
S. C. Hui and Jack Y. B. Lee
{schui3, yblee}@ie.cuhk.edu.hk

Department of Information Engineering
The Chinese University of Hong Kong

Hong Kong

Playback-Adaptive Multi-Source Video Streaming

Abstract - The best-effort nature of the Internet poses
significant challenges to guaranteeing performance of video
streaming applications. In particular, the available bandwidth
between a sender and a receiver is often unpredictable and can
vary substantially from time to time, causing buffer
underflows and consequently playback starvations. This work
tackles this problem by proposing a novel video playback
adaptation and rebuffering algorithm for multi-source
streaming. Unlike single-source streaming, the aggregate
bandwidth of multiple senders closely follows the normal
distribution when the number of senders exceeds four. Based
on this discovery this paper presents a video playback rate
adaptation and rebuffering algorithm that can significantly
reduce playback starvations. This adaptive multi-source
streaming scheme is simple to implement, does not require
complex media adaptation processing at the servers, and can
be applied to the vast amount of video content already
available in the Internet.

Keywords - multi-source streaming, Internet measurement,
aggregate bandwidth estimation, video adaptation, rebuffering
control

I. INTRODUCTION
Today’s Internet only provides best-effort data delivery

and so does not guarantee bandwidth availability. While the
best-effort model works well for data applications such as
the WWW and email, it presents significant challenges to
bandwidth-sensitive applications such as video streaming.

Specifically, to successfully stream a video over the
Internet we need to ensure that the video bit-rate does not
exceed the network bandwidth available, or else congestion
will occur, leading to dropped packets and playback hiccups.
Unfortunately the available network bandwidth between a
sender and a receiver is not known a priori and worst, often
varies from time to time.

One approach to tackle this problem is to adapt the video
bit-rate according to the network bandwidth available. As it
is not possible to know a priori the future bandwidth, one
needs to apply prediction techniques [1-3] to estimate the
short-term future bandwidth availability based on past
bandwidth measurements. Armed with knowledge of the
bandwidth availability, the sender can then adapt the video
content to the desired bit-rate using techniques such as
scalable video codec [4,5] or real-time transcoders [6,7].

In this work we investigate a new adaptive multi-source
video streaming (AMSS) scheme that does not require

This research is funded in part by a Direct Grant, an Earmarked Grant

(CUHK4211/03E) from the HKSAR Research Grant Council, and the UGC
Area of Excellence in Information Technology Scheme (AoE/E-01/99).

support from the streaming server at all. AMSS is
developed based on two principles. First, unlike streaming
video from a single sender, we discovered that the aggregate
data rate from multiple senders to a receiver is in fact
normally-distributed, even for as few as 4 senders [8].
Therefore by measuring the mean and variance of the
aggregate streaming bandwidth, we can obtain a
probabilistic estimate of the streaming bandwidth available.
Second, instead of using scalable video codec, which is not
widely supported in current streaming applications, we
propose the use of playback rate adaptation to cope with the
random fluctuations in the streaming bandwidth available.

Combining these two principles, we develop an
adaptation algorithm to dynamically vary the playback rate
locally at the client according to the estimated bandwidth
availability and the client buffer occupancy. This adaptation
algorithm is run locally at the client and thus eliminates the
added processing complexity at the server. To our
knowledge this is the first study to combine playback rate
adaptation with multi-source streaming. Our trace-driven
simulations show that good streaming performance can be
achieved with as few as 4 senders and a playback rate
variation of only 5%, despite the fact that TCP is used as the
underlying transport running over the best-effort Internet.

The rest of the paper is organized as follows: Section II
discuss the related work. Section III the multi-source video
adaptation algorithm; Section IV evaluates the performance
of these schemes using trace-driven simulations; Section V
summarizes the paper.

II. BACKGROUND AND RELATED WORK
Streaming from multiple senders has been investigated by

a number of researchers. For example, Xu et al. [9]
proposed a data assignment algorithm to allocate and
schedule the senders’ data transmissions to the receiver to
reduce the receiver’s buffering delay. Jin et al. [10] further
generalized the data assignment algorithm for arbitrary
bandwidth ratios among the senders. Both studies, however,
employed static data assignment, i.e., the data each sender
has to transmit are fixed. In another study [1], Nguyen and
Zakhor proposed a dynamic rate allocation and packet
partition scheme for multi-sender streaming. The video data
each sender will transmit is not fixed, but adapted according
to the senders’ actual throughput. On the other hand, if there
are many senders the receiver may need to select a subset of
them rather than streaming from all senders in order to
reduce complexity.

819

The above studies are focused on the selection of sources,
assignment of data, and the scheduling of transmissions of
the multiple senders in streaming. They did not employ any
video adaptation algorithm to shape the video bit-rate to fit
the network bandwidth available, and thus is limited in their
capability to compensate for network bandwidth variations.

