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Abstract—Current peer-to-peer (P2P) file-sharing 

systems are mostly optimized for file availability. This paper 
investigates P2P architecture for video streaming in general, 
and the performance impact of data redundancy schemes in 
particular. In particular, this work show that maximizing 
file availability is not the best strategy for video streaming 
as another constraint – peers’ streaming bandwidth, comes 
into play. To address this limitation, a request-rate 
minimization policy is developed and evaluated using 
simulation. The resultant optimized replication strategy is 
then compared to data redundancy scheme based on 
erasure-correction coding. Simulation results show that 
with sufficient peer storage and a low erasure coding 
overhead, erasure-correction coding can achieve 
substantially better streaming performance than 
replication-based strategies.  
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I. INTRODUCTION 
Providing on-demand video streaming services to 

large number of users in the Internet have long been a 
research challenge. In the literature many researchers 
have proposed various approaches to improve the 
scalability of media servers, such as the use of disk 
arrays [1], parallel servers [2], and distributed servers [3]. 

By contrast, researchers in recent years have turned 
their focus on another promising approach to solving this 
scalability problem – peer-to-peer (P2P) architectures 
[4-10]. Unlike client-server architectures, P2P systems 
take advantage of the rapid growth in computer 
processing, storage, and communication bandwidth in 
personal computers, and simply employ end-user 
machines to form a self-sufficient service network 
without the need for any dedicated servers or service 
operators.  

There are many P2P file-sharing systems developed 
over the years. These can be classified into two 
categories: unstructured and structured [4]. Unstructured 
P2P systems, such as Napster, are centralized in that they 
have a central directory server for users to search and 
locate their desired files for download. Later generations 
of unstructured P2P systems such as Gnutella and KaZaA  

 

 
Jack Y. B. Lee and D. M. Chiu 

Department of Information Engineering 
The Chinese University of Hong Kong 

Hong Kong 
{yblee, dmchiu}@ie.cuhk.edu.hk 

 
typically avoid such a central directory server by either 
using distributed search protocols or forming a two-level 
service network by dividing users into smaller groups, 
with a user host in each group elected as supernode to 
serve local search queries as well as to forward 
unresolved queries to other supernodes in the service 
network. 

On the other hand, structured P2P systems, such as 
Chord [4], employed a distributed hash table (DHT) to 
organize peers into a highly-structured overlay network. 
A user can locate a data object through the DHT and this 
significantly improves search efficiency. However, if user 
machines are highly unreliable or join/leave the system 
frequently, such a structured approach may introduce 
more management overheads. 

Despite the above-mentioned differences, current 
P2P systems are mostly designed for file sharing through 
download. Therefore the design goal is often to 
maximize file availability or reliability of the system 
[6-7]. While a small number of studies have investigated 
P2P architectures for video streaming, their focuses are 
primarily on transmission schedules [8] and fault 
tolerance mechanisms [9]. 

In this work we investigate a key issue in P2P video 
streaming systems – distributed data storage and its 
impact on video streaming performance. In particular, we 
develop a system model to analyze the streaming 
performance of replication-based P2P systems, 
incorporating the effect of data replication and placement 
policies. 

We first briefly review some previous related work 
in Section 2, and then present the replication model and 
the erasure-correction-coding model in Section 3 and 4 
respectively. These two models are then compared in 
Section 5 using simulation and finally we summarize the 
study in Section 6. 

II. BACKGROUND AND RELATED WORK 
Unlike dedicated media servers, end-user hosts by 

comparison will likely have smaller capacity (storage and 
bandwidth) and will be far more unreliable. Therefore an 
essential requirement in any P2P systems is data 
redundancy. 

Data redundancy is typically implemented in one of 
two approaches, namely replication and This work was funded in part by Earmarked Grant 
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erasure-correction coding. In replication approaches [5, 7] 
multiple copies of the same file are distributed to 
different peers for storage. Thus a user can download the 
file as long as at least one copy of the file is available. By 
contrast, in erasure-correction coding approaches [8, 10] 
a file is first encoded using an erasure-correction code 
such as the Reed-Solomon Erasure Correction Code [11], 
and then divided into smaller pieces for storage in many 
different peers. As long as a certain minimum number of 
peers (and the coded file fragments) are available, the 
user can then download the fragments to recompute the 
original file data. Lin et al. [12] had analyzed and 
compared the data availability of these two data 
redundancy approaches and concluded that 
erasure-correction coding works better than replication 
when the peer availability is high, and vice versa. 

