
Abstract - Recently, a server-less architecture has been 
proposed for building video streaming systems which does not 
need any costly dedicated video servers and yet is highly scalable 
and reliable. However, due to the potentially large number of user 
hosts streaming video data to a receiver for playback, the 
aggregate network traffic can become very bursty, leading to 
significant packet loss at the access routers. This study tackles this 
problem by investigating a novel network-aware transmission 
scheduling algorithm called Gradient-Descent Scheduler (GDS) to 
reduce the traffic burstiness. Simulation results will demonstrate 
that GDS can reduce the congestion-induced packet loss from 
over 95% to 0.07% in a 500-host system. Moreover, GDS can 
automatically adapt to the underlying network and does not 
require hosts in the system to be synchronized. These are essential 
for practical design of server-less architectures and peer-to-peer 
systems.  

Keywords – Transmission scheduling, video streaming, server-
less architecture. 

I. INTRODUCTION 
Peer-to-peer (P2P) systems have shown great promises in 

building high-performance and yet low cost distributed 
computational systems. By distributing the workload to a large 
number of low-cost, off-the-shelve computing hosts such as 
PCs and workstations, one can eliminate the need for a costly 
centralized server and at the same time improve the system’s 
scalability. Most of the current research on P2P and grid 
computing is focused on computational problems [1-3], and on 
the design of middleware [4-6]. In this work, we focus on 
another application of P2P architecture – video streaming 
systems, and in particular, investigate the problem of 
transmission scheduling in such a distributed system. 

Existing video streaming systems are commonly built 
around the client-server architecture, where one or more 
dedicated video servers are used for storage and streaming of 
video data to video clients for playback. Recently, Lee and 
Leung [7] proposed a new server-less architecture for building 
video streaming systems that do not require dedicated video 
servers at all. In this server-less architecture, video data are 
distributed to user hosts and these user hosts cooperatively 
serve one another’s streaming workload. Their early results 
have shown that such a decentralized architecture is both 
scalable [7] and reliable [8].  
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Nevertheless, there are still significant challenges in a 
server-less video streaming system. In particular, with 
potentially thousands of nodes streaming data to one another, 
the aggregate network traffic can become very bursty and this 
could lead to substantial congestion at the access network and 
the user nodes receiving the video data. Our simulation results 
revealed that packet loss due to congestion can exceed 95% if 
one does not explicitly schedule the data transmissions to 
avoid network congestion [9].  

In a previous work [9] we also investigated the network 
congestion problem in a server-less video streaming system. 
We studied two transmission scheduling algorithms, namely 
staggered scheduler and randomized scheduler, both not 
making use of any knowledge of the network such as link 
delay. These network-neutral schedulers are relatively simple 
to implement and yet still manage to significantly reduce 
congestion-induced packet losses. In this work, we investigate 
a network-aware transmission scheduling algorithm called 
Gradient-Descent Scheduler (GDS) to reduce the traffic 
burstiness even further. Simulation results show that GDS can 
reduce the congestion-induced packet loss from over 95% to 
0.07% in a 500-host system, can automatically adapt to the 
underlying network, and does not require hosts in the system to 
be synchronized.  

II. BACKGROUND 
We review in this section the server-less architecture [7] and 

then formulate the transmission scheduling problem.  
A. Server-less VoD Architecture 

A server-less video-on-demand (VoD) system comprises a 
pool of interconnected user hosts, or called nodes in this paper 
as shown in Fig. 1. Inside each node is a system software that 
can stream a portion of each video title as well as playback 
video received from other nodes in the system. A video title is 
first divided into fixed-size blocks and then equally distributed 
to all nodes in the cluster. This node-level striping scheme 
avoids data replication while at the same time share the storage 
and streaming requirement equally among all nodes in the 
cluster. 

To initiate a video streaming session, a receiver node will 
first locate the set of sender nodes carrying blocks of the 
desired video title, the placement of the data blocks and other 
parameters (format, bitrate, etc.) through the directory service. 
These sender nodes will then be notified to start streaming the 
video blocks to the receiver node for playback. 
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Fig. 1. A N-node server-less video-on-demand system. 