Current work on video adaptation primarily focused on
one of three approaches: (a) encode multiple versions of the
same video in different bit-rates and send the version that
best match the network bandwidth available (e.g.,
SureStream in RealVideo [11]); (b) encode the video using
scalable techniques such as multiple description codec (e.g.,
[4]), layered video codec (e.g., FGS [5]), and then adjust the
video bit-rate by adding or dropping video layers; and (c)
use a real-time video transcoder (e.g., [6,7]) to dynamically
shape the video bit-rate.

All these approaches however, are primarily designed for
single-source streaming as the adaptation processing has to
be done at the server. Conceivably it is possible to extend
these approaches to multi-source streaming but then the
servers will need to coordinate their adaptation processing
which is far from trivial. Therefore further investigation is
needed to uncover the potential problems and devise the
solutions.

In comparison, the AMSS scheme presented in this work
does not employ server-side video adaptation. Instead,
AMSS employs client-side playback rate adaptation to vary
the video data consumption rate.

For video stream this can be achieved simply by
changing the display rate (i.e., inter-frame interval) of video
frames. Changing the playback rate of audio is more
challenging as increasing/decreasing the playback sampling
rate will also change the pitch of the audio, which is audible.
To address this problem, we can apply a technique called
Time Scale Modification (TSM) [12] that can shorten or
elongate the audio stream while preserving the pitch. These
techniques are well known and have been applied
successfully in many applications, including voice over IP,
adaptive piggybacking [13], etc.

Clearly, there is still a limit on which we can change the
display rate without causing noticeable degradation.
However, our experiments show that even with a very small
playback rate change of 5%, which is not noticeable [13],
we can already achieve significant performance
improvement in terms of frequency and length of playback
interruptions.

III. CLIENT-SIDE VIDEO ADAPTATION
Armed with the discovery that the aggregate bandwidth

of multiple senders is approximately normally distributed
[8], we develop in this section a video playback rate
adaptation scheme to compensate for the bandwidth
estimation inaccuracies so that smooth, continuous video
playback can be maintained. The adaptation algorithm is

composed of two parts, namely the playback rate adjustment
algorithm and the rebuffering algorithm.
A. Playback Rate Adjustment Algorithm

Assume there are N senders transmitting a video encoded
in a constant bit-rate R. Let T be the averaging time window
for computing the average bandwidth availability, i.e., the
bandwidth availability is taken at intervals of T seconds.
Furthermore, let ai,,j be the amount of data received from
sender i at time interval j. Then, the total amount of data
received from all N senders at time interval j, denoted by Aj,
is then given by

1

,
0

−

=

= ∑
N

j i j
i

A a (1)

Let Cj be the amount of data consumed at interval j. With
a playback rate of R, we can compute Cj from
 (2) =jC TR

The client buffer occupancy at interval j, denoted by Bj,
can be calculated from the difference between the amount of
data received and consumed, i.e.,
 max(0,())= −j jB A jC (3)

According to the argument in the previous section, the
playback rate can be adjusted within a small range, say α,
without noticeable by the user. Thus a video segment (say
segment j) of original playback duration T seconds can in
fact be played back in a range of durations:
 (1) (1)α α− ≤ ≤ +jT T T (4)

Intuitively, the receiver should increase the playback rate
(i.e., shorten the playback duration) when the buffer is
about to overflow, and decrease the playback rate (i.e.,
extend the playback duration) when the buffer is about to
underflow. In practice, the buffer constraint is typically far
less of a problem than bandwidth constraint and so for
simplicity we ignore buffer overflow and the constraint in
(4) is simplified to
 (1)α≤ +jT T (5)

Now as Tj is no longer a constant we will need to modify
(1) and (2) to

1

,

0

N
i j

j
i j

a
r

T

−

=

= ∑ (6)

and

 j
j

TRm
T

= (7)

where rj and mj represent respectively the data reception
rate and data consumption rate at interval j.

Using this model the playback rate adjustment problem is
then equivalent to determining Tj given the current
estimated aggregate bandwidth availability as well as the
client buffer occupancy.

820

Specifically, let Bj be the actual buffer occupancy at
interval j. Then the estimated buffer occupancy at the next
interval j+1, denoted by B’j+1 will be equal to
 (8) 1' + = − +j j jB r T RT jB

0

where the first term is the amount of data received, and
the second term is the amount of data consumed at interval j.
The goal is to maintain the buffer occupancy to a level, say
X, larger than zero, i.e.,
 (9) 1' + ≥ >jB X

Revisiting (8) we already know the exact values for R, T,
and Bj. The aggregate bandwidth rj is normally distributed
and the receiver has been measuring its mean and variance
since the beginning of the streaming session. Thus the only
unknown is the playback duration Tj, which we can adjust
in order to satisfy the constraint in (9).