However, these previous studies are all focused on 
file sharing using the download model, with file 
availability being the primary performance metric. In 
video streaming however, just downloading all the data 
are not sufficient – the data have to be received in time or 
else playback will not be continuous. This paper 
addresses this issue by developing a system framework 
for P2P video streaming systems that incorporated the 
effect of data replication and placement policies. Instead 
of file availability, the framework derives the probability 
of continuous playback as the performance metric. We 
first present and develop the frameworks for replication 
and erasure-correction coding in Section 3 and 4, and 
then compare them using numerical results in Section 5. 

III. REPLICATION 
In this section, we present and develop performance 

model for a replication-based P2P streaming system. The 
goal is not to provide a detailed system design but to 
develop a general system model that captures the 
essential properties of replication-based systems. 

A. System Model 
In a P2P system the availability of a peer primarily 

depends on how often the peer is on-line versus off-line. 
Host failure will also affect peer availability but the 
extent is overshadowed by the former factor. For 
simplicity we characterize the overall availability of a 
peer by a parameter β, known as the peer availability (or 
up time probability). Define Tup and Tdown as the mean up 
time and mean down time duration respectively. Then the 
peer availability is equal to 
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Note that peer availability is not the same as file 
availability. The latter also depends on the number of 
copies in the system (Section 3.2), placement of the files 
(Section 3.3), as well as the algorithm for peer selection 
during (Section 3.4). We first define the notations and 
present the details in the subsequent sections. 

We consider a P2P service network of G peers, in 
which M ( MG >> ) of them are serving peers – peers 
that contribute storage and bandwidth to the service 
network, and the rest (G−M) peers are free riders – peers 
that do not contribute any storage and bandwidth to the 

service network. We denote the set of M serving peers 
by { }MpppP ,,, 21 …=  and the set of J video objects 
by { }JvvvV ,,, 21 …= . The video vj is replicated into sj 

(1≤sj≤M) copies and we call the set { }JsssS ,,, 21 …=  
the replication profile.  

Let bj be the size of vj in bytes. Assume each serving 
peer shares Ni bytes of storage, then a valid replication 
profile cannot exceed the total storage capacity of the 
system Λ: 
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The video copies are then distributed to sj distinct 
peers in the set P. These serving peers provide all the 
storage and streaming bandwidth to serve all the peers 
(including serving peers and free riders) in the system.  

We assume video streaming requests form a Poisson 
process with mean arrival rate λ . The video popularities 
{qj | j=0,1,…,(J-1)} follows the Zipf distribution [13]. 
Thus the arrival rate for video vj is given by jj qλλ = . 
For example, if all the serving peers are “up”, the 
average request rate for vj, which there are sj copies, 
observed by a serving peer storing a replica of vj is given 
by 
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B. Replication Profile 
With this replication-based system model, the first 

problem is determining the replication profile S, i.e., the 
number of replicas for each video. In file-sharing 
systems, the typical goal is to maximize file availability 
or hit rate (probability that a requested file is available). 
If the peer availability and video popularity are known a 
priori, then this problem can be formulated into a 
constrained maximization problem [14]: 

Maximize ∑
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Subject to (2) and 1≤sj≤M. 
This optimization problem (henceforth called OP1) 

can be solved using dynamic programming [15] to obtain 
the optimal replication profile. 

Nevertheless, this optimization model does not 
capture the requirement of video streaming. In particular, 
it does not account for the serving peers’ streaming 
bandwidth constraint. For example, a video request will 
still fail if all the serving peers’ streaming bandwidth is 
fully utilized, although the video file is available in the 
file availability sense. 

To account for this streaming bandwidth constraint, 
we therefore need to revise both the objective function as 
well as constraints in the optimization model. 
Specifically, instead of maximizing file availability, we 
choose to minimize the average request rate received by 
the serving peers. Given that the streaming bandwidth is 
fixed and cannot be changed dynamically, minimizing 
the average request rate will also minimize the request 
blocking probability. This new optimization model, 
henceforth called OP2, is given by 
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Figure 1. Comparison of replication profiles  
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Subject to (2) and 1≤sj≤M. 
 
Again this optimization problem can be solved using 

techniques such as dynamic programming to obtain the 
optimal replication profile. 

Fig. 1 compares the replication profiles generated 
from randomization, MaxHit (OP1 in Eq. (4)), and 
MinReq (OP2 in Eq. (5)). The result for the randomized 
replication profile is expected but the other two policies 
generated very different replication profiles. In particular, 
the MaxHit policy is insensitive to the video popularity 
skew and generated about the same number of copies for 
all the videos. This is counter-intuitive because one will 
expect to allocate more replicas for popular videos. The 
reason for this result is that the MaxHit policy does not 
account for peers’ bandwidth constraint. In other words, 
as long as at least one peer storing the video is online, the 
video is considered to be available, regardless of whether 
this single peer will have sufficient bandwidth capacity to 
serve all the requests. 