Let N be the number of nodes in the cluster and assume all 
video titles are constant-bit-rate (CBR) encoded at the same 
bitrate Rv. A sender node in a cluster may have to retrieve 
video data for up to N video streams, of which N−1 are 
transmitted while the remaining one is played back locally. 
Note that since a video stream is served by N nodes 
concurrently, each node only needs to serve a bitrate of Rv/N 
for each video stream. With a round-based transmission 
scheduler, a sender node simply transmits one block of video 
data to each receiver node in each round. The ordering of 
transmissions for blocks destined to different nodes is the 
transmission scheduling problem we investigate in this 
research. 
B. Network Congestion 

In an ideal system, video data are transmitted in a 
continuous stream at a constant bit-rate to a receiver node. 
However, in practice data are always transmitted in discrete 
packets and thus the data stream is inherently bursty. This 
problem is insignificant in traditional client-server video 
streaming systems because only a single video server will be 
transmitting video data to a client machine and thus the data 
packets will be transmitted at constant time intervals. By 
contrast, in a server-less VoD system, video data are 
distributed across all nodes and as a result, all nodes in the 
system participate in transmitting video data packets to a node 
for playback. If these data transmissions are not properly 
coordinated, a large number of packets could arrive at the 
receiver node’s access network in a short time interval, thereby 
leading to network congestion and consequently packet loss. 

For example, consider the straightforward transmission 
scheduler - On Request Scheduler (ORS) [9], which 
determines the transmission schedule based on the initial 
request arrival time. Specifically, a node transmits video data 
in fixed-duration rounds, with each round is further sub-
divided into N timeslots. The node can transmit one Q-byte 
data packet in each timeslot of length Ts. Thus, the length of a 
round can be computed from Tr=NTs=NQ/Rv.  

When a node initiates a new video streaming session, it will 
send a request to all nodes in the system. A node upon 
receiving this request will reserve an available timeslot in a 
first-come-first-serve manner to begin transmitting video data 
for this video session. While this scheduler can smooth out the 
traffic leaving the sender, the combined traffic from multiple 
senders at the receiver becomes very bursty. In a simulation of 
a 500-node system with Q=8KB and Rv=4Mbps, ORS can 

result in over 95% packet losses due to congestion in the 
access network. 

The fundamental problem here is due to the very large 
number of nodes in the system and the fact that data 
transmissions are packetized. With the ORS algorithm, a new 
video session will likely be assigned to timeslots that are 
temporally close together. Thus once transmission begins, all 
nodes in the system will transmit video data packets to the 
receiver node in a short time interval, and then all cease 
transmission for Tr seconds before transmitting the next round 
of packets. While the average aggregate transmission rate is 
still equal to the video bit-rate, the aggregate traffic is clearly 
very bursty and thus leads to buffer overflows and packet 
drops at the access network router connecting to the receiver 
node. 

III. NETWORK-NEUTRAL TRANSMISSION SCHEDULERS 
One approach to tackle the congestion problem is to spread 

out the arrivals of packets from different senders. We briefly 
review in the following three network-neutral schedulers – 
schedulers that do not make use of any knowledge of the 
network.  
A. Staggered Scheduler 

The staggered scheduler spreads out the packet arrival times 
by explicitly staggering (or offsetting) the timeslots in different 
senders assigned to the same receiver. For example, data 
packets transmitted from node i to node j will always be 
transmitted in timeslot (j−i−1) mod N. Assuming the nodes are 
clock-synchronized, then transmissions from different nodes to 
the same receiver node will be separated by at least Ts seconds, 
thus eliminating the traffic burstiness problem in ORS. 
Simulation results show that SS can reduce the packet loss to 
as low as 0.18% compared to ORS’s 95% packet loss. 