Assume that the client can tolerate a probability of ∆ of
failing the constraint in (9). Then we can rewrite the
constraint in (9) as
 { }1Pr ' + < ≤ ∆jB X (10)

Substituting (8) into (10) we have
 { }Pr − + < ≤ ∆j j jr T RT B X (11)

Rearranging gives

 Pr
⎧ ⎫− +⎪ <⎨
⎪ ⎪⎩ ⎭

j
j

j

X B RT
r

T
⎪ ≤ ∆⎬ (12)

which the L.H.S. probability is given by the normal
distribution and hence we can compute Tj accordingly.

In practice, most streaming video player software
performs prefetch buffering before beginning playback to
absorb network delay variations. Assuming the amount of
prefetch video data is equal to Bpre, then we can simply set
X=Bpre to maintain the client buffer occupancy at the
prefetch level.
B. Rebuffering Algorithm

Despite the use of multiple senders and the playback rate
adaptation algorithm described in the previous section, the
client may still occasionally experience buffer underflow.
When underflow occurs it is necessary to temporary pause
the video playback until some amount of video data are
accumulated.

The simplest rebuffering algorithm is to rebuffer up to the
prefetch buffer level, i.e., Bpre. However, this method may
not be optimal. On one hand, the prefetch buffer level could
be unnecessary large. While a longer delay is acceptable at
startup, it is far less tolerable when the video is suddenly
suspended due to buffer underflow. On the other hand, if
bandwidth availability is low, it would be better to prefetch
more video data to reduce the occurrences of buffer
underflows.

Instead of using a fixed rebuffer size, we can compute the
amount of video data to rebuffer using methods similar to (8)

and (9). Specifically, when buffer underflow occurs at say
time interval j, then Bj=0. Let P be the rebuffer size. Then
we can calculate P from

 min | Pr j
j

X p RTP p r
T

⎧ ⎫⎧ ⎫− +⎪ ⎪ ⎪ ⎪= < ≤ ∆⎨ ⎨
⎪ ⎪

⎬ ⎬
⎪ ⎪⎩ ⎭⎩ ⎭

 (13)

The playback will resume after the client buffer
occupancy reaches P. In this adaptive rebuffering algorithm
the variability of the available bandwidth is then
incorporated into the calculation of the rebuffer size P.

IV. PERFORMANCE EVALUATION
In this section we use trace-driven simulations to evaluate

the AMSS scheme and compare the performance of
different design choices. The performance metric used is the
total underflow time – defined as the total time at which
playback is suspended due to buffer underflow, and the
number of playback pauses (i.e., number of buffer
underflow occurrences) during the streaming session. We
set N = 5, T = 1s, Bpre = 5s, ∆ = 0.15%, and α is in the range
from 0.005 to 0.05. The video bit rate, R is set to equal to
the average aggregate bandwidth of traffic traces obtained
from PlanetLab [14]. The simulation result is obtained from
the average of five simulation runs.
A. Comparison of Different Algorithms

Three different algorithms are compared in the following
results: (a) “No Scheme” – no playback rate adaptation nor
rebuffering; (b) “Adaptation Only” – using playback rate
adaptation but not rebuffering; and (c) “Adaptation and
Rebuffering” – using both playback rate adaptation and
rebuffering.

Fig. 1 and 2 shows the average total underflow time and
pause count with respect to the playback rate adjustment
limit α. First, without playback rate adaptation and
rebuffering (i.e., “No Scheme” in the figures) the system
performed poorly with long underflow time (over 14
seconds) and large number of playback pauses (over 70
occurrences). Second, by introducing playback rate
adaptation the performance is improved significantly.

0

2

4

6

8

10

12

14

16

18

20

0 0.01 0.02 0.03 0.04 0.0

Display Rate Adjustment Threshold, α

A
ve

ra
ge

 U
nd

er
flo

w
 T

im
e

(s
)

5

No Scheme

Adaptation and Rebuffering

Adaptation Only

Fig. 1. Average underflow time versus playback rate adjustment

limit.

821

0

10

20

30

40

50

60

70

80

0 0.01 0.02 0.03 0.04 0.05

Display Rate Adjustment Threshold, α

A
ve

ra
ge

 P
au

se
 C

ou
nt

Adaptation Only

No Scheme

Adaptation and Rebuffering

Fig. 2. Average pause count versus playback rate adjustment limit.
Further improvement is obtained when rebuffering is also
employed. For rate adjustment threshold larger than 0.02
(i.e., up to 2% playback rate variation) both the underflow
time and playback pause count decrease to negligible levels.
B. Effect of Number of Senders

In this experiment we investigate the effect of number of
senders on the system performance. Fig. 3 plots the average
underflow time and pause counts for number of senders
ranging from 1 to 10 where α = 0.05.

