
A Transpositional Redundant Data Update Algorithm

for Growing Server-less Video Streaming Systems

T. K. Ho and Jack Y. B. Lee

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
Email: {tkho2@ie.cuhk.edu.hk, jacklee@computer.org}

Abstract

Recently, a new server-less architecture is proposed for

building low-cost yet scalable video streaming systems. In

this architecture, video blocks are distributed among user

hosts and these hosts cooperate to stream video blocks to

one another. To improve reliability, data and capacity

redundancy are introduced to sustain node failures.

However, the data placement as well as the redundant data

in the system will need to be updated whenever new nodes

join the system. Results show that the redundancy update

overhead is very significant and even exceeds that in data

reorganization. In this study, we present a new

Transpositional Redundant Data Update algorithm that

takes advantage of the structure of Reed-Solomon Erasure

Correction codes and employs a special encoding scheme

to significantly reduce the redundancy update overhead,

especially when updates are performed in batch.

1. Introduction

Peer-to-peer and distributed computing has shown great

potentials in high-performance computing applications.

Apart from computational problems, data and

I/O-intensive applications can also benefit from the

inherent scalability offered by distributed architectures.

One such architecture, called server-less video streaming

architecture, recently proposed by Lee and Leung [1]

adopted this completely decentralized approach to

eliminate the need for costly high-capacity video servers.

Unlike conventional video streaming systems built

around the well-understood client-server model, a

server-less video streaming system is built entirely from

This work was supported in part by the Hong Kong Special
Administrative Region Research Grant Council under a Direct Grant,

Grant CUHK4211/03E, and the Area-of-Excellence in Information
Technology.

user hosts. Video blocks are distributed among these user

hosts which then cooperate to stream video blocks to one

another for playback. Lee and Leung [1] showed that this

server-less architecture is easily scalable to hundreds of

user hosts using off-the-shelf computers and network

switches. Moreover, by incorporating data and capacity

redundancy into the system, one can even achieve

system-level reliability comparable to or even exceeding

those of dedicated video servers [2].

The study by Lee and Leung [1] is focused on the

scalability and feasibility of the server-less architecture.

They did not, however, address the practical problem of

system growth when new user hosts join the system.

Specifically, as video blocks are distributed among user

hosts, these data will need to be redistributed to newly

joined hosts to utilize their storage and streaming capacity.

This data reorganization problem has been investigated by

Ghandeharizadeh and Kim [5], Goel et al. [6], and Ho and

Lee [3] respectively. On the other hand, the redundant data

that are themselves computed from the video blocks will

also need to be updated according to the change in data

placement. This redundant data update problem has

recently been studied by Ho and Lee [4], who proposed a

Sequential Redundant Data Update (SRDU) algorithm.

In this study, we extend the work of Ho and Lee [4] in

two ways. First, we propose a new Transpositional

Redundant Data Update (TRDU) algorithm to further

exploit the special structure in computing the updated

redundant data in batched update. Results show that

TRDU can significantly reduces overhead compared to

SRDU for large batch sizes. Second, we optimize the

algorithms for use in systems with multiple redundant

nodes.

In the next section, we first briefly review the

server-less architecture and previous works on data

reorganization and redundant data update.

2. Background

We present an overview of the server-less architecture

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

in Section 2.1 and review in Section 2.2 some existing

works on data reorganization and redundant data update.

2.1 The Server-less Architecture

A server-less video streaming system comprises a pool

of fully connected user hosts, henceforth called nodes.

Each node has its own CPU, memory and disk storage.

Inside each node is a mini video server software that serves

a portion of each video title to other nodes in the system.

Unlike conventional video server, this mini server

software serves a much lower aggregate bandwidth and

therefore can readily be implemented in today’s STBs and

PCs. For large systems, the nodes can be further divided

into clusters where each cluster forms an autonomous

system that is independent from other clusters.

For data placement, a video title is first divided into

fixed-size striping units (or called blocks). Then, these

striping units are distributed to all nodes in the cluster in a

round-robin manner. This node-level striping scheme

avoids data replication while at the same time divides the

storage requirement equally among all nodes in the cluster.