Nevertheless, the need for clock-synchronization has two 
implications. First, as clocks in different nodes cannot be 
precisely synchronized in practice, the performance of the 
algorithm will depend on the clock synchronization accuracy. 
Second, depending on the application, the assumption that all 
nodes in the system are clock-synchronized may not even be 
feasible.  
B. Randomized Scheduler 

Alternatively, we can also reduce the likelihood of burst 
arrivals by randomizing the timeslot assignments on a round-
by-round basis – randomized scheduler. It is easy to see that 
RS does not require clock synchronization among nodes in the 
system and hence is easier to deploy. Each node simply 
generates its own random schedule on a round-by-round basis. 
Simulation results show that RS can achieve consistent 
performance that is independent of network delay variations 
and level of clock synchronization. However, the packet loss 
rate generated by RS (9.3% under the same setting) is 
significantly higher than SS. 
C. Staggered on Request Scheduler 

Both of the previous two schedulers are sender-driven. 
Alternatively, we can also schedule the data transmissions by 
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the receiver – staggered on request scheduler (SORS). The 
principle of SORS is to let the receiver schedule the 
transmission timeslots to a staggered schedule. Specifically, 
suppose a receiver node initiates a new video session in 
timeslot k, then it will send out a request to node i at timeslot 
k+i. When a sender node receives this request, it will reserve 
an available timeslot in a first-come-first-serve manner as in 
ORS. In this way, the staggered scheduling is implicitly 
performed by the receiver node and the sender nodes can 
operate without synchronization. Simulation results show that 
SORS can reduce the packet loss to only 2.9%. 

IV. NETWORK-AWARE MODEL 
The three network-neutral transmission schedulers presented 

in Section III can already reduce the congestion-induced 
packet loss substantially. The question then, is whether we can 
reduce the packet loss even further by exploiting some 
knowledge of the underlying network. 

To this end we need to address three problems. First, we 
need to formulate the transmission scheduling problem in 
terms of the network model. Second, we need to find a way to 
obtain relevant properties of the underlying network. Finally, 
armed with useful knowledge of the network, we need to 
devise an algorithm to exploit the knowledge to further reduce 
congestion-induced packet loss. We address the first two 
problems in this section and present a network-aware 
transmission scheduling algorithm in Section V. 
A. A Matrix Representation 

Despite the seeming complexity of the transmission 
scheduling problem, we can devise a very concise 
mathematical model to describe all the essential features of the 
system. We first define three N-by-N matrices S, D and R, 
where the (i, j)th element of S, D and R represents respectively 
the schedule time, network delay, and arrival time of the 
packet transmission from node i to node j. Next we introduce a 
fourth matrix C with its (i, j)th element representing the clock 
difference between node i and j. Using these four matrices, we 
can then describe the system using the following equation: 
 S+D−C≡R (mod N) (1) 
where the +, −, and mod are matrix operations. 

To interpret the model, consider a particular element, say (i, 
j) in the equation. The receiving schedule ri,j is simply 
computed from the transmission schedule si,j plus the network 
delay di,j and the clock jitter ci,j between the sender node i and 
the receiver node j.  

In principle, elements in the matrix S must be integer 
multiples of the length of a timeslot Ts in the round-based 
scheduler, while elements in the matrices D, C, and R can take 
on any real number values. We employ two modifications to 
further simply this model. 

First, we convert the real number matrices to integer 
matrices by quantizing the matrix elements with the factor Ts. 
In other words, we replace di,j, ci,j, and ri,j by round(di,j/Ts), 
round(ci,j/Ts), and round(ri,j/Ts) respectively. Thus with N 

timeslots in a round, the valid schedule time is 
si,j∈{0,1,…,(N−1)}.  

Second, we observe that in case the sum of network delay 
and clock jitter is large, the packet arrival times for a particular 
receiver may span over multiple rounds. We can compensate 
for large delay variations by starting the transmission in 
different rounds in different sender nodes to offset the delay 
variations. With this technique we can always keep the arrival 
time to within a round’s duration, i.e., ri,j∈{0,1,…,(N−1)}.  

In this quantized model, we can formally define the 
constraint and goal of the transmission scheduling problem. 
Specifically, assuming that each node can send a packet in 
each timeslot in each round, then the transmission schedule 
defined by the matrix S must not have repeating elements in 
any of the rows. Consider an example with N=5, a row 
containing elements of values {0, 2, 3, 1, 4} is a valid schedule 
representing the schedule of transmission to node 0 in timeslot 
0, to node 1 in timeslot 2, to node 2 in timeslot 3, and so on. 
This type of matrix is also known as row-latin matrix [10]. By 
contrast, the schedule {0, 2, 2, 1, 4} is invalid because 
transmissions to both node 1 and node 2 are scheduled in the 
same timeslot number 2. 

