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On a Unified Architecture for
Video-on-Demand Services

Jack Y. B. Lee

Abstract—Current video-on-demand (VoD) systems can be clas-
sified into two categories: 1) true-VoD (TVoD) and 2) near-VoD
(NVoD). TVoD systems allocate a dedicated channel for every user
to achieve short response times so that the user can select what
video to play, when to play it, and perform interactive VCR-like
controls at will. By contrast, NVoD systems transmit videos re-
peatedly over multiple broadcast or multicast channels to enable
multiple users to share a single video channel so that system cost
can be substantially reduced. The tradeoffs are limited video selec-
tions, fixed playback schedule, and limited or no interactive con-
trol. TVoD systems can be considered as one extreme where service
quality is maximized, while NVoD systems can be considered as the
other extreme where system cost is minimized. This paper proposes
a novel architecture called Unified VoD (UVoD) that can be config-
ured to achieve cost-performance tradeoff anywhere between the
two extremes (i.e., TVoD and NVoD). Assuming that a video client
can concurrently receive two video channels and has local buffers
for caching a portion of the video data, the proposed UVoD archi-
tecture can achieve significant performance gains (e.g., 400% more
capacity for a 500-channel system) over TVoD under the same la-
tency constraint. This paper presents the UVoD architecture, es-
tablishes a performance model, and analyzes UVoD’s performance
via numerical and simulation results.

Index Terms—Near-video-on-demand (NVoD), performance
analysis, true-video-on-demand (TVoD), unified architecture,
UVoD, video-on-demand (VoD).

I. INTRODUCTION

A LTHOUGH video-on-demand (VoD) systems have been
around for many years, large-scale deployment is still

uncommon. To provide a true-VoD (TVoD) service where the
user can watch any movie at any time and with interactive
VCR-like controls, the system must reserve dedicated video
channels at the video server and the distribution network for
the entire video-playback duration. As high-quality video
consumes a large amount of transmission bandwidth even after
compression, the cost of providing such a TVoD service for a
large number of users is often prohibitive.

On the other hand, another type of VoD service commonly
called near-VoD (NVoD) [1], [2] did find many successful appli-
cations, such as video services in hotel and paid-movies in cable
TV. Unlike TVoD, NVoD transmits videos repeatedly over mul-
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tiple broadcast or multicast channels to enable multiple users to
share a single video channel so that system cost can be substan-
tially reduced. The tradeoffs are limited video selections, fixed
playback schedule (e.g., restarts every 15 min), and limited or
no interactive control.

TVoD systems can be considered one extreme where service
quality is maximized, while NVoD systems can be considered
the other extreme where system cost is minimized. This paper
proposes a novel architecture called Unified VoD (UVoD) that
can be configured to achieve cost-performance tradeoff any-
where between the two extremes (i.e., TVoD and NVoD). As-
suming that a video client can concurrently receive two video
channels and has local buffers for caching a portion of the video
data, the proposed UVoD architecture can achieve significant
performance gains (e.g., 400% more capacity for a 500-channel
system) over TVoD under the same latency constraint.

The rest of this paper is organized as follows. Section II
discusses previous works in this area and compares them to
UVoD; Section III presents the UVoD architecture in detail;
Section IV derives an analytical model for performance
evaluation; Section V presents performance results obtained
numerically from the performance model; Section VI presents
simulation results to validate the derived performance model
and proposes an admission-rescheduling algorithm that can
further improve the performance gain; Section VII discuss
interactive-control issues and proposes an efficient way to
support pause-resume; and Section VIII concludes the paper.

II. BACKGROUND

In recent years, researchers have proposed various ap-
proaches to improve VoD system efficiency so that deploying
large-scale VoD services can become more cost-effective. In
Section II-A, we will briefly review the related approaches, and
in Section II-B, we will discuss the differences of our approach.

