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Playback-Adaptive Multi-Source Video Streaming 

Abstract - The best-effort nature of the Internet poses 
significant challenges to guaranteeing performance of video 
streaming applications. In particular, the available bandwidth 
between a sender and a receiver is often unpredictable and can 
vary substantially from time to time, causing buffer 
underflows and consequently playback starvations. This work 
tackles this problem by proposing a novel video playback 
adaptation and rebuffering algorithm for multi-source 
streaming. Unlike single-source streaming, the aggregate 
bandwidth of multiple senders closely follows the normal 
distribution when the number of senders exceeds four. Based 
on this discovery this paper presents a video playback rate 
adaptation and rebuffering algorithm that can significantly 
reduce playback starvations. This adaptive multi-source 
streaming scheme is simple to implement, does not require 
complex media adaptation processing at the servers, and can 
be applied to the vast amount of video content already 
available in the Internet.  

Keywords - multi-source streaming, Internet measurement, 
aggregate bandwidth estimation, video adaptation, rebuffering 
control 

I. INTRODUCTION 
Today’s Internet only provides best-effort data delivery 

and so does not guarantee bandwidth availability. While the 
best-effort model works well for data applications such as 
the WWW and email, it presents significant challenges to 
bandwidth-sensitive applications such as video streaming. 

Specifically, to successfully stream a video over the 
Internet we need to ensure that the video bit-rate does not 
exceed the network bandwidth available, or else congestion 
will occur, leading to dropped packets and playback hiccups. 
Unfortunately the available network bandwidth between a 
sender and a receiver is not known a priori and worst, often 
varies from time to time.  

One approach to tackle this problem is to adapt the video 
bit-rate according to the network bandwidth available. As it 
is not possible to know a priori the future bandwidth, one 
needs to apply prediction techniques [1-3] to estimate the 
short-term future bandwidth availability based on past 
bandwidth measurements. Armed with knowledge of the 
bandwidth availability, the sender can then adapt the video 
content to the desired bit-rate using techniques such as 
scalable video codec [4,5] or real-time transcoders [6,7]. 

In this work we investigate a new adaptive multi-source 
video streaming (AMSS) scheme that does not require 
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support from the streaming server at all. AMSS is 
developed based on two principles. First, unlike streaming 
video from a single sender, we discovered that the aggregate 
data rate from multiple senders to a receiver is in fact 
normally-distributed, even for as few as 4 senders [8]. 
Therefore by measuring the mean and variance of the 
aggregate streaming bandwidth, we can obtain a 
probabilistic estimate of the streaming bandwidth available. 
Second, instead of using scalable video codec, which is not 
widely supported in current streaming applications, we 
propose the use of playback rate adaptation to cope with the 
random fluctuations in the streaming bandwidth available. 

Combining these two principles, we develop an 
adaptation algorithm to dynamically vary the playback rate 
locally at the client according to the estimated bandwidth 
availability and the client buffer occupancy. This adaptation 
algorithm is run locally at the client and thus eliminates the 
added processing complexity at the server. To our 
knowledge this is the first study to combine playback rate 
adaptation with multi-source streaming. Our trace-driven 
simulations show that good streaming performance can be 
achieved with as few as 4 senders and a playback rate 
variation of only 5%, despite the fact that TCP is used as the 
underlying transport running over the best-effort Internet. 

The rest of the paper is organized as follows: Section II 
discuss the related work. Section III the multi-source video 
adaptation algorithm; Section IV evaluates the performance 
of these schemes using trace-driven simulations; Section V 
summarizes the paper. 

II. BACKGROUND AND RELATED WORK 
Streaming from multiple senders has been investigated by 

a number of researchers. For example, Xu et al. [9] 
proposed a data assignment algorithm to allocate and 
schedule the senders’ data transmissions to the receiver to 
reduce the receiver’s buffering delay. Jin et al. [10] further 
generalized the data assignment algorithm for arbitrary 
bandwidth ratios among the senders. Both studies, however, 
employed static data assignment, i.e., the data each sender 
has to transmit are fixed. In another study [1], Nguyen and 
Zakhor proposed a dynamic rate allocation and packet 
partition scheme for multi-sender streaming. The video data 
each sender will transmit is not fixed, but adapted according 
to the senders’ actual throughput. On the other hand, if there 
are many senders the receiver may need to select a subset of 
them rather than streaming from all senders in order to 
reduce complexity. 
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The above studies are focused on the selection of sources, 
assignment of data, and the scheduling of transmissions of 
the multiple senders in streaming. They did not employ any 
video adaptation algorithm to shape the video bit-rate to fit 
the network bandwidth available, and thus is limited in their 
capability to compensate for network bandwidth variations.  