On the other hand, the arrival time matrix R must not have 
repeating elements in any of the columns, also known as 
column-latin matrix [10]. As each column represents the 
arrival time of packets transmitted from the N sender nodes, 
repeating elements represent overlapping arrival times and 
hence could induce congestion/packet loss. 

Therefore our goal in the transmission scheduling problem 
is, given D and C, to find a transmission schedule S that is 
row-latin such that the arrival time matrix R is column-latin. 
We note that although related matrix problems, latin squares in 
particular, have been studied extensively in the literature [10-
14], to the best of our knowledge the specific problem in (1) is 
new and no known solution exists.  
B. Network Delay and Clock Jitter Estimation 

The previous discussions assume that the network delay 
matrix D and the clock jitter matrix C are known. Obviously 
we cannot assume a priori knowledge of these properties in a 
distributed system running on the Internet.  Thus in this section 
we address the second problem, namely how to obtain 
estimates of the matrices D and C at run time. 

For network delay estimation, a well-known technique is to 
use echo messages. A node i will send an echo packet to 
another node j, which then immediately replies node i with a 
reply packet. The time from sending the echo packet to 
receiving the reply is the round-trip time (RTT) and the one-
way delay can then be estimated from RTT/2. 

However, this echo technique implicitly assumes that the 
network path between the two nodes is symmetric, i.e., the 
network delay is the same for both directions of the path. 
Furthermore, previous studies [15-16] have shown that in 
general network paths in the Internet are asymmetric, thus 
reducing the accuracy of this network delay estimation 
method. 
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One way to get around this problem is to measure the one-
way network delay directly, i.e., by comparing the 
transmission time and the arrival time of a packet. However, 
this method suffers from another problem – clock jitter 
between different nodes. In particular, if the clocks in the 
sender node and the receiver node are not precisely 
synchronized, then we simply cannot obtain the one-way delay 
by subtracting the transmission time, measured by the sender 
node’s clock, from the arrival time, this time measured by the 
receiver node’s clock. 

While in principle we can implement and deploy distributed 
clock-synchronization protocols [16-18] to reduce the clock 
jitter so as to improve estimation accuracy, this nonetheless 
will create an additional hurdle to deploying such a 
decentralized system.  

Interestingly, although it is not possible to measure the one-
way network delay without node synchronization, we do find 
that we can measure the sum of one-way network delay and 
clock jitter in a single step – Jitter-Adjusted Delay Estimation 
(JADE). 

First, we define a new apparent delay matrix, denoted by A, 
which are computed from A=(D−C). Then we can rewrite the 
system model in (1) in terms of A: 
 S+A=R (mod N) (2) 

Next, we consider the individual elements in A, denoted by 
ai,j. We can express them in terms of di,j and ci,j:  
 , , ,i j i j i ja d c= −  (3) 

In estimating the apparent delay ai,j, we need to at least send 
out a control message between any two nodes. Suppose a 
control message is sent from node i to node j at physical time 
(i.e., the absolute time according to a given time reference) pi,j 
and it reaches the destination at time qi,j=pi,j+di,j. Let δi be the 
clock difference between node i and the physical time. Thus ci,j 
can be computed from ci,j= δi−δj. Substituting pi,j, qi,j, δi and δj 
into (3) we can obtain 

 
, , ,

, ,

( ) ( )

( ) ( )
i j i j i j i j

i j j i j i

a q p
q p

δ δ
δ δ

= − − −
= + − +  (4) 

Note that (qi,j+δj) is simply the packet reception time as 
measured by node j’s clock, and (pi,j+δi) is simply the packet 
transmission time as measured by node i’s clock. Now both 
entities can be measured independently by the sender node i 
and the receiver node j. Thus we can compute ai,j directly from 
(4) without the need for any clock-jitter adjustment. 