A. Previous Works

One well-studied approach to improve VoD system effi-
ciency is calledbatching. This approach has been proposed
and studied by various researchers, including Danet al. [3],
Shachnaiet al. [4], and Li et al. [5]. Dan et al. proposed
serving queueing users requesting the same movie using
a single multicast channel instead of multiple independent
unicast channels to reduce resource requirement. They studied
the performance of two batching policies (First Come First
Served and Maximum Queue Length), representing tradeoffs
between fairness and efficiency in [3]. Their simulation results
showed that resource reductions of up to 70% can be realized
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in large systems serving around 5000 concurrent users, with
an average waiting time of around 1 min. Shachnaiet al.
refined the batching policies by incorporating knowledge of the
next stream-completion time as well as viewer wait tolerance
profile to reduce the server capacity required to achieve similar
throughput and viewer turn-away probability.

Note that batching does not directly support interactive
VCR-like controls as a multicast channel is shared by multiple
users. To tackle this limitation, one can set aside some con-
tingency channels to serve those users performing interactive
controls as proposed and studied in Danet al. [3], Li et al. [5],
and Almerothet al. [6].

Another innovative way to support interactive controls under
batching is proposed by Liet al. [7]. Their Split-and-Merge
protocol makes use of unicast channels and buffering to merge
users broken away from a multicast channel (due to interactive
control) back to an existing multicast channel. Specifically, a
synchronization buffer is introduced between the server and the
set-top box, where video stream from a nearby (in time) multi-
cast channel can be cached while the user is temporary served by
a unicast channel. Eventually, playback from the unicast channel
will reach the point where the multicast channel is cached at the
synchronization buffer. From this moment on, the playback is
switched to the cached data and the unicast channel can then be
released. The synchronization buffer essentially adds time delay
to an existing multicast channel so that broken-away users can
be merged back without a long delay as in traditional batching.
Similar approachs have also been studied by Parket al. [8] and
Abram-Profetaet al. [9].

Finally, Carteret al. [10] proposed another approach called
stream tappingto improve video server efficiency. Unlike
batching, where the efficiency gain is obtained through
merging new video sessions, stream tapping employs active
caching (or tapping) of video data from other concurrent video
streams so that future video transmissions can be reduced.
Their simulation results showed that stream tapping can achieve
lower latency under the same load when compared to simple
batching.

There are still other approaches to improving VoD system ef-
ficiency, such as pyramid broadcasting [11], [12], piggybacking
[13], [14], and asynchronous multicasting [15], [16]. These ap-
proaches are not directly related to our work so we refer the
interested readers to the cited literature.

B. Comparisons and Contributions

The primary contribution of this work is the unification of
TVoD and NVoD into a single architecture. While TVoD and
NVoD represent two extremes in cost-performance tradeoffs,
UVoD enables one to trade off cost with performance on a con-
tinuous scale. Moreover, as a more general architecture, UVoD
performs at least as good as, and often significantly better than,
TVoD and NVoD under equivalent system parameters.

Second, existing batching approaches incur a substantial
amount of delay during session start-up (in minutes) to achieve
good performance gain. By contrast, one can achieve signifi-
cant performance gain using UVoD at latencies as small as a
few seconds. This enables UVoD to provide service qualities
comparable to TVoD systems.

Fig. 1. Architecture of the UVoD system.

Fig. 2. Scheduling of multicast cycles for a movie.

Third, while most existing approaches employ some form of
dynamic allocation of channels to movies, we propose a static
allocation policy in UVoD. This static allocation approach
not only simplifies system design and implementation, but
also guarantees fairness and latency bounds for all movies.
By contrast, performance of existing batching algorithms on a
short time scale depends heavily on the arrival patterns as well
as the particular movies being requested.1

Fourth, UVoD can support pause-resume user control without
any additional resource requirement (e.g., contingency chan-
nels) at the server and network. This is possible due to the static
channel-allocation and movie-scheduling policies.

Fifth, UVoD allows the service provider to safely dimension
for a more conservative system size during initial deployment,
knowing that the system can sustain any amount of additional
loads (with tradeoff in latency) in case the actual demand ex-
ceeds the anticipated value.