To initiate a video streaming session, a receiver node

will first locate the set of sender nodes carrying blocks of

the desired video title, the striping policy and other

parameters (format, bitrate, etc.) through the directory

service, which could be provided by a directory server, or

peer-to-peer lookup service such as CHORD [9]. These

sender nodes will then be notified to start transmitting the

video blocks to the receiver node.

Let N be the number of nodes in the cluster and assume

all video titles are constant-bit-rate (CBR) encoded at the

same bitrate Rv. For a sender node in a cluster, it may have

to retrieve video blocks for up to N video streams, of which

N−1 of them are transmitted while the remaining one

played back locally. Note that as a video stream is served

by N nodes concurrently, each node only needs to serve a

bitrate of Rv/N for each video stream. With a round-based

transmission scheduler, a sender node simply transmits

one block to each receiver node in each round. Interested

readers are referred to the study by Lee and Leung [1] for

more details.

2.2 Related Works

The data reorganization problem has been studied in the

context of disk arrays [5-6]. The study by

Ghandeharizadeh and Kim [5] is the earliest study on data

reorganization known to the authors. They investigated the

data reorganization problem in the context of adding disks

to a continuous media server. They employed round-robin

data striping common in disk arrays and investigated and

analyzed techniques to perform data reorganization online,

i.e., without disrupting on-going video streams.

In another study by Goel et al. [6], a pseudo-random

algorithm called SCADDAR for data placement and data

reorganization was proposed for use in disk arrays. In this

algorithm, each data block is initially randomly distributed

to the disks with equal probabilities. When a new disk is

added to the disk array, each block will obtain a new

sequence number according to their randomized

SCADDAR algorithm. If the reminder of this number is

equal to the disk number of the newly added disk, the

corresponding block will be moved to this new disk.

Otherwise, the block will reside at the original disk.

In a recent study [3], Ho and Lee proposed a more

efficient data reorganization algorithm called

Row-Permutated Data Reorganization that can achieve

lower data reorganization overhead and also allow

controllable tradeoff between streaming load balance and

data reorganization overhead.

While these studies have been successful in reducing

the data reorganization overhead substantially, they did not

yet address the issue of redundant data update. Given that a

server-less video streaming system is built from user hosts

that are inherently less reliable than dedicated video

servers, fault tolerant capability clearly becomes a

necessity. To this end, one will need to incorporate data

and capacity redundancies into the system. These

redundant data, computed from erasure correction codes

such as the Reed-Solomon Erasure Correction (RSE) code,

will need to be updated whenever new nodes are added and

data reorganization is performed.

The next section explains the redundant data update

problem in more details and briefly review the recently

proposed Sequential Redundant Data Update (SRDU)

algorithm [4].

3. Redundant Data Update

Based on the server-less architecture presented in

Section 2.1, let B be the total number of fixed-size video

blocks in the system and vj be the jth
 block of the video title.

For simplicity we consider only one video title although

the results can be readily extended to multiple video titles.

Fig. 1 illustrates one possible placement of video blocks

in a server-less video streaming system. Each block in the

figure represents either a Q-byte video block or a Q-byte

redundant data block. Blocks under the same column are

stored in the same node with di and ri denoting the data

nodes and redundant nodes. Let (N-h) and h be the number

of data nodes and redundant nodes in the system

respectively. The jth redundant data block, denoted by ci,j,

are computed from video data stripe i, comprising blocks

{vk, k=i(N-h), i(N-h)+1, …, (i+1)(N-h)−1}}, using a

systematic erasure-correction code such as the

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

Reed-Solomon Erasure Correction (RSE) code [7-8].

Briefly speaking, with h redundant data blocks in a data

stripe, the system will be able to sustain the failure of up to

h nodes without loosing any data. A previous study [2] had

shown that one can achieve system-level reliability

comparable to high-end dedicated video server with

redundancies of h/(N-h)≈0.2.

When one or more new nodes join the system, they will

add both streaming load as well as capacity to the system.