There are two observations in these results. First, the
system performs poorly when there are fewer than 4 senders.
This result matches our measurements in [8] as the
aggregate bandwidth does not conform to a normal
distribution when the number of senders is fewer than 4.
This leads to estimation errors in the adaptation algorithms
and thus degrades the system performance substantially.
Second, we observe that the system performance continue
to improve for more senders. This suggests that the
proposed AMSS scheme is particularly suitable for
applications with many sources (e.g., in peer-to-peer
applications).

V. SUMMARY
This work investigates the integration of playback-rate

adaptation with multi-source streaming to achieve high
streaming performance in the best-effort Internet. These two
techniques are complementary as either one alone is not
sufficient to compensate for the inherent bandwidth
variations in the Internet. Only when used together the
client can effectively adapt to the changing bandwidth
availability, and without the need to implement complex
media adaptation algorithms (e.g., scalable video coding,
transcoding, etc.) at the servers. Therefore the proposed
AMSS algorithm can be applied to the vast amount of
existing video contents already in the internet, which are
often encoded in non-scalable formats.

REFERENCES
[1] T. Nguyen and A. Zakhor, “Distributed Video Streaming over the

Internet" SPIE Conference on Multimedia Computing and
Networking, San Jose, California, January 2002.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Number of Senders

A
ve

ra
ge

 U
nd

er
flo

w
 T

im
e(

s)

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 P
au

se
 C

ou
nt

Average Pause Count

Average Underflow Time

Fig. 3. Average underflow time and pause count versus number of

senders.
[2] S. Vazhkudai, J. M. Schopf, and I. Foster, “Predicting the

Performance of Wide Area Data Transfers,” 16th International
Parallel and Distributed Processing Symposium, Fort Lauderdale, FL,
April 2002.

[3] R. Wolski, “Dynamically Forecasting Network Performance Using
the Network Weather Service,” Journal of Cluster Computing, vol. 1,
pp.119-132, January 1998.

[4] Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri, “Multiple
Description Coding for Video Using Motion Compensated
Prediction,” International Conference on Image Processing, Kobe,
Japan, vol. 3, pp.837-41, October 1999.

[5] Y. Q. Liang and Y. P. Tan, “Methods and Needs for Transcoding
MPEG-4 Fine Granularity Scalability Video,” IEEE International
Symposium on Circuits and Systems 2002, Scottsdale, Arizona, vol.4,
pp.719-722, May 2002.

[6] A. Vetro, C. Christopoulos and Huifang Sun, “Video Transcoding
Architectures and Techniques: an Overview,” IEEE Signal
Processing Magazine, vol. 20, Issue 2, pp.18 – 29, March 2003.

[7] L. S. Lam, Jack Y. B. Lee, S. C. Liew, and W. Wang, “A Transparent
Rate Adaptation Algorithm for Streaming Video over the Internet,”
18th International Conference on Advanced Information Networking
and Applications, Fukuoka, Japan, March 2004.

[8] S. C. Hui, Jack Y. B. Lee, “Modeling of Aggregate Available
Bandwidth in Many-to-One Data Transfer” Fourth International
Conference on Intelligent Multimedia Computing and Networking,
Salt Lake City, Utah, USA, July 2005.

[9] D.Y. Xu, M. Hefeeda, S. Hambrusch and B. Bhargava, “On Peer-to-
Peer Media Streaming,” International Conference on Distributed
Computing Systems 2002, Vienna, Austria, pp.363-371, July 2002.

[10] Jin B. Kwon and Heon Y. Yeom, “Distributed Multimedia Streaming
over Peer-to-Peer Network” Euro-Par 2003, 9th International
Conference on Parallel and Distributed Computing, Klagenfurt,
Austria, August 2003.

[11] RealVideo 10 Home Page:
http://www.realnetworks.com/products/codecs/realvideo.html

[12] Y. J. Liang, N. Farber and B. Girod, “Adaptive Playout Scheduling
Using Time-Scale Modification in Packet Voice Communications,”
IEEE International Conference on Acoustics, Speech, and Signal
Processing 2001, Salt Lake City, Utah, vol. 3, pp.1445-1448, May
2001.

[13] L. Golubchik, John C. S. Lui and R. R. Muntz, “Reducing I/O
demands in Video-on-Demand Storage Servers,” ACM SIGMETRICS
and PERFORMANCE'95, International Conference on Measurement
and Modeling of Computer Systems, Ottawa, Canada, May, 1995.

[14] PlantLab Home Page:
http://www.planet-lab.org/

822