Finally, this paper establishes a performance model for
UVoD, derives a near-optimal channel partition policy for
dividing available channels between unicast and multicast, and
proposes a procedure to automatically adapt the admission
threshold to maintain uniform latency. The derived performance
model is then validated through simulation and shown to be
reasonably accurate.

III. UV OD ARCHITECTURE

Fig. 1 depicts the UVoD architecture. Let there be in total
available channels, of which of them are unicast channels
and are multicast channels. Let there be
movies of length s each. For each multicast channel, the as-
signed movie is repeated over and over as in an NVoD system.

1For example, a short burst of requests for the same movie will result in good
batching efficiency; while a sequence of requests (with inter-arrival time slightly
longer than batching threshold) for an unpopular movie can lead to very poor
resource utilization.
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We divide the multicast channels equally among those
movies so that each movie is multicasted over multicast
channels, assuming is divisible by . For multicast chan-
nels streaming the same movie, adjacent channels are offset by

(1)

seconds, as shown in Fig. 2.
The unicast channels share the same request queue and

serve incoming requests in a First-Come-First-Serve manner.
Incoming requests will have to wait in the queue if all uni-
cast channels are occupied. For the video clients, we assume
that they can receive up to two video channels simultaneously
and have additional storage to cache up tos of video data
for later playback. Alternatively, an intermediate proxy, as pro-
posed in [7], can be employed to perform the caching function
for multiple clients.

When a user requests a new video session, e.g., at time, the
system first checks the multicast channels for the next upcoming
multicast of the requested video. Let be the time for the next
upcoming multicast, then the system will assign the user to wait
for the upcoming multicast (henceforth referred asAdmit-via-
Multicast) if the waiting time is smaller than a predetermined
admission threshold

(2)

Otherwise, the system will assign the user to wait for a free uni-
cast channel to start playback (henceforth referred asAdmit-via-
Unicast). The admission threshold is introduced to reduce the
load of the unicast channels and to maintain uniform latency
between Admit-via-Multicast and Admit-via-Unicast users (see
Section IV-B).

For Admit-via-Multicast users, the operation is essentially the
same as in an NVoD system. The client just joins the upcoming
multicast channel at time and then continues receiving video
stream data from that multicast channel.

For Admit-via-Unicast users, the client first starts caching
video data from the previous multicast of the requested movie.
Then it waits for a free unicast channel to start playback. For ex-
ample, assume that the request arrives at timeand let and

be the nearest epoch times of multicast channel and
channel , respectively, for which . Then
at time , the client starts caching video data from channel
into the client’s local storage, as shown in Fig. 3(a). At the same
time, the client enters the request queue and starts video play-
back using unicast once a free unicast channel becomes avail-
able.

The admission process is not yet completed as the client still
occupies one unicast channel. As the client concurrently caches
multicasted video data for the movie starting from movie time
2 ( ), the unicast channel can be released after a time
( ) and the client can continue video playback using
the local cache, as shown in Fig. 3(b). Hence, similar to [7], the
local cache is used to add time delay to the multicasted video
stream so that it can be synchronized with the client playback.

2Movie time is the time offset relative to the beginning of the movie.

Fig. 3. (a) Simultaneous caching and playback during the start-up phase. (b)
Playback via cache after the start-up phase.

This UVoD architecture achieves resource reduction over
TVoD in two ways. First, a portion of the users will be admitted
using multicast channels. As the number of multicast channels
is fixed regardless of how many users are being served, these
Admit-via-Multicast users will not result in additional load to
the system. To further improve performance, one can increase
the admission threshold and more users will be admitted to
the multicast channels instead of the unicast channels, at the
expense of larger latency. Second, for Admit-via-Unicast users,
since , we can see that
the unicast channels are occupied for a much shorter duration
compared to TVoD. For example, with a movie-to-channel ratio
of 0.1, the channel-holding time for Admit-via-Unicast users is
no longer than 24 min, compared to 120 min for TVoD. This
reduction in the channel-holding time substantially reduces the
load at the unicast channels and allows far more requests to be
served using the same number of channels.