Before assimilating them into the system, portion of video

blocks must be reorganized among them to utilize the

streaming and storage capacity and this is the data

reorganization problem discussed before. Consequently,

due to the relocation of some video blocks, the redundant

data that are computed from the data stripe will require

corresponding update and this redundant data update

problem will incur overhead in transmitting data blocks to

the nodes for regenerating the redundant data blocks. We

will first present a trivial solution, called redundant data

regeneration, in Section 3.1. Then we review the more

efficient SRDU algorithm in Section 3.2.

3.1 Redundant Data Regeneration

For a general systematic erasure-correction code in a

system with N nodes and h redundancies, we will need all

(N−h) data blocks in a stripe to compute the corresponding

h redundant data blocks. As individual data and redundant

blocks of a stripe are all stored in different nodes, the data

blocks will all need to be transmitted to the redundant

nodes (i.e., nodes storing the redundant data blocks) for

regenerating the new redundant data blocks.

Therefore for a system with B data blocks, a total of B

blocks will need to be transmitted to and received by the

redundant node to support redundant data regeneration.

Clearly this overhead is very significant and worst.

On the other hand, if a central archive server storing all

video blocks is available in the system, then it can simply

regenerate the new redundant data blocks locally and send

them to the redundant nodes to replace the old redundant

data blocks. In this case, the number of blocks sent will be

reduced by a factor of (N−h) to (B/(N−h)). Nevertheless

maintaining this central archive server will incur

additional costs, and depending on applications, may not

be desirable or even feasible.

3.2 Sequential Redundant Data Update

By considering the generation of a redundant data block

from a data stripe, we can observe that in most cases, the

reorganized data stripe still comprises many data blocks

from the old data stripe before reorganization. For example,

in growing a system from N nodes to N+1 nodes, the first

data stripe will be reorganized from the composition of

{v0, v1, …, vN−h−1} to {v0, v1, …, vN−h−1, vN−h}, which differs

by only one data block vN−h. This is the key idea behind

SRDU algorithm, which reuses the old redundant block to

compute the new redundant block such that only a portion

of the data stripe will be needed to transmit.

Among different erasure correction codes there is a

class of codes called linear systematic block erasure

correction codes, with the Reed-Solomon Erasure

Correction (RSE) code being one well-known example.

One key property of linear systematic block codes is the

use of strictly linear matrix multiplications in computing

the redundant data, and this very property enables us to

reuse original redundant data to compute the updated

redundant data.

Specifically, let (N-h) and h be the number of data

nodes and redundant nodes in the system respectively.

Assuming the number of redundant nodes in the system is

fixed, then we can apply the (N, h)-RSE code to compute

the h redundant data blocks from each stripe of (N-h) data

blocks using

1,1 1,2 1,3 1, ,0

2,1 2,2 2,3 2, ,1

,1 ,2 ,3 , , 1

,0

,1

1 1 1
, 1

,0

,1

1 1 1 1

1 2 3

1 2 3 ()

N h i

N h i

h h h h N h i N h

i

i

h h h
i N h

i

i

i

f f f f d

f f f f d
F D

f f f f d

d

dN h

dN h

c

c

c

−

−

− − −

− − −
− −

   
   
   ⋅ =
   
   
      

  
  −   =
  
  −     

=

…

…

� � � � �

…

…

…

�� � � �

…

�

, 1h

C

−

 
 
  =
 
 
  

 (1)

where the F, D, and C are the Vandermonde matrix [7], the

video data vector, and the redundant data vector

respectively; and di,j, ci,k represent data block j

(j=0,1,…,N−h−1) and redundant block k (k=0,1,…,h−1) of

stripe i respectively. Elements in F is computed from fi,j =

ji-1
 and are constants. Note that the matrix multiplication in

(1) is computed over Galois Fields of 2
w
 where N < 2

w
. For

example, by setting w=16 then the code can support up to

65,535 nodes.