V. GRADIENT-DESCENT SCHEDULER 
With the system model being formulated and the network 

parameters estimated, our goal then is to find a row-latin 
schedule matrix S such that the resultant arrival time matrix R 
is column-latin. The trivial method is to enumerate all 
permutations of S until we find a solution. However, given that 
a row-latin schedule matrix S can have (N!)N permutations, this 
brute force approach is clearly not practical. For example, 
enumerating S takes a few cpu clocks for N=3, 124 
milliseconds for N=4, but 2.7 hours for N=5. 

On the other hand, the problem in general may not even 
have a solution at all. Thus instead of finding only the schedule 
matrix S that results in column-latin matrix R, we generalize 
the goal to finding the schedule matrix S that reduces the 
number of colliding arrival times in the arrival time matrix R. 

In the following, we present a Gradient-Descent Scheduler 
that employs a probabilistic local search algorithm [19-21] to 
find S that minimizes the number of collisions in R. 
A. Performance Metric 

The key performance metric in evaluating a schedule matrix 
S is the number of collisions in the arrival time matrix R. To 
define the metric precisely, we consider how the computations 
are performed in a particular node, say, node j. When more 
than one packet arrives at node j at the same timeslot, they will 
collide and may cause congestion if the router buffer is full. In 
the matrix representation, collision occurs if the same integer 
appears more than once in the same column j of the matrix R.  

Let count be a function that returns the number of elements 
in a finite set. Therefore, the number of the integer k appearing 
in column j, denoted by σj,k, can be obtained from 
 , ,{ , {0,1, ..., 1}}j k i jcount r k i Nσ = = ∀ ∈ −  (5) 

Since there is no collision if σj,k≤1, we compute the number 
of collisions at node j and timeslot k from 
 , ,max( 1, 0)j k j kb σ= −  (6) 

and form an N-by-N collision matrix B with bj,k as the 
matrix elements. Finally, we can obtain the total number of 
collisions, denoted by Ω, from summing all the collisions:  

 
1 1

,
0 0

N N

j k
j k

b
− −

= =

Ω = ∑∑  (7) 

B. Optimization Algorithm 
Fig. 2 lists the pseudo-code of GDS. First, the schedule 

matrix S is initialized with the staggered schedule generated by 
the Staggered Scheduler because of its good performance. As 
SS only converges to the randomized case when the network 
variation is large, the staggered pattern should provide a better, 
or at worst similar, initial condition than the randomized 
instances. Then, using the initialized matrix S and the matrix A, 
the collision matrix B and the total number of collisions Ω are 
computed in the function compute_collisions. 

After the initialization process, GDS starts searching the 
local solution space through a swapping heuristic as defined in 
lines 14-16 in Fig. 2. The basic idea is to swap two scheduled 
timeslots of a sender to reduce the number of collisions. The 
algorithm first performs a local search to find out a pair of 
scheduled timeslots such that either one is collided. Next, it 
swaps the pair and if Ω is reduced, the swapping will be 
committed. Otherwise, the swapping will be rolled back. This 
process loops for every pair of scheduled timeslots of each 
sender and repeats until no swapping action is committed (i.e., 
cannot reduce Ω any further).  

To speed up the algorithm, the collision matrix B and the 
integer Ω are updated in the function update_collisions after 
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each swapping. When a scheduled timeslot si,j is about to 
change such that the arrival timeslot changed from x to y, only 
two elements of b, i.e. bj,x and bj,y, are affected. Thus, a swap 
will require changes to only four elements in B. These changes 
in the matrix B can be directly added to Ω, which eliminates 
the need to recompute (7).  

Similar to other local search algorithms, GDS does not 
guarantee finding the global optimal solution. To obtain better 
solutions, we can repeat the whole searching process with 
different initial matrix S. There are also other methods, such as 
k-change heuristic [20] and simulated annealing [21], to tackle 
this problem. It is beyond the scope of this study to address 
this optimization issue. Nevertheless, our experiments show 
that reasonably good results can be obtained from even a 
single iteration using the staggered schedule as the initial 
schedule matrix S. 

Finally, we note that the GDS algorithm has a theoretical 
time complexity of O(N3) due to the three levels of loops. For 
example, the algorithm requires 0.421, 11.7 and 70 seconds of 
computation time for N=100, 300 and 500 respectively. Thus 
further optimization may be needed for systems with a huge 
number of nodes. 