IV. PERFORMANCEMODELING

This section presents a performance model for the proposed
UVoD system. Some existing works [3], [4] use user turn-away
probability as a metric for performance evaluation. The motiva-
tion being that users are impatient and some of them would leave
the system if the waiting time is too long. While the turn-away
probability is an important parameter for the service provider,
the user behavior model is generally unknown and hence ren-
ders accurate evaluation of the system difficult. Therefore in this
paper, we employ another common performance metric for anal-
ysis—latency (or average waiting time), defined as the average
time from a request arriving at the system to the time when the
beginning of the video stream is transmitted.
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TABLE I
LIST OF SYSTEM PARAMETERS

Specifically, for Admit-via-Multicast users, the latency is the
average waiting time for the next upcoming multicast of the re-
quested movie. For Admit-via-Unicast users, the latency is the
average time spent waiting at the unicast queue. Note that the ac-
tual waiting time experienced by the user is likely to be longer
due to network delay, prefetch buffering, etc. However, these
minor complexities will be ignored in this paper as they equally
apply to UVoD, TVoD, and NVoD.

We first derive a model for the average waiting time in the
next two sections and then determine the selection of the admis-
sion threshold in Section IV-B and the partition of the available
channels between unicast and multicast in Section IV-C.

A. Waiting Times

For an Admit-via-Multicast user, the waiting time can range
from 0 to s. Assuming requests are equally probable to arrive
at any time, then the average waiting time, denoted by ,
is equal to half of the admission threshold

(3)

On the other hand, for an Admit-via-Unicast user, the waiting
time is equal to the waiting time at the queue if all unicast
channels are occupied; or zero otherwise. Clearly, the waiting
time depends on the arrival process, the service time distribu-
tion, as well as the load of the unicast channels. For the arrival
process, we can assume that video requests form a Poisson ar-
rival process with rate . This is justified by the fact that users
initiate requests independently from each other.

For a Poisson arrival process, the probability that an arriving
request falls within the admission threshold is given by

(4)

where is the repeating interval for the multicast channels.
This is also the probability that a user is admitted via multi-
cast. Correspondingly, the probability for Admit-via-Unicast is
( ). Assuming that thissplitting process is probabilistic,
then the resultant arrival process at the unicast channels is also
Poisson, with a reduced rate equal to

(5)

For the service time, it depends on the arrival timeand the
time for the previous multicast of the requested movie.
Since , the service time for requests
entering the unicast-channel queue is uniformly distributed be-
tween

(6)

Therefore, the unicast channels form a multiserver queue with
Poisson arrival and uniformly distributed service time. As no
close-form solution exists for such a queueing model, we re-
sort to the approximation by Allen and Cunneen [17] for G/G/m
queues to obtain the average waiting time

(7)

where is the coefficient of variation for Poisson process

(8)

is the coefficient of variation for uniformly-distributed service
time; and is the average service time, given by

(9)

Additionally, is the traffic intensity; is
the server utilization; and is the Erlang-C function,
as given by

(10)

B. Admission Threshold

In the previous derivations, we have assumed that the
admission threshold value is givena priori. Consequently,
the resultant average waiting time for Admit-via-Unicast and
Admit-via-Multicast users may differ. To maintain a uniform
average waiting time in both cases, we can adjust the admission
threshold according to the average waiting time at the unicast
channels

(11)

so that the waiting-time differences are less than some small
value .

As adjusting the admission threshold does not affect existing
users, the adjustment can be done dynamically while the
system is online. In particular, the system can maintain a
moving average of previous users’ waiting time as the reference
for threshold adjustment. This enables the system to maintain a
uniform waiting time, referred to as latency thereafter, for both
Admit-via-Multicast and Admit-via-Unicast users.

C. Channel Partitioning

Another important parameter in the UVoD architecture is the
proportion of channels allocated for multicast transmissions. In-
tuitively, too many multicast channels will leave too few chan-
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nels for unicast, which may lead to overflow at the unicast chan-
nels. On the other hand, too few multicast channels will increase
channel-holding time [cf. (6)] for requests entering the unicast
channels, which again may lead to overflow. Hence, careful par-
titioning of available channels between unicast and multicast is
crucial for achieving optimal system performance.