To illustrate the SRDU algorithm, consider the

placement in Fig. 1 and Fig. 2, which represent

respectively the system configuration before and after the

addition of two new nodes. Now, consider the first three

old redundant data in redundant node r1, denoted by c0,1,

c1,1 and c2,1, which are computed from

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

3

0,1 2, 1

0

j j

j

c f v+
=

=∑ (2)

7

1,1 2, 4 1

4

j j

j

c f v− +
=

=∑ (3)

11

2,1 2, 8 1

8

j j

j

c f v− +
=

=∑ (4)

according to (1).

After two new nodes are added, the system

configuration will be changed to that in Fig. 2. Now the

two new redundant data, denoted by c’0,1 and c’1,1, are

computed from

5

0,1 2, 1

0

' j j

j

c f v+
=

= ∑ (5)

and

11

1,1 2, 6 1

6

' j j

j

c f v− +
=

=∑ (6)

Comparing (5) with (2) we can observe that they share four

common terms in vj: v0, v1, v2, v3. Thus we can rewrite (5)

as follows

 0,1 0,1 2,5 4 2,6 5'c c f v f v= + + (7)

That is, by reusing the old redundant data c0,1, the overhead

decreases to two data blocks instead of six data blocks.

For c’1,1, comparing (6) with (4) we can again observe

that they share four common terms in vj: v8, v9, v10, v11.

However, rewriting (6) cannot be expressed directly using

(4) due to the different coefficients fi,j (e.g. f2,1v8 in c2,1

versus f2,3v8 in c’1,1). To tackle this problem, we can

reshuffle the order of computations for c’1,1 as

11

1,1 2, 8 1 2,5 6 2,6 7

8

2,1 2,5 6 2,6 7

' j j

j

c f v f v f v

c f v f v

− +
=

= + +

= + +

∑
 (8)

thus enabling us to reuse c2,1 in the computation and

reducing the number of data block transmissions from six

to two.

As observed in (6) and (3), there are also two common

terms in vj, i.e., v6, v7, in computing c1,1 and c’1,1. Again if

we reshuffle the parity group order, we can reuse c1,1 to

construct c’1,1, but then the overhead induced will be

greater than that of reusing c2,1. In this case we simply

choose to reuse c2,1 instead of c1,1. Interested readers are

referred to the study by Ho and Lee [4] for more details.

Although the SRDU algorithm can substantially reduce

the overhead, the redundancy update overhead is still not

insignificant. Intuitively, if we defer the update until more

nodes have joined the system, then further savings in

update overhead should be achievable.

Let say we defer the update further until four nodes

have joined the system as shown in Fig. 3. Now the new

redundant data block c’0,1 is computed from

7

0,1 2, 1

0

' j j

j

c f v+
=

=∑ (9)

c’0,1 share four common terms: v0, v1, v2, v3, with c0,1 and

thus we can rewrite it as

7

0,1 0,1 2, 1

4

' j j

j

c c f v+
=

= +∑ (10)

On the other hand, it also share four common terms: v4, v5,

v6, v7, with c1,1 and so we can also rewrite it as

3

0,1 1,1 2, 4 1

0

' j j

j

c c f v+ +
=

= +∑ (11)

Nevertheless, c’0,1 can only be written in terms of one of

c0,1 or c1,1, but not both. Thus although there are eight

terms in common, only up to four can be reused. This

limitation arises from the original number of data node e.g.

four nodes in this case. In particular, as both c0,1 and c1,1

are computed using the same coefficients f2,1 to f2,4, this

prevents us from reusing both c0,1 and c1,1 in constructing

c’0,1. Motivated by this observation, we develop in the next

section a new Transpositional Redundant Data Update

(TRDU) algorithm that is free from this redundant data

reuse limitation.

4. Transpositional Redundant Data Update

In the SRDU algorithm, all the data blocks are inputted

to the data vector D in (1) starting from di,0 to di,N-h-1

sequentially. This leads to the limitation in common terms

for reusing as explained in Section 3.2. To tackle this

shortcoming, we need to increase the number of reusable

common terms. The idea is to compute the redundant

block using transposed coefficients in the Vandermonde

matrix.

