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Abstract 

 

Recently, a new server-less architecture is proposed for 

building low-cost yet scalable video streaming systems. In 

this architecture, video blocks are distributed among user 

hosts and these hosts cooperate to stream video blocks to 

one another. To improve reliability, data and capacity 

redundancy are introduced to sustain node failures. 

However, the data placement as well as the redundant data 

in the system will need to be updated whenever new nodes 

join the system. Results show that the redundancy update 

overhead is very significant and even exceeds that in data 

reorganization. In this study, we present a new 

Transpositional Redundant Data Update algorithm that 

takes advantage of the structure of Reed-Solomon Erasure 

Correction codes and employs a special encoding scheme 

to significantly reduce the redundancy update overhead, 

especially when updates are performed in batch. 

 

 

1. Introduction 
 

Peer-to-peer and distributed computing has shown great 

potentials in high-performance computing applications. 

Apart from computational problems, data and 

I/O-intensive applications can also benefit from the 

inherent scalability offered by distributed architectures. 

One such architecture, called server-less video streaming 

architecture, recently proposed by Lee and Leung [1] 

adopted this completely decentralized approach to 

eliminate the need for costly high-capacity video servers. 

Unlike conventional video streaming systems built 

around the well-understood client-server model, a 

server-less video streaming system is built entirely from 
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user hosts. Video blocks are distributed among these user 

hosts which then cooperate to stream video blocks to one 

another for playback. Lee and Leung [1] showed that this 

server-less architecture is easily scalable to hundreds of 

user hosts using off-the-shelf computers and network 

switches. Moreover, by incorporating data and capacity 

redundancy into the system, one can even achieve 

system-level reliability comparable to or even exceeding 

those of dedicated video servers [2]. 

The study by Lee and Leung [1] is focused on the 

scalability and feasibility of the server-less architecture. 

They did not, however, address the practical problem of 

system growth when new user hosts join the system. 

Specifically, as video blocks are distributed among user 

hosts, these data will need to be redistributed to newly 

joined hosts to utilize their storage and streaming capacity. 

This data reorganization problem has been investigated by 

Ghandeharizadeh and Kim [5], Goel et al. [6], and Ho and 

Lee [3] respectively. On the other hand, the redundant data 

that are themselves computed from the video blocks will 

also need to be updated according to the change in data 

placement. This redundant data update problem has 

recently been studied by Ho and Lee [4], who proposed a 

Sequential Redundant Data Update (SRDU) algorithm. 

In this study, we extend the work of Ho and Lee [4] in 

two ways. First, we propose a new Transpositional 

Redundant Data Update (TRDU) algorithm to further 

exploit the special structure in computing the updated 

redundant data in batched update. Results show that 

TRDU can significantly reduces overhead compared to 

SRDU for large batch sizes. Second, we optimize the 

algorithms for use in systems with multiple redundant 

nodes. 

In the next section, we first briefly review the 

server-less architecture and previous works on data 

reorganization and redundant data update.  

 

2. Background 
 

We present an overview of the server-less architecture 
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in Section 2.1 and review in Section 2.2 some existing 

works on data reorganization and redundant data update. 

 

2.1 The Server-less Architecture 
 

A server-less video streaming system comprises a pool 

of fully connected user hosts, henceforth called nodes. 

Each node has its own CPU, memory and disk storage. 

Inside each node is a mini video server software that serves 

a portion of each video title to other nodes in the system. 

Unlike conventional video server, this mini server 

software serves a much lower aggregate bandwidth and 

therefore can readily be implemented in today’s STBs and 

PCs. For large systems, the nodes can be further divided 

into clusters where each cluster forms an autonomous 

system that is independent from other clusters. 

For data placement, a video title is first divided into 

fixed-size striping units (or called blocks). Then, these 

striping units are distributed to all nodes in the cluster in a 

round-robin manner. This node-level striping scheme 

avoids data replication while at the same time divides the 

storage requirement equally among all nodes in the cluster.  