In terms of channel partitioning, the two extremes are 0 and
multicast channels, which represents the special cases of TVoD
and NVoD, respectively. The problem of channel partitioning
then becomes one of finding the optimum number of multicast
channels between zero and, such that the resultant latency is
minimized. This translates into minimizing in (7) with
respect to .

Unfortunately, minimizing (7) does not appear to be tractable
analytically. Therefore, one would have to use numerical
methods, which may take a long time if is large. To tackle
this problem, we take advantage of the observation that
minimizing the load at the unicast channels will reduce the
average waiting time . Therefore, instead of minimizing
(7) directly, we could use the load at the unicast channels for
optimization to obtain the optimal partition policy, presented
in Theorem 1.

Theorem 1: Assuming each movie is allocated with at least
one multicast channel and the admission thresholdis smaller
than the multicast cycle , then the optimal proportion of avail-
able channels assigned to multicast that minimizes the load at
the unicast channels is given by

(12)

where the operator rounds the input to the nearest integer.
Proof: Please refer to the Appendix.

To integrate this channel-partition policy into the previous
derivations, we can simply replace the variable in (7) by
( ) and then use (11) to obtain the optimal admission
threshold (and in turn, the latency) accordingly. We will discuss
the effect of channel partitioning using numerical results in Sec-
tion V-B.

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
UVoD architecture and contrast it against TVoD and NVoD
using numerical results. As the primary performance metric is
latency, we first derive the corresponding latency formula for
NVoD and TVoD. For NVoD, the latency is simply equal to
half of the repeating interval

(13)

As the latency is constant given, , and , NVoD can in
theory support an unlimited number of users. By contrast, the
latency for TVoD depends on the traffic intensity. Similar to
Section IV, we could model TVoD as a G/G/m queue with

servers. The arrival process is Poisson, but the service time
would become constant if we ignore interactive control and as-
sume constant movie length. Hence, applying the Allen-Cun-

Fig. 4. UVoD queueing time versus arrival rate (100 channels, ten movies).

neen approximation again, we can obtain the latency for TVoD
from

(14)

with for Poisson process, and for
constant service time.

The numerical results presented in the following subsections
are calculated using the performance models derived in Sec-
tion IV and the parameters in Table I.

A. Effect of Admission Threshold on Queueing Delay

Fig. 4 plots the waiting time at the unicast channels versus ar-
rival rate under four different admission threshold settings (30,
60, 120, and 240 s) in a 100-channel system. The system ex-
hibits typical queueing-system characteristics (i.e., delay rises
rapidly at near-saturation point). As the admission threshold is
increased, the delay is reduced correspondingly. This is because
the proportion of requests routed to the unicast channels is in-
versely proportional to the admission threshold value [cf. (4)
and (5)] and increasing the threshold value also decreases the
average service time for requests routed to the unicast channels
[cf. (9)]. Similar results are observed for a 500-channel system.

B. Effect of Channel Partition on Latency

Fig. 5 plots the latency versus the proportion of
channels assigned for multicast for three arrival rates
( and customers/s) in a 100-channel
system with ten movies. In all three cases, we can clearly
observe that an allocation of 0.5 achieves the lowest latency.
This observation matches the prediction in Theorem 1.

Fig. 6 further investigates the partition policy with respect
to the arrival rate. The figure shows how the partition policy
assigns more channels for multicast as the arrival rate (i.e., load)
increases. Note that the system ultimately degenerates into an
NVoD system with all channels assigned to multicast to cope
with the heavy load.

C. Latency Comparison With TVoD and NVoD

To contrast the performance with TVoD and NVoD, we plot
the latency versus arrival rate for UVoD and TVoD for a 100-
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Fig. 5. Latency versus proportion of multicast channels (100 channels, 10
movies).