Let Nmax be the maximum size that the system can scale

up to, i.e., N≤Nmax. Instead of using (1) for encoding, we

replace it with

max

max

maxmax

1,1 1,2 1,3 1, ,0

2,1 2,2 2,3 2, ,1

, 1,1 ,2 ,3 ,

,0

,1

, 1

N h i

N h i

i N hh h h h N h

i

i

i h

f f f f d

f f f f d
F D

df f f f

c

c
C

c

−

−

− −−

−

   
   
   ⋅ =    
   
     

 
 
 = =
 
 
  

…

…

�� � � �

…

�

(12)

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

where di,j, ci,k and fi,j have the same definition as (1). The

key difference between (1) and (12) is that the encoding

matrix in (1) has (N−h) columns, but the same in (12) has

(Nmax−h) columns, which is fixed irrespective of the

current system size N.

For each stripe i of data blocks, the starting position of

it in the data vector D is shifted by (i(N−h)) mod (Nmax−h))

and all other di,j are zeroed. For example, with (Nmax−h)

being 10 and the data placement in Fig. 1, c0,1, c1,1 and c2,1

will be written as

3

0,1 2, 1

0

j j

j

c f v+
=

=∑ (13)

7

1,1 2, 1

4

j j

j

c f v+
=

=∑ (14)

9 11

2,1 2, 1 2, 10 1

8 10

j j j j

j j

c f v f v+ − +
= =

= +∑ ∑ (15)

Note that the sequence of data blocks in computing c2,1

spans beyond the boundary of D and in this case, they will

be looped back to the beginning. As nearby redundant

blocks are computed using different coefficients fi,j in the

Vandermonde matrix, we can reuse the old redundant data

in updating the new redundant data and thus, eliminating

the limitation of the SRDU algorithm.

Although the coefficient f2,1 of v0 in (13) and v10 in (15)

is the same, this would not affect the update as long as the

maximum number of data nodes is fixed at 10, which

prevent v0 and v10 from residing in the same data stripe in

computing the same redundant data block.

Assume that two data nodes are added to the system as

shown in Fig. 2. The first two new redundant data, denoted

by c’0,1 and c’1,1, are computed from

5

0,1 2, 1

0

' j j

j

c f v+
=

=∑ (16)

and

9 11

1,1 2, 1 2, 10 1

6 10

' j j j j

j j

c f v f v+ − +
= =

= +∑ ∑ (17)

c’0,1 can now be constructed by c0,1 with the overhead of

two data blocks

3

0,1 2, 1 2,5 4 2,6 5

0

0,1 2,5 4 2,6 5

'

j j

j

c f v f v f v

c f v f v

+
=

= + +

= + +

∑
 (18)

and for c’1,1, it can be written as

9 11

1,1 2, 1 2, 10 1

6 10

7 9 11

2, 1 2, 1 2, 10 1

6 8 10

7

2, 1 2,5 4 2,6 5

4

9 11

2, 1 2, 10 1

8 10

1,1 2,5 4 2,6

'

 ()

 ()

 (

j j j j

j j

j j j j j j

j j j

j j

j

j j j j

j j

c f v f v

f v f v f v

f v f v f v

f v f v

c f v f v

+ − +
= =

+ + − +
= = =

+
=

+ − +
= =

= +

= + +

= − − +

+

= − −

∑ ∑

∑ ∑ ∑

∑

∑ ∑

5 2,1) c+

 (19)

However, v4 and v5 are already transmitted in

constructing c’0,1 (c.f. Equation (18)) and thus by caching

the data blocks, the overhead in constructing c’1,1 is in fact

zero. An important point to notice is that rewriting c’1,1 as

(19) is not allowed in the SRDU algorithm (c.f. Equation

(8)) because both v6 and v10 share the same coefficient f2,3,

and both v7 and v11 share the same coefficient f2,4. However,

by shifting the coefficients as done in TRDU, their

coefficients become different and thus allowing more

efficient reuse of the old redundant data.