Current work on video adaptation primarily focused on 
one of three approaches: (a) encode multiple versions of the 
same video in different bit-rates and send the version that 
best match the network bandwidth available (e.g., 
SureStream in RealVideo [11]); (b) encode the video using 
scalable techniques such as multiple description codec (e.g., 
[4]), layered video codec (e.g., FGS [5]), and then adjust the 
video bit-rate by adding or dropping video layers; and (c) 
use a real-time video transcoder (e.g., [6,7]) to dynamically 
shape the video bit-rate. 

All these approaches however, are primarily designed for 
single-source streaming as the adaptation processing has to 
be done at the server. Conceivably it is possible to extend 
these approaches to multi-source streaming but then the 
servers will need to coordinate their adaptation processing 
which is far from trivial. Therefore further investigation is 
needed to uncover the potential problems and devise the 
solutions.  

In comparison, the AMSS scheme presented in this work 
does not employ server-side video adaptation. Instead, 
AMSS employs client-side playback rate adaptation to vary 
the video data consumption rate.  

For video stream this can be achieved simply by 
changing the display rate (i.e., inter-frame interval) of video 
frames. Changing the playback rate of audio is more 
challenging as increasing/decreasing the playback sampling 
rate will also change the pitch of the audio, which is audible. 
To address this problem, we can apply a technique called 
Time Scale Modification (TSM) [12] that can shorten or 
elongate the audio stream while preserving the pitch. These 
techniques are well known and have been applied 
successfully in many applications, including voice over IP, 
adaptive piggybacking [13], etc. 

Clearly, there is still a limit on which we can change the 
display rate without causing noticeable degradation. 
However, our experiments show that even with a very small 
playback rate change of 5%, which is not noticeable [13], 
we can already achieve significant performance 
improvement in terms of frequency and length of playback 
interruptions. 

III. CLIENT-SIDE VIDEO ADAPTATION  
Armed with the discovery that the aggregate bandwidth 

of multiple senders is approximately normally distributed 
[8], we develop in this section a video playback rate 
adaptation scheme to compensate for the bandwidth 
estimation inaccuracies so that smooth, continuous video 
playback can be maintained. The adaptation algorithm is 

composed of two parts, namely the playback rate adjustment 
algorithm and the rebuffering algorithm. 
A. Playback Rate Adjustment Algorithm 

Assume there are N senders transmitting a video encoded 
in a constant bit-rate R. Let T be the averaging time window 
for computing the average bandwidth availability, i.e., the 
bandwidth availability is taken at intervals of T seconds. 
Furthermore, let ai,,j be the amount of data received from 
sender i at time interval j. Then, the total amount of data 
received from all N senders at time interval j, denoted by Aj, 
is then given by  
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Let Cj be the amount of data consumed at interval j. With 
a playback rate of R, we can compute Cj from 
  (2) =jC TR

The client buffer occupancy at interval j, denoted by Bj, 
can be calculated from the difference between the amount of 
data received and consumed, i.e., 
 max(0,( ))= −j jB A jC  (3) 

According to the argument in the previous section, the 
playback rate can be adjusted within a small range, say α, 
without noticeable by the user. Thus a video segment (say 
segment j) of original playback duration T seconds can in 
fact be played back in a range of durations: 
 (1 ) (1 )α α− ≤ ≤ +jT T T  (4) 

Intuitively, the receiver should increase the playback rate 
(i.e., shorten the playback duration) when the buffer is 
about to overflow, and decrease the playback rate (i.e., 
extend the playback duration) when the buffer is about to 
underflow. In practice, the buffer constraint is typically far 
less of a problem than bandwidth constraint and so for 
simplicity we ignore buffer overflow and the constraint in 
(4) is simplified to 
 (1 )α≤ +jT T  (5) 

Now as Tj is no longer a constant we will need to modify 
(1) and (2) to 
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where rj and mj represent respectively the data reception 
rate and data consumption rate at interval j.  

Using this model the playback rate adjustment problem is 
then equivalent to determining Tj given the current 
estimated aggregate bandwidth availability as well as the 
client buffer occupancy. 
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Specifically, let Bj be the actual buffer occupancy at 
interval j. Then the estimated buffer occupancy at the next 
interval j+1, denoted by B’j+1 will be equal to 
  (8) 1' + = − +j j jB r T RT jB

0

where the first term is the amount of data received, and 
the second term is the amount of data consumed at interval j. 
The goal is to maintain the buffer occupancy to a level, say 
X, larger than zero, i.e., 
  (9) 1' + ≥ >jB X

Revisiting (8) we already know the exact values for R, T, 
and Bj. The aggregate bandwidth rj is normally distributed 
and the receiver has been measuring its mean and variance 
since the beginning of the streaming session. Thus the only 
unknown is the playback duration Tj, which we can adjust 
in order to satisfy the constraint in (9). 