Fig. 6. Near-optimal channel partition with respect to arrival rate.

channel system in Fig. 7(a) for arrival rates up to 0.07 cus-
tomers/s. Clearly, UVoD outperforms TVoD by a very wide
margin. The performance improvement narrows when we in-
crease the number of movies to 20. This is expected as fewer
multicast channels are available per movie (
multicast channels per movie only). NVoD is not plotted, as the
latency is constant at 360 s. Another observation is that there is
no difference between using fixed channel partition of 50% and
using the near-optimal channel partition policy. This is because
the latency under the given load is relatively small (60 s) and
as Fig. 6 shows, the near-optimal assignment is simply equal to
50%.

We plot in Fig. 7(b) a similar graph for heavier loads up to
0.2 customers/s. The primary observation is that for the curve
with near-optimal channel partition, the latency levels off for
very heavy loads. In particular, the latency approaches 360 s for
the 10-movie configuration and 900 s for the 25-movie config-
uration. These are precisely the latencies for NVoD, indicating
that UVoD gradually transforms into NVoD under heavy loads.
Note that for the fixed 50% allocation policy, the latencies can
exceed the NVoD bound under heavy load as not all channels are
allocated for multicast. Hence, the channel-partition policy is
essential in supporting a continuous cost-performance tradeoff
from the TVoD extreme to the NVoD extreme.

Fig. 7. Latency comparison of UVoD and TVoD.

D. System Capacity and Scalability

In system dimensioning, one would want to set a constraint
for the latency and then determine the maximum arrival rate that
can be supported by the system. In Fig. 8, we plot the capacity
relative to TVoD versus given latency constraints. The relative
capacity in the -axis, denoted by , is calculated from

(15)

where
arrival rate in customers/s;
latency constraint in seconds;
latency for UVoD;
latency for TVoD.
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Fig. 8. Performance gain over TVoD versus latency constraint.

The results in Fig. 8 show that the performance gain is rela-
tively constant for small latency constraints (030 s) and we
can achieve very good performance gain even at very small
latencies. For example, with a latency constraint of only 1 s,
UVoD already achieves a capacity gain of 500% for a 100-
channel, 10-movie configuration and 516% for a 500-channel,
50-movie configuration. Larger movie-to-channel ratio will re-
duce the performance gain, e.g., doubling the number of movies
would reduce the relative capacity to 200% and 233%, respec-
tively, for the previous two configurations.

Fig. 8(b) is a similar plot albeit for a wider range of latency
constraints. The primary observation is that the relative capacity
increases exponentially for latencies near the NVoD bound and
reaches infinity at the NVoD bound. This is because the channel-
partition policy incrementally assigns more channels for multi-
cast until the system degenerates into an NVoD system.

Clearly, if the number of movies in the system becomes com-
parable to the number of channels, performance gain will di-

Fig. 9. Performance gain over TVoD versus system scale.

minish. In the extreme case where there are more movies than
channels, the UVoD architecture will not be directly applicable.
On the other hand, large movie-to-channel ratio will also result
in large buffering requirement at the client. For example, if the
movie-to-channel ratio is increased to 0.25 (e.g., 100 channels,
25 movies), then the client buffer requirement will increase to 60
min, or 1.8 GB for 4-Mb/s MPEG2 video streams. This means
a hard disk will be required at the client for buffering purpose.

Fortunately, most real-world services share one character-
istic: a small portion of the movies accounts for most of the user
traffic. Therefore, one can implement a two-level architecture
in which the few popular movies are served by UVoD while the
less popular movies are served by TVoD. This will enable one to
maintain a low movie-to-channel ratio for the UVoD servers to
keep performance gains high and client buffer requirement low.
The problem of optimal partitioning between these two levels is
beyond the scope of this paper and will be left for future work.

Fig. 9 shows another evaluation of the performance gain with
respect to different system scale (i.e., number of channels). The
gain fluctuates across the scale due to divisibility between the
number of multicast channels and the number of movies. In
broader ranges, the performance gain is relatively constant. This
suggests that UVoD is not limited to large-scale systems and can
be applied to systems of all scale.