In the extreme case, when the number of additional data

node equals to integral multiples of the original system

size, the overhead will become zero as the redundant node

can compute the new redundant data blocks simply by

combining old redundant data blocks locally. For example,

assume four data nodes are entered, with data placement

shown in Fig. 3. Now, the new redundant data block c’0,1

will be equal to

7

0,1 2, 1

0

' j j

j

c f v+
=

= ∑ (20)

which can be directly written as

3 7

0,1 2, 1 2, 1

0 4

0,1 1,1

'

j j j j

j j

c f v f v

c c

+ +
= =

= +

= +

∑ ∑
 (21)

It does not involve any data blocks at all, and so the

overhead is zero.

Compared to SRDU, there are also tradeoffs in using

TRDU. First, we need to specify the maximum system size

Nmax in advance. To avoid hitting the limit, we may need to

use a large value for Nmax. This creates the second tradeoff,

where the larger Vandermonde matrix will increase the

computational complexity in decoding as we need to

compute the inverse of the larger matrix. Finally, due to the

larger matrix size, TRDU will also increase the memory

consumed in performing the matrix operations during

decoding.

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

5. Multiple Redundant Nodes

So far only the overhead for updating one redundant

node is considered. In this section, we extend all the

presented algorithms to systems with multiple redundant

nodes.

First, we consider the redundant data regeneration

algorithm (c.f. Section 3.1). Fig. 4 illustrates the redundant

data regeneration process. Note that we need to transmit all

data blocks to the redundant node r0 to compute the new

redundant data blocks. For a video title of B data blocks,

this step will incur an overhead of B blocks. Additionally,

after r0 regenerates all the updated redundant data blocks,

it will need to transmit the updated redundant blocks to the

other redundant nodes as well and this incurs another

overhead of (B/(N−h)) blocks for each additional

redundant node. Therefore, the total redundant data update

overhead is equal to B+(h–1)(B/(N−h)).

Second, if there is a central archive server storing a

copy of all the video blocks, it can regenerate locally all

the updated redundant data blocks and then transmit them

to the redundant nodes (Fig. 5). The overhead in this case

will be equal to h(B/(N−h)).

Third, Fig. 6 illustrates the process in SRDU and TRDU.

The data blocks needed for computing the updated

redundant data are first transmitted to the redundant node

r0. Then, partial results are computed in r0 and transmitted

to other redundant nodes for computing their updated

redundant data blocks. For example, assume two new

nodes are added and consider the first redundant block c’0,j

in the redundant node rj. The equation for computing c’0,j

(c.f. Equation (7) and (18)) is

 0, 0, 1,5 4 1,6 5' j j j jc c f v f v+ += + + (22)

As v4 and v5 are already transmitted to r0 according to

the SRDU/TRDU algorithm, r0 can then compute the

partial result (fj+1,5v4+ fj+1,6v5) for all 0j ≠ . In the

redundant node rj, this partial result can be combined with

the original redundant block c0,j to generate the new

redundant block c’0,j. The transmission of partial result will

introduce an overhead of (B/(N−h)) blocks for each

additional redundant node. As a result, the total overhead

is equal to the block movement overhead under

SRDU/TRDU plus the overhead in transmitting the partial

results (h-1)(B/(N−h)).

Table 1 summarizes the total overhead of the redundant

data update algorithms studied. We can observe that the

overhead is dominated by the overhead in updating the

first redundant node because of the large number of data

blocks needed to generate the new redundant data blocks.

Once these are cached in the redundant node r0, new

redundant blocks of other redundant nodes can be

computed with much lower overhead.

Table 1. Total overhead in studied algorithms.

Algorithms Total Overhead

Redundant Data Regeneration B+(h–1)(B/(N−h))

Regeneration by archive server B/(N−h)+

(h−1)(B/(N−h))

Sequential Redundant Data

Update (SRDU)

Block movement

under SRDU+

(h−1)(B/(N−h))

Transpositional Redundant Data

Update (TRDU)

Block movement

under TRDU+

(h−1)(B/(N−h))

�

��

�

6. Performance Evaluation

In this section, we evaluate the studied algorithms using

numerical results. As the overhead is dominated by

updating the first redundant node, for simplicity we will

ignore the overhead in updating additional redundant

nodes. The overhead in updating additional redundant

nodes can be easily obtained according to the analysis in

Section 5.