This is also why the MaxHit policy widely used in 
P2P file-sharing systems is not suitable for P2P video 
streaming. This limitation is addressed by the MinReq 
policy, which now properly allocates more replicas to 
popular videos to balance the load across all the serving 
peers. 

C. Placement Policy 
Knowing the replication profile, we need to 

determine which serving peers to store which video 
files – the placement policy. At first it may appear that it 
does not matter which videos are stored in each peer as 
long as the serving peers divide all the video files equally. 
However, this is true only if the videos all have the same 
popularity or when sj=M ∀ j, i.e., there is sufficient 
storage to replace all videos over all peers. For example, 
if the popular videos are all concentrated in the same set 
of serving peers, then these serving peers will experience 
heavier video request load than the rest of the serving 
peers storing unpopular videos, leading to load 
imbalance among the serving peers. 

To balance the load across all the serving peers, we 
employ a well-known placement policy called the 
Smallest Load First (SLF) proposed by Zhou and Xu [13]. 
In the iterative SLF algorithm, all the video replicas are 
first sorted in non-increasing order according to wj 

computed from (2). In each iteration the system selects M 
video replicas with the largest wj and then distributes 
these M replicas to M different peers according to two 
rules: (a) the replica with the largest wj is stored in the 
peer with the smallest load - computed from 

∑
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iZ  is the set of video replicas 

stored in peer i after the kth iteration.; and (b) a peer 
cannot store more than one replica of the same video. 

D. Peer Selection Scheme 
After video replicas are distributed across the 

serving peers, we need a peer selection scheme to select 
one of the available serving peers during the admission 
of a new streaming request. Again the goal is to balance 
the load across the available serving peers. 

We assume that through some distributed directory 
service (e.g., distributed search or DHT) a requesting 
peer can obtain the list of available serving peers storing 
the replica of the requested video. Armed with this list, 
one simple peer selection scheme will be to randomly 
choose one of the available peers as the sender for the 
new streaming session. Taking this one step further we 
can also attempt to explicitly balance the serving peers’ 
load by using algorithms such as the Least Load First 
(LLF) algorithm proposed by Li et al. [16]. To apply the 
LLF algorithm, the requesting peer will request the 
serving peers’ available transmission bandwidth during 
admission, and choose the one with the maximum 
available bandwidth as the sender.  

Nevertheless, even a serving peer can be identified 
for the new streaming session, it may still fail during the 
session. In this case, the requesting peer has no choice 
but to find another serving peer as replacement, using the 
same admission algorithm as described earlier. If no 
serving peer is available, then the playback will have to 
be stopped and the streaming session considered to have 
failed. In our simulation in Section 5 we use the 
probability of successful playback, defined as the 
proportion of requests that can completely playback the 
whole video, as the performance metric.  

IV. ERASURE-CORRECTION CODING 
In addition to replication, another way to implement 

data redundancy is to employ erasure-correction coding 
such as the Reed-Solomon Erasure Correcting (RSE) 
Code [11] on the video data [19]. Specifically, we first 
divide the video into many small fragments (say a few 
kilobytes each). Using erasure-correction code we then 
generate h redundant fragments from every (M-h) data 
fragments. Each of the M fragments in each group will 
then be distributed to M distinct serving peers. The key is 
that a requesting peer can reconstruct the original (M-h) 
data fragments as long as any of the M fragments in a 
group are received, thus enabling the receiver to recover 
from up to h node failures [19]. 

Let hj be the redundancy level for vj. Then the extra 
storage needed for the redundant data of vj is  
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To start a new streaming session the requesting peer 
again will use a distributed directory service to locate the 
M serving peers, and then randomly select (M-h) of the 
serving peers for the new streaming session. Unlike in 
replication, a streaming session under erasure-correction 
coding will comprise (M-h) serving peers sending data 
simultaneously to the requesting peer. Given a video 
bit-rate of C bps, the (M-h) serving peers will then split 
the video bit-rate equally, resulting in a per-peer 
transmission rate of 
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V. PERFORMANCE COMPARISONS 
In this section, we use simulation to evaluate and 

compare the streaming performance of replication-based 
and erasure-correction-coding-based data redundancy 
schemes. We assume that request arrivals form a Poisson 
process and the video popularity follows the Zipf’s 
distribution with a skewness of θ =0.271 [13]. The peer 
availability is set to 0.1 according to the measurement 
study by Saroiu et al. [18], implemented using an 
exponentially distributed up and down time of mean 
Tup=60 and Tdown=540 minutes respectively. The system 
stores a total of 100 videos with the same length of 120 
minutes. The uplink bandwidth of the serving peers is 
twice that of the video bit rate and the downlink 
bandwidth of the peers (including serving peers and free 
riders) is unbound. Performance is measured by the 
probability of successful playback as defined in Section 
3.4. 