VI. SIMULATION RESULTS

Results in the previous section are based on the performance
model developed in Section IV. In this section, we present
simulation results to validate the numerical results and propose
a rescheduling algorithm to further improve the performance
gain. The simulation program is developed in C++ using CNCL
version 1.10 (ported to the Windows platform). Each simulation
run simulates a duration of 744 h (31 days) with statistics for
the first day skipped to reduce initial-condition effects.

A. Model Validation

To assess the accuracy of the performance model derived in
Section IV, we simulated a 100-channel configuration and ob-
tained the average waiting time over a range of arrival rates.
We compare the analytical results with simulation results under
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three admission threshold settings in Fig. 10 and under three
channel partition settings in Fig. 11. It is clear that the simula-
tion results match the performance model closely, thereby vali-
dating the derived analytical model. Note that in generating the
results, we have used uniform movie-popularity profile as well
as Zipf-distributed movie-popularity profile. Both profiles give
the same results, verifying that the architecture is independent
of the movie popularity profile.

B. Admission Rescheduling

Under the admission process described in Sections III and IV,
once a user is routed to the unicast channels (i.e., Admit-via-
Unicast), it will wait until a free unicast channel becomes avail-
able. For heavy system loads, it is possible that the waiting time
incurred could exceed the time to the next multicast of the re-
quested movie. In this case, the user would be better off quitting
the unicast queue to start playback using the multicast channel
instead—we call this techniqueadmission rescheduling. In ad-
dition to reducing the waiting time of the rescheduled user, ad-
mission rescheduling can also reduce the load at the unicast
channels because some users will be removed from the queue
without being served.

To evaluate the effect of this admission rescheduling tech-
nique, we performed simulations using a modified admission
scheduler with admission rescheduling. We also added a simple
adaptive algorithm to automatically configure the admission
threshold on-the-fly so that a uniform latency is maintained for
both Admit-via-Unicast and Admit-via-Multicast requests. As
each simulation run is executed with a constant arrival rate, the
adaptation algorithm simply adjusts the admission threshold
periodically according to the average waiting time of past
Admit-via-Unicast requests. The problem of designing good
adaptation algorithms that can cope with variable arrival rates
(e.g., due to time-of-day changes) is beyond the scope of this
paper and is left for future work.

We summarized the results in Fig. 12, plotting latency
versus arrival rate. The results clearly show that the admission
rescheduling technique can indeed reduce latency over a wide
range of arrival rates. Moreover, as the multicast schedule is
known a priori, the worst-case waiting time for an incoming
request can then be determined as well. This can improve the
system’s user-friendliness, as the user does not need to wait
endlessly without knowing when a movie will start playing.

VII. I NTERACTIVE CONTROLS

The system model in Section IV assumes that each user
watches a movie from start to finish and hence does not
account for interactive control requests. To provide a service
comparable to TVoD, interactive viewing controls must also
be supported in UVoD. Possible interactive controls include
pause-resume, seeking, visual search (forward and backward),
frame stepping (forward and backward), and slow motion.
Among these controls, pause-resume is probably the most
important (e.g., pausing playback to answer a telephone call,
doorbell, etc.), especially in movie-on-demand applications.
The two subsections below present two different approaches

Fig. 10. Simulated versus analytical results for three admission threshold
settings.

Fig. 11. Simulated versus analytical results for three channel-partition
settings.

Fig. 12. Performance of UVoD under heavy loads (100 channels, ten movies).

to support interactive control under UVoD, each achieving a
different cost-performance tradeoff.

A. Using Unicast Channels

Intuitively, performing an interactive control essentially
breaks the client away from the current multicast video stream
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and then restarts it at some point within the video stream. Under
this view, interactive control is no different from a new request
and hence can be served the same way as for a new-video
request. Hence, a straightforward way to support interactive
control requests is to treat them as new-video requests, albeit
starting at the middle of a movie. In this way, interactive
controls such as pause-resume, seeking, can be supported.
Visual search can be supported by encoding a special version
of the movie at higher playback speed (i.e., skipping frames)
and then delivered through a unicast channel to the client
during the search. Obviously, this approach will increase loads
at the unicast channels, which could increase waiting time for
both new and interactive requests. As there is no generally
accepted user-activity model, we do not attempt to quantify the
performance impact of this approach and refer the interested
readers to [5]–[7] and [9].