Beginning with a small system, we add new nodes to

the system and then apply the studied algorithms to update

the redundant data blocks. Performance is measured by the

number of data blocks that need to be sent to the redundant

nodes – or simply called redundancy update overhead. The

total number of data blocks is 40,000 and is fixed

throughout the system lifetime.

6.1 Continuous System Growth

In the first experiment, we begin with a system of five

data nodes and one redundant node. Then we add a new

node to the system one by one, each time the redundant

data blocks are completely updated using different

algorithms. This continues until the system grows to 400

data nodes.

Fig. 7 plots the redundancy update overhead versus

system size from 6 to 400. As expected, Redundant Data

Regeneration performs the worst, essentially requiring all

data blocks to be sent to the redundant node for

regenerating the redundant data. On the other hand,

regenerating redundant data using a central archive server

incurs the least overhead, albeit at the expense of extra

central facility. SRDU and TRDU perform similarly, with

TRDU achieving slightly less overhead.

6.2 Batched Update

In the previous experiment, we always completely

update all redundant data blocks before adding another

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

new node. Clearly this is inefficient if new nodes are added

frequently or added to the system in a batch. To address

this issue, we conduct a second experiment where

redundant data blocks are not updated until a fixed number

of nodes, say W, are added – batched redundancy update.

During this time, storage and streaming capacity in the

new nodes are not utilized and thus this approach

represents tradeoffs between redundancy update overhead

and resource utilization. Fig. 8 plots the redundancy update

overhead versus the batch size W for initial system size of

80 data nodes. The key observation is that the normalized

per-node redundancy update overhead of both the SRDU

and TRDU algorithms decreases significantly with the

batch size.

Moreover, TRDU performs significantly better than

SRDU when the batch size is large. This is because the

reusing of old redundant data in SRDU is limited by the

original number of data nodes, while that in TRDU will

increase with the batch size.

Furthermore, as discussed in section 4, the overhead of

TRDU is equal to zero when the batch size is integer

multiples of the initial data node size. For example, in

Fig. 8 the two zero overhead points occur when the batch

size is 80 and 160.

7. Conclusion and Future Works

This study shows that we can reduce the redundancy

update overhead significantly by combining the use of

batched update and the Transpositional Redundant Data

Update algorithm. It also reveals that the additional

redundancy overhead for multiple redundant nodes is

insignificant, thereby paving the way for employing

multiple redundant nodes to increase the reliability of

server-less video streaming systems.

Nevertheless, there are still many open problems in

growing a server-less video streaming system. For

example, when the system grows larger with more nodes,

the system reliability will decrease unless additional

redundant nodes are added to compensate. However, due

to the orthogonal nature of the redundant data, the new

redundant data cannot be computed from the existing

redundant data and so must be generated directly from the

data blocks. On the other hand, nodes in the system are

only peers, which may readily leave the system anytime.

The shrinking of the system may introduce several

problems, including redundant data update, data

reorganization and fault tolerance etc. Therefore further

investigation is warranted to address these challenges to

build a truly scalable server-less video streaming system.

References

[1] Jack Y. B. Lee and W. T. Leung, “Study of a Server-less

Architecture for Video-on-Demand Applications,” Proc.

IEEE International Conference on Multimedia and Expo.,

August 2002.

[2] Jack Y. B. Lee and W. T. Leung, “Design and Analysis of a

Fault-Tolerant Mechanism for a Server-less

Video-on-Demand System,” Proc. 2002 International

Conference on Parallel and Distributed Systems, Taiwan,

Dec 17-20, 2002.

[3] T. K. Ho and Jack Y. B. Lee, “A Row-Permutated Data

Reorganization Algorithm for Growing Server-less

Video-on-Demand Systems,” Proc. International

Symposium on Cluster Computing and the Grid 2003,

Tokyo, Japan.