Assume that the client can tolerate a probability of ∆ of 
failing the constraint in (9). Then we can rewrite the 
constraint in (9) as 
 { }1Pr ' + < ≤ ∆jB X  (10) 

Substituting (8) into (10) we have 
 { }Pr − + < ≤ ∆j j jr T RT B X  (11) 

Rearranging gives 

 Pr
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which the L.H.S. probability is given by the normal 
distribution and hence we can compute Tj accordingly.  

In practice, most streaming video player software 
performs prefetch buffering before beginning playback to 
absorb network delay variations. Assuming the amount of 
prefetch video data is equal to Bpre, then we can simply set 
X=Bpre to maintain the client buffer occupancy at the 
prefetch level. 
B. Rebuffering Algorithm 

Despite the use of multiple senders and the playback rate 
adaptation algorithm described in the previous section, the 
client may still occasionally experience buffer underflow. 
When underflow occurs it is necessary to temporary pause 
the video playback until some amount of video data are 
accumulated. 

The simplest rebuffering algorithm is to rebuffer up to the 
prefetch buffer level, i.e., Bpre. However, this method may 
not be optimal. On one hand, the prefetch buffer level could 
be unnecessary large. While a longer delay is acceptable at 
startup, it is far less tolerable when the video is suddenly 
suspended due to buffer underflow. On the other hand, if 
bandwidth availability is low, it would be better to prefetch 
more video data to reduce the occurrences of buffer 
underflows. 

Instead of using a fixed rebuffer size, we can compute the 
amount of video data to rebuffer using methods similar to (8) 

and (9). Specifically, when buffer underflow occurs at say 
time interval j, then Bj=0. Let P be the rebuffer size. Then 
we can calculate P from 

 min | Pr j
j

X p RTP p r
T
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The playback will resume after the client buffer 
occupancy reaches P. In this adaptive rebuffering algorithm 
the variability of the available bandwidth is then 
incorporated into the calculation of the rebuffer size P. 

IV. PERFORMANCE EVALUATION 
In this section we use trace-driven simulations to evaluate 

the AMSS scheme and compare the performance of 
different design choices. The performance metric used is the 
total underflow time – defined as the total time at which 
playback is suspended due to buffer underflow, and the 
number of playback pauses (i.e., number of buffer 
underflow occurrences) during the streaming session. We 
set N = 5, T = 1s, Bpre = 5s, ∆ = 0.15%, and α is in the range 
from 0.005 to 0.05. The video bit rate, R is set to equal to 
the average aggregate bandwidth of traffic traces obtained 
from PlanetLab [14]. The simulation result is obtained from 
the average of five simulation runs.  
A. Comparison of Different Algorithms 

Three different algorithms are compared in the following 
results: (a) “No Scheme” – no playback rate adaptation nor 
rebuffering; (b) “Adaptation Only” – using playback rate 
adaptation but not rebuffering; and (c) “Adaptation and 
Rebuffering” – using both playback rate adaptation and 
rebuffering. 

Fig. 1 and 2 shows the average total underflow time and 
pause count with respect to the playback rate adjustment 
limit α. First, without playback rate adaptation and 
rebuffering (i.e., “No Scheme” in the figures) the system 
performed poorly with long underflow time (over 14 
seconds) and large number of playback pauses (over 70 
occurrences). Second, by introducing playback rate 
adaptation the performance is improved significantly.  
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Fig. 1. Average underflow time versus playback rate adjustment 

limit. 
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Fig. 2. Average pause count versus playback rate adjustment limit. 
Further improvement is obtained when rebuffering is also 
employed. For rate adjustment threshold larger than 0.02 
(i.e., up to 2% playback rate variation) both the underflow 
time and playback pause count decrease to negligible levels. 
B. Effect of Number of Senders 

In this experiment we investigate the effect of number of 
senders on the system performance. Fig. 3 plots the average 
underflow time and pause counts for number of senders 
ranging from 1 to 10 where α = 0.05.  

There are two observations in these results. First, the 
system performs poorly when there are fewer than 4 senders. 
This result matches our measurements in [8] as the 
aggregate bandwidth does not conform to a normal 
distribution when the number of senders is fewer than 4. 
This leads to estimation errors in the adaptation algorithms 
and thus degrades the system performance substantially. 
Second, we observe that the system performance continue 
to improve for more senders. This suggests that the 
proposed AMSS scheme is particularly suitable for 
applications with many sources (e.g., in peer-to-peer 
applications).  

V. SUMMARY 
This work investigates the integration of playback-rate 

adaptation with multi-source streaming to achieve high 
streaming performance in the best-effort Internet. These two 
techniques are complementary as either one alone is not 
sufficient to compensate for the inherent bandwidth 
variations in the Internet. Only when used together the 
client can effectively adapt to the changing bandwidth 
availability, and without the need to implement complex 
media adaptation algorithms (e.g., scalable video coding, 
transcoding, etc.) at the servers. Therefore the proposed 
AMSS algorithm can be applied to the vast amount of 
existing video contents already in the internet, which are 
often encoded in non-scalable formats. 
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