To initiate a video streaming session, a receiver node 

will first locate the set of sender nodes carrying blocks of 

the desired video title, the striping policy and other 

parameters (format, bitrate, etc.) through the directory 

service, which could be provided by a directory server, or 

peer-to-peer lookup service such as CHORD [9]. These 

sender nodes will then be notified to start transmitting the 

video blocks to the receiver node.  

Let N be the number of nodes in the cluster and assume 

all video titles are constant-bit-rate (CBR) encoded at the 

same bitrate Rv. For a sender node in a cluster, it may have 

to retrieve video blocks for up to N video streams, of which 

N−1 of them are transmitted while the remaining one 

played back locally. Note that as a video stream is served 

by N nodes concurrently, each node only needs to serve a 

bitrate of Rv/N for each video stream. With a round-based 

transmission scheduler, a sender node simply transmits 

one block to each receiver node in each round. Interested 

readers are referred to the study by Lee and Leung [1] for 

more details. 

 

2.2 Related Works 
 

The data reorganization problem has been studied in the 

context of disk arrays [5-6]. The study by 

Ghandeharizadeh and Kim [5] is the earliest study on data 

reorganization known to the authors. They investigated the 

data reorganization problem in the context of adding disks 

to a continuous media server. They employed round-robin 

data striping common in disk arrays and investigated and 

analyzed techniques to perform data reorganization online, 

i.e., without disrupting on-going video streams. 

In another study by Goel et al. [6], a pseudo-random 

algorithm called SCADDAR for data placement and data 

reorganization was proposed for use in disk arrays. In this 

algorithm, each data block is initially randomly distributed 

to the disks with equal probabilities. When a new disk is 

added to the disk array, each block will obtain a new 

sequence number according to their randomized 

SCADDAR algorithm. If the reminder of this number is 

equal to the disk number of the newly added disk, the 

corresponding block will be moved to this new disk. 

Otherwise, the block will reside at the original disk. 

In a recent study [3], Ho and Lee proposed a more 

efficient data reorganization algorithm called 

Row-Permutated Data Reorganization that can achieve 

lower data reorganization overhead and also allow 

controllable tradeoff between streaming load balance and 

data reorganization overhead.  

While these studies have been successful in reducing 

the data reorganization overhead substantially, they did not 

yet address the issue of redundant data update. Given that a 

server-less video streaming system is built from user hosts 

that are inherently less reliable than dedicated video 

servers, fault tolerant capability clearly becomes a 

necessity. To this end, one will need to incorporate data 

and capacity redundancies into the system. These 

redundant data, computed from erasure correction codes 

such as the Reed-Solomon Erasure Correction (RSE) code, 

will need to be updated whenever new nodes are added and 

data reorganization is performed.  

The next section explains the redundant data update 

problem in more details and briefly review the recently 

proposed Sequential Redundant Data Update (SRDU) 

algorithm [4].  

 

3. Redundant Data Update 
 

Based on the server-less architecture presented in 

Section 2.1, let B be the total number of fixed-size video 

blocks in the system and vj be the jth
 block of the video title. 

For simplicity we consider only one video title although 

the results can be readily extended to multiple video titles. 

Fig. 1 illustrates one possible placement of video blocks 

in a server-less video streaming system. Each block in the 

figure represents either a Q-byte video block or a Q-byte 

redundant data block. Blocks under the same column are 

stored in the same node with di and ri denoting the data 

nodes and redundant nodes. Let (N-h) and h be the number 

of data nodes and redundant nodes in the system 

respectively. The jth redundant data block, denoted by ci,j, 

are computed from video data stripe i, comprising blocks 

{vk, k=i(N-h), i(N-h)+1, …, (i+1)(N-h)−1}}, using a 

systematic erasure-correction code such as the 
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Reed-Solomon Erasure Correction (RSE) code [7-8].  