We first compare the performance impact of 
different replication strategies in Fig. 2 for request arrival 
rate from 0.01 to 0.1. There are 1,500 serving peers, each 
having the capacity to store 10 videos. Three replication 
strategies are simulated, namely “Random” (random 
replication profile, random placement policy, and 
random peer selection scheme), “MinReq_SLF_LLF” 
and “MaxHit_SLF_LLF”, where the replication profile is 
either generated by maximizing the hit rate (“MaxHit”) 
or minimizing the request rate (“MinReq”).  

The results show that if we employ the traditional 
“MaxHit” replication profile, then even optimizing the 
placement policy (using SLF) and the peer selection 
scheme (LLF) will not give any significant improvement 
over the randomized algorithm.  
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Figure 2. Comparison of replication policies 
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Figure 3. Performance impact of peer availability 

This is because the solution space of placement and 
peer selection optimization is largely determined by the 
replication profile, and as Fig. 1 shows, it is similar to the 
randomized replication profile. On the other hand, the 
“MinReq” replication policy does allow better 
optimization of placement and peer selection, resulting in 
more than 6% improvement in the successful playback 
probability at an arrival rate of 0.03. 

Next we investigate in Fig. 3 the impact of peer 
availability on streaming performance, again using 
replication as the data redundancy scheme. We plot the 
probability of successful playback for peer availability 
ranging from 0.04 to 0.22 [18]. There are 1,200 serving 
peers and the mean request arrival rate is 0.04 reqs/s. We 
observe that the successful playback probability drops 
progressively as the peer availability decreases. For 
example, at a peer availability of 0.1, the successful 
playback probability is 0.63 under “MinReq_SLF_LLF”. 

In the next set of simulations, we compare the 
streaming performance of replication against 
erasure-correction coding. Fig. 4 and 5 compare the 
successful playback probability versus number of serving 
nodes for two peer storage capacities. For the case of 
erasure-correction coding, we introduce an overhead 
parameter γ, defined as the proportion of peer’s uplink 
bandwidth, to account for the additional overheads (e.g., 
control traffic, directory service, system management, 
etc.) consumed in managing and maintaining the more 
complex erasure-correction-coded data storage. 

From Fig. 4, we observe that erasure-correction 
coding generally outperforms replication, provided that 
the overhead is less than 0.2. On the other hand, if we 
reduce the peer storage capacity from 10 videos to 2 
videos, erasure-correction coding will outperform 
replication by a significantly larger margin as shown in 
Fig. 5. This is because when peer storage is abundant, 
there are large numbers of replica for each video. 
Consequently the placement and peer selection algorithm 
can distribute the load across more serving peers, thus 
resulting in better load balance. By contrast, if the peer 
storage is very limited, then any peer storing a replica of 
a popular video will likely experience a larger proportion 
of the streaming requests. Without many replicas to 
choose from, some peers (those storing the popular 
videos) will be more heavily loaded than others (those 
storing the less popular videos). 
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Figure 4. Comparison of replication and erasure-correction coding (peer 

storage = 10) 
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Figure 5. Comparison of replication and erasure-correction coding (peer 

storage = 2) 
Nevertheless, when the number of peers drops below 

500, the streaming performance of 
erasure-correction-coding collapses to below that of 
replication. This is because at these extreme scenarios 
there are simply too few peers available for successful 
erasure-correction computation, which requires at least 
(M-hj) out of the M peers to be available. Replication, on 
the other hand, will still work at these extreme scenarios 
as long as at least one peer is available. 

IV. CONCLUSIONS 
In this work we developed compatible system 

models for P2P streaming systems built upon replication 
and erasure-correction coding data redundancy schemes. 
Our results revealed that the current 
availability-maximizing policy adopted in file-sharing 
systems is not suitable for streaming applications as the 
peers’ bandwidth constraints are not accounted for. 
Erasure-correction coding, on the other hand, can provide 
additional gain in performance, but only if the number of 
peers is not too small. Hence one still needs to consider 
the particular system configuration in order to choose the 
better-performing data redundancy scheme. We are 
currently developing analytical models to capture the 
essential properties of the system so that one does not 
need to resort to time-consuming simulations to 
determine the appropriate data redundancy scheme. 
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