VI. PERFORMANCE EVALUATION 

In this section, we evaluate and compare GDS with other 
scheduling algorithms using simulation. The simulator is 
developed using CNCL and it simulates a network with 500 
nodes. To generate a realistic network topology, we implement 
the extended BA (EBA) model proposed by Barabási et al. [22] 
as the topology generator, using parameters measured by 
Govindan et al. [23].  

To model access routers in the network, we assume an 
access router to have separate buffers for each connected node. 
These buffers are used to queue up incoming data packets for 
transmission to the connected node in case of bursty traffic. 
When the buffer is full, then subsequent arriving packets for 
the node will be discarded and thus resulting in packet loss. 

End-to-end delay of network links is separated into 
propagation delay in the link and queueing delay at the router. 
While the propagation delay is primary determined by physical 
distance, queueing delay at a router depends on the utilization 
of the outgoing links and the queue size. We model the 
propagation delay and queueing delay as normally-distributed 
and exponentially-distributed random variables respectively 
[24]. The link delay data used in the GDS algorithm are 
obtained from (simulated) measurement using the JADE 
algorithm. 

To model the clock synchronization protocol, we assume 
that the clock jitter of a node, defined as the deviation from the 
mean time of all hosts, to be normally-distributed with zero 
mean. We can then control the amount of clock jitter by 
choosing different variances for the distribution. 

 

01. si,j is the scheduled timeslot for packet 
transmission from node i to node j 

02. Ω is the total number of collisions 
03. for(int i=0 to N-1){ 
04.  for(int j=0 to N-1){ 
05.   si,j = j-i-1; 
06.  } 
07. } 
08. compute_collisions() 
09. do{ 
10.  swapped = 0; 
11.  for(int i=0 to N-1){ 
12.   for(int j=0 to N-1){ 
13.    for(int k=j+1 to N-1){ 
14.     if(either si,j or si,k is collided){ 
15.      if(swap(si,j, si,k) reduces Ω){ 
16.       perform_swap(si,j, si,k); 
17.       update_collisions(); 
18.       swapped ++; 
19.      } 
20.     } 
21.    } 
22.   } 
23.  } 
24. while (swapped > 0)  

Fig. 2. Pseudo-code for the Gradient-Decent Scheduler 

TABLE 1  
DEFAULT SYSTEM PARAMETERS 

Parameters Values 
Video block size 8KB 
Video bitrate 4Mbps 
Access network bandwidth 1.1Rv 
Router buffer size (per node) 32KB 
Mean propagation delay 0.005s 
Variance of propagation delay 10-6 

Mean router queueing delay 0.005s 
Variance of clock jitter 10-6 
Video length 7200s 
System Utilization 0.95 

 
To model the dynamic activities of the system, we allow 

nodes to initiate videos in a stochastic process. Specifically, 
when a node initiates a video title, its stream will last for a 
video length, denoted by tvideo. When the video stops, the node 
will be idle for some time, which is an exponentially random 
variable with mean tidle. Thus by adjusting the two parameters 
tvideo and tidle we can control the system utilization, 
ρ=tvideo/(tvideo+tidle). 

Table I summarizes the default values of various system 
parameters. We investigate in the following sections the effect 
of four system parameters, namely cluster size, router buffer 
size, queueing delay, clock jitter on the performance of the five 
scheduling algorithms in terms of packet loss rate. Each set of 
results is obtained from the average results of 10 randomly 
generated network topologies. 
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Fig. 3. Packet loss rate versus cluster size. 

 

A. Sensitivity to Cluster Size 
Fig. 3 plots the packet loss rate versus cluster size ranging 

from 5 to 500 nodes. There are two observations. First, the loss 
rates of all schedulers decrease rapidly at smaller cluster size 
and become negligible for very small clusters. For example, 
for a 10-node cluster the loss rate is only 6.6% for ORS. This 
confirms that the traffic burstiness problem is unique to a 
server-less VoD system where the number of nodes is typically 
large.  