[4] T. K. Ho and Jack Y. B. Lee, “A Novel Redundant Data

Update Algorithm for Fault-Tolerant Server-less

Video-on-Demand Systems,” Proc. 2003 High Performance

& Large Scale Computing (HP&LSC) Conference,

Nottingham, UK, June 9-11, 2003.

[5] S. Ghandeharizadeh and D. Kim, “On-line Reorganization

of Data in Scalable Continuous Media Servers,” Proc. 7th

International Conference on Database and Expert Systems

Applications, September 1996.

[6] A. Goel, C. Shahabi, S.-Y. Yao, and R. Zimmerman,

“SCADDAR: An Efficient Randomized Technique to

Reorganize Continuous Media Blocks,” Proc. International

Conference on Data Engineering, 2002.

[7] J. S. Plank, “A Tutorial on Reed-Solomon Coding for

Fault-Tolerance in RAID-like Systems,” Software Practice

and Experience, vol.27(9), Sep. 1997, pp.995-1012.

[8] L. Rizzo, “Effective Erasure Codes for Reliable Computer

Communication Protocols,” ACM Computer

Communication Review, vol.27(2), Apr 1997, pp.24-36.

[9] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.

Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup

Service for Internet Applications”, ACM SIGCOMM 2001,

San Deigo, CA, August 2001.

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

Fig. 1. Original data placement before addition of

nodes.

Fig. 2. Data placement after adding two data

nodes.

Fig. 3. Data placement after adding four data

nodes.

Fig. 4. Redundant data regeneration when video

blocks are fully distributed.

 Fig. 5. Redundant data regeneration using

an archive server.

Fig. 6. Redundant data update in SRDU/TRDU.

Fig. 7. Redundancy update overhead versus

system size.

Fig. 8. Per-node redundancy update overhead

versus batch size.

v0 v1 v2 v3 c’0,0 c’0,1

d2d1d0 d3 r0 r1

v6

v12

v18

c’1,0

c’2,0

c’3,0

c’1,1

c’2,1

c’3,1

v7 v8 v9

v13 v14 v15

v19 v20 v21

v4 v5

v10 v11

v16 v17

v22 v23

d4 d5

v0 v1 v2 v3 c’0,0 c’0,1

d2d1d0 d3 r0 r1

v8

v4

v12 c’1,0

c’2,0

c’1,1

c’2,1

v9 v10 v11

v5 v6 v7

v13 v14 v15

v16 v17 v18 v19

d4 d5 d6 d7

v20 v21 v22 v23

d0 d1 dN-h-1 r0 … rh-1… r1
…

Partial results of new redundant

data are constructed in r0

Blocks under TRDU or SRDU are transmitted

Combining received partial

results and old redundant data

d0 d1 dN-h-1 r0 … rh-1… r1

…

Archive Server
All new redundant data

are constructed in Server

v0 v1 v2 v3 c0,0 c0,1

d2d1d0 d3 r0 r1

v4

v8

v12

c1,0

c2,0

c3,0

c1,1

c2,1

c3,1

v5 v6 v7

v9 v10 v11

v13 v14 v15

v16 c4,0 c4,1v17 v18 v19

v20 c5,0 c5,1v21 v22 v23

d0 d1 dN-h-1 r0 … rh-1… r1
…

All new redundant data

are constructed in r0

All blocks are transmitted

10

100

1000

10000

100000

0 50 100 150 200

Batch Size W (nodes)

P
er

-n
o
d
e

R
ed

u
n
d
an

cy
 U

p
d
at

e
O

v
er

h
ea

d
 (

b
lo

ck
s)

TRDU, Starting at 80

SRDU, Starting at 80

Zero Overhead Points

100

1000

10000

100000

0 100 200 300 400

System Size (nodes)
R

ed
u

n
d

an
cy

 U
p

d
at

e
O

v
er

h
ea

d
 (

b
lo

ck
s)

Regeneration by Fully Distributed Data

SRDU

TRDU

Regeneration by Archive Server

Proceedings of the Third International Conference on Peer-to-Peer Computing (P2P’03)

0-7695-2023-5/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