B. Channel Hopping

Due to the static channel allocation employed in UVoD, we
can devise a channel-hopping algorithm to support pause-re-
sume control without incurring additional load at the unicast
channels. Specifically, each movie is multicasted everys and
the client has a buffer large enough to caches of video. When
a user pauses, say, at a movie time, the client just continues
to buffer the incoming video data. If the user resumes playback
before buffer overflows, then nothing needs to be done. Oth-
erwise, the client just stops buffering and enters an idle state
once the buffer is full [i.e., storing the movie segment from
to ( )]. When the user later resumes playback, the client
can resume playback immediately and at the same time deter-
mine the nearest multicast channel that is currently multicas-
ting the movie at movie time . Since a movie is repeat-
edly multicasted every s, we have . Hence,
the client just needs to start buffering again after the selected
channel reaches movie time ( ).

This channel-hopping algorithm is unique in the sense that
no additional resource is required at the server. Pause-resume
is simply supported by buffering and switching of multicast
channel at the appropriate time. Hence, UVoD is particularly
suitable for movie-on-demand applications where pause-re-
sume is the primary interactive control needed.

VIII. C ONCLUSIONS

This paper proposes and analyzes an architecture that uni-
fies the existing TVoD and NVoD architectures. Through dy-
namic admission-threshold adaptation and channel partitioning,
one can achieve continuous cost-performance tradeoffs between
the TVoD extreme and the NVoD extreme. The proposed UVoD
architecture not only encompasses TVoD and NVoD as special
cases, but also achieves significant performance gains with little
tradeoff. In particular, results show that performance gain as
large as 500% can be achieved at a latency of only 1 s.

The proposed UVoD architecture is particularly suitable for
movie-on-demand applications. First, a service provider can de-
ploy a large-scale VoD system incrementally and make conser-
vative assumptions during system dimensioning. This is pos-
sible because UVoD can be configured to provide service quality

similar to TVoD, while still be able to gracefully cope with
any amount of additional loads (with tradeoffs in latency) in
case the demand exceeds the anticipated rate. Second, the most
essential interactive control, pause-resume, can be supported
in UVoD without any additional overhead. This not only re-
duces system resource requirements, but also allows for a sim-
pler pricing policy (e.g., no additional cost for pause-resume
and charges only other forms of interactions) for the service
provider.

Finally, while UVoD does require additional buffering capa-
bility at the client set-top boxes, the extra buffer can be imple-
mented using a low-cost local hard disk. It is highly likely that
future set-top boxes will become full-feature multimedia enter-
tainment devices that can provide not only VoD, but also web
browsing, gaming, etc. Hence, the additional storage will be
needed anyway (e.g., for caching web pages and downloading
games) and the cost can be amortized over multiple applications.

APPENDIX

Proof of Theorem 1:We assume that the movies have an
arbitrary popularity profile given by where
is the probability that a new user requests movie. Without loss
of generality, we assume that the movie numbers are assigned
according to popularity where . Clearly, we must
have

(16)

Hence, the traffic intensity due to movieat the unicast channels
is given by

(17)

where is the number of multicast channels assigned for each
movie; ( ) is the proportion of requests routed to the
unicast channels; and is the average service
time. We can then obtain the load at the unicast channels, de-
noted by , from

(18)

Substituting (17) into (18) gives

(19)

To minimize with respect to , we can differentiate (19)

(20)

and then solve for by setting to obtain

(21)
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which minimizes . We also need to round upto the nearest
integer, as a video channel cannot be divided between multiple
movies. This will be the optimal number of multicast channels
for one movie. Note that is nonnegative as long as .
To see why, we can assume that and rearrange (21) as

where (22)

Now, since , we can express in terms of

(23)

Rearranging, we can then obtainfrom

(24)

which contradicts with (22). Hence,must be nonnegative.
Since we have movies and the allocation is uniform, the

optimal proportion of channels for multicast is simply given by

(25)

and the result follows.
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