Second, comparing the five algorithms, ORS performs 
extremely poorly with loss rates as high as 95%, which is 
clearly not acceptable in practice. RS and SORS perform 
significantly better, with the loss rates approaching 9.3% and 
2.9% respectively when the cluster size is increased to 500. SS 
performs best among the four network-neutral algorithms, with 
0.18% packet loss regardless of the cluster size when the nodes 
are clock synchronized. By exploiting knowledge of the 
network, the GDS algorithm performs best with a loss rate of 
0.07% for a cluster size of 500 nodes. 
B. Sensitivity to Router Buffer Size 

To investigate the effect of the buffer size at the access 
router on the packet loss rate, we plot in Fig. 4 the packet loss 
rate against router buffer sizes ranging from 8KB to 80KB. 
With a video packet size of Q=8KB this corresponds to the 
buffer space for one to ten packets. As expected, the loss rates 
for all five algorithms decrease with increases in the router 
buffer size. The reduction in loss rate however, decreases more 
rapidly for SS, SORS, and GDS. By contrast, ORS and RS 
exhibit substantial packet loss even for buffer size as large as 
80KB. Thus one cannot rely on simply increasing router buffer 
size to solve the congestion problem. 
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Fig. 4. Packet loss rate versus router buffer size. 
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Fig. 5. Packet loss rate versus mean queueing delay of a single router. 

 

C. Sensitivity to Delay Fluctuation 
On the other hand, delay fluctuations in the network can also 

affect performance of the schedulers. To study this effect, we 
vary the mean queueing delay of a single router from 0.005 to 
5 seconds and plot the corresponding packet loss rate in Fig. 5. 
We note that queueing delay is modeled by an exponential 
random variable, where the variance is equal to the square of 
the mean. Thus the result also shows the effect of delay 
variations. 

There are two interesting observations from this result. First, 
performance of the RS algorithm is not affected by changes in 
the mean queueing delay. This is because packet transmission 
times under RS are already randomized, and thus adding 
further random delay to the packet transmission times has no 
effect on the resultant traffic burstiness. 
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Fig. 6. Packet loss rate versus the variance of clock jitter. 

Second, the performances of all five algorithms converge 
when the mean queueing delay is increased to 5 seconds. This 
is because when the mean queueing delay approaches the 
length of a service round (i.e. Tr=8.192 seconds), the random 
queueing delay then effectively randomizes the arrival times of 
the packets at the access router and hence performances of all 
algorithms converge to the performance of the RS algorithm. 
Nevertheless the average delay in the current Internet is 
significantly shorter than 5 seconds and thus the presented 
SORS, SS, and GDS algorithms can still be applied to reduce 
the congestion-induced packet losses. 
D. Sensitivity to Clock Synchronization 

Finally, we study in Fig. 6 the effect of clock jitter on the 
algorithms’ performance. As expected, only the SS algorithm 
is affected by the magnitude of the clock jitter between nodes 
in the system. When the clock jitter is increased to beyond a 
variance of 0.0001, performance of the SS algorithm quickly 
deteriorates. This result clearly shows that although SS can 
perform well in a clock-synchronized system, the network-
neutral algorithm SORS and the network-aware algorithm 
GDS are far more reliable in practice as accurate clock-
synchronization is difficult, if not impossible, to achieve in a 
decentralized system running over the Internet. 

VI. CONCLUSION AND FUTURE WORKS 
In this work, we investigated the transmission scheduling 

problem in a server-less video streaming system. Specifically, 
we first addressed the problem of clock-synchronization in the 
existing staggered scheduling algorithm by presenting a new 
staggered-on-request scheduler that does not require clock 
synchronization at all and yet can still achieve robust 
performance across a wide range of network parameters. Next, 
by formulating the transmission scheduling problem as a 
matrix mathematical model, we discovered that it is possible to 
perform one-way network delay estimation with clock jitter 
accounted for in a single step. This discovery led to the 
development of the Gradient Descent Scheduler that exploits 
knowledge of the network properties to further reduce the 
congestion-induced packet loss to negligible levels. 
Nevertheless, the current GDS algorithm assumes that the 
network properties are stationary. The next step is to 

investigate dynamic algorithms to allow GDS to automatically 
adapt to the changing network conditions as well as system 
configurations. 
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