.

[35] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley, “Providing
VCR capabilities in large-scale video servers,” in Proc. 2nd ACM Int.
Conf. Multimedia, Oct. 1994, pp. 25–32.

[36] V. O. K. Li, W. J. Liao, X. X. Qiu, and E. W. M. Wong, “Performance
model of interactive video-on-demand systems,” IEEE J. Sel. Areas
Commun., vol. 14, no. 8, pp. 1099–1109, Aug. 1996.

[37] P. Branch, G. Egan, and B. Tonkin, “Modeling interactive behaviour of
a video based multimedia system,” in Proc. IEEE Int. Conf. Commun.,
1999, vol. 2, pp. 978–982.

[38] M. Junius, M. Steppler, M. Büter, and D. Pesch, CNCL – Commu-
nication Networks Class Library. Aachen, Germany: Aachen Univ.
Technol., 1999.

Ying Wai Wong received the B.Eng. and M.Phil. de-
grees in information engineering from the Chinese
University of Hong Kong, Hong Kong, in 2001 and
2003, respectively. In 2004, he joined the Department
of Linguistics and Modern Languages at the Chinese
University of Hong Kong to pursue graduate degrees.
He studied and reported asymmetries in tone produc-
tion and perception processes by means of acoustic
analyses and psychoacoustic experiments. He is cur-
rently pursuing the Ph.D. degree, with research inter-
ests in production and perception phenomena related

to Cantonese tones in continuous speech.
During 2001–2003, he was at the Multimedia Communications Laboratory

investigating techniques to support interactive playback control in multicast
video streaming systems.

Jack Y. B. Lee (M’95–SM’03) received the B.Eng.
and Ph.D. degrees in information engineering from
the Chinese University of Hong Kong, Hong Kong,
in 1993 and 1997, respectively.

He participated in the research and development
of video streaming systems from 1997 to 1998 where
he and his team developed novel parallel video server
architectures for building cost-effective, scalable
and fault-tolerant video-on-demand systems. This
work had resulted in numerous publications, two
U.S. Patents, and the technologies are subsequently

transferred to a spin-off technology company for commercialization. He
was a faculty member at the Department of Computer Science, Hong Kong
University of Science and Technology, from 1998 to 1999, and in 1999 he
joined the Department of Information Engineering, Chinese University of Hong
Kong, to establish the Multimedia Communications Laboratory to spearhead
research in distributed multimedia systems, peer-to-peer networks, multicast
communications, Internet protocols and applications.

142 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 2, FEBRUARY 2007

Victor O.K. Li (S’80–M’81–SM’86–F’92) received
the B.S., M.S.E.E., and D.Sc. degrees in electrical
engineering and computer science from the Massa-
chusetts Institute of Technology, Cambridge, in 1977,
1979, 1980, and 1981, respectively.

He joined the University of Southern California
(USC), Los Angeles, in February 1981, and became
Professor of electrical engineering and Director of
the USC Communication Sciences Institute. Since
September 1997, he has been with the University of
Hong Kong, Hong Kong, where he is Chair Professor

of Information Engineering at the Department of Electrical and Electronic
Engineering. He has also served as Managing Director of Versitech Ltd., the
technology transfer and commercial arm of the University, and on various cor-
porate boards. His research is in information technology, including all-optical
networks, wireless networks, and Internet technologies and applications. He is
a Principal Investigator of the Area of Excellence in Information Technology
funded by the Hong Kong Government. Sought by government, industry, and
academic organizations, he has lectured and consulted extensively around
the world. He is a part-time member of the Central Policy Unit of the Hong
Kong Government. He also serves on the Innovation and Technology Fund
(Electronics) Vetting Committee, the Small Entrepreneur Research Assistance
Programme Committee, the Engineering Panel of the Research Grants Council,
and the Task Force for the Hong Kong Academic and Research Network
(HARNET) Development Fund of the University Grants Committee. He was
a Distinguished Lecturer at the University of California at San Diego, at the
National Science Council of Taiwan, and at the California Polytechnic Institute.
He has also delivered keynote speeches at many international conferences.

Prof. Li chaired the Computer Communications Technical Committee of the
IEEE Communications Society 1987–1989, and the Los Angeles Chapter of
the IEEE Information Theory Group 1983–1985. He co-founded the Interna-
tional Conference of Computer Communications and Networks (IC3N), and
chaired its Steering Committee 1992–1997. He also chaired various interna-
tional workshops and conferences, including most recently, IEEE INFOCOM
2004 and IEEE HPSR 2005. He has served as an Editor of IEEE Network, IEEE
JOURNAL OF SELECTED AREAS OF COMMUNICATION (JSAC) Wireless Commu-
nications Series, and Telecommunication Systems. He also guest edited special
issues of IEEE JSAC, Computer Networks and ISDN Systems, and KICS/IEEE
Journal of Communications and Networking. He is now serving as an Editor of
ACM/Springer Wireless Networks and IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS. He has been appointed to the Hong Kong Information Infrastruc-
ture Advisory Committee by the Chief Executive of the Hong Kong Special

Administrative Region (HKSAR). He has received numerous awards, including,
most recently, the Changjiang Chair Professorship at Tsinghua University, Bei-
jing, China, from the Ministry of Education, China, U.K. Royal Academy of
Engineering Senior Visiting Fellowship in Communications, the Outstanding
Researcher Award of the University of Hong Kong, the Croucher Foundation
Senior Research Fellowship, and the Order of the Bronze Bauhinia Star, Gov-
ernment of HKSAR, China. He is a Fellow of the HKIE and the IAE.

Gary S.-H. Chan (S’89–M’98–SM’03) received
the B.S.E. degree (highest hons.) in electrical engi-
neering from Princeton University, Princeton, NJ, in
1993, with certificates in applied and computational
mathematics, engineering physics, and engineering
and management systems, and the M.S.E. and Ph.D.
degrees in electrical engineering from Stanford
University, Stanford, CA, in 1994 and 1999, respec-
tively, with a minor in business administration.

He is currently an Associate Professor with the De-
partment of Computer Science and Engineering, The

Hong Kong University of Science and Technology, Hong Kong, and an Adjunct
Researcher with Microsoft Research Asia, Beijing, China. He was a Visiting As-
sistant Professor in networking at the Department of Computer Science, Univer-
sity of California at Davis, from 1998 to 1999. During 1992–1993, he was a Re-
search Intern at the NEC Research Institute, Princeton, NJ. His research interest
includes multimedia networking, peer-to-peer technologies and streaming, and
wireless communication networks.

Dr. Chan served as a Vice-Chair of IEEE Communications Society
(COMSOC) Multimedia Communications Technical Committee (MMTC)
from 2003 to 2006. He is a Guest Editor for special issues on “Peer-to-Peer
Multimedia Streaming” in IEEE Communication Magazine (2007) and “Ad-
vances in Consumer Communications and Networking” in Springer Multimedia
Tools and Applications (2007). He has been a co-chair of multimedia sympo-
sium in IEEE GLOBECOM (2006) and IEEE ICC (2005 and 2007), and for
the workshop on “Advances in Peer-to-Peer Multimedia Streaming” in ACM
Multimedia Conference (2005). He is a member of Tau Beta Pi, Sigma Xi, and
Phi Beta Kappa. He was a William and Leila Fellow at Stanford University
during 1993–1994. At Princeton, he was the recipient of the Charles Ira Young
Memorial Tablet and Medal, and the POEM Newport Award of Excellence in
1993.