Briefly speaking, with h redundant data blocks in a data 

stripe, the system will be able to sustain the failure of up to 

h nodes without loosing any data. A previous study [2] had 

shown that one can achieve system-level reliability 

comparable to high-end dedicated video server with 

redundancies of h/(N-h)≈0.2. 

When one or more new nodes join the system, they will 

add both streaming load as well as capacity to the system. 

Before assimilating them into the system, portion of video 

blocks must be reorganized among them to utilize the 

streaming and storage capacity and this is the data 

reorganization problem discussed before. Consequently, 

due to the relocation of some video blocks, the redundant 

data that are computed from the data stripe will require 

corresponding update and this redundant data update 

problem will incur overhead in transmitting data blocks to 

the nodes for regenerating the redundant data blocks. We 

will first present a trivial solution, called redundant data 

regeneration, in Section 3.1. Then we review the more 

efficient SRDU algorithm in Section 3.2. 

 

3.1 Redundant Data Regeneration 
 

For a general systematic erasure-correction code in a 

system with N nodes and h redundancies, we will need all 

(N−h) data blocks in a stripe to compute the corresponding 

h redundant data blocks. As individual data and redundant 

blocks of a stripe are all stored in different nodes, the data 

blocks will all need to be transmitted to the redundant 

nodes (i.e., nodes storing the redundant data blocks) for 

regenerating the new redundant data blocks. 

Therefore for a system with B data blocks, a total of B 

blocks will need to be transmitted to and received by the 

redundant node to support redundant data regeneration. 

Clearly this overhead is very significant and worst. 

On the other hand, if a central archive server storing all 

video blocks is available in the system, then it can simply 

regenerate the new redundant data blocks locally and send 

them to the redundant nodes to replace the old redundant 

data blocks. In this case, the number of blocks sent will be 

reduced by a factor of (N−h) to (B/(N−h)). Nevertheless 

maintaining this central archive server will incur 

additional costs, and depending on applications, may not 

be desirable or even feasible. 

 

3.2 Sequential Redundant Data Update 
 

By considering the generation of a redundant data block 

from a data stripe, we can observe that in most cases, the 

reorganized data stripe still comprises many data blocks 

from the old data stripe before reorganization. For example, 

in growing a system from N nodes to N+1 nodes, the first 

data stripe will be reorganized from the composition of  

{v0, v1, …, vN−h−1} to {v0, v1, …, vN−h−1, vN−h}, which differs 

by only one data block vN−h. This is the key idea behind 

SRDU algorithm, which reuses the old redundant block to 

compute the new redundant block such that only a portion 

of the data stripe will be needed to transmit. 

Among different erasure correction codes there is a 

class of codes called linear systematic block erasure 

correction codes, with the Reed-Solomon Erasure 

Correction (RSE) code being one well-known example. 

One key property of linear systematic block codes is the 

use of strictly linear matrix multiplications in computing 

the redundant data, and this very property enables us to 

reuse original redundant data to compute the updated 

redundant data.  

Specifically, let (N-h) and h be the number of data 

nodes and redundant nodes in the system respectively. 

Assuming the number of redundant nodes in the system is 

fixed, then we can apply the (N, h)-RSE code to compute 

the h redundant data blocks from each stripe of (N-h) data 

blocks using 
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where the F, D, and C are the Vandermonde matrix [7], the 

video data vector, and the redundant data vector 

respectively; and di,j, ci,k represent data block j 

(j=0,1,…,N−h−1) and redundant block k (k=0,1,…,h−1) of 

stripe i respectively. Elements in F is computed from fi,j = 

ji-1
 and are constants. Note that the matrix multiplication in 

(1) is computed over Galois Fields of 2
w
 where N < 2

w
. For 

example, by setting w=16 then the code can support up to 

65,535 nodes.  

To illustrate the SRDU algorithm, consider the 

placement in Fig. 1 and Fig. 2, which represent 

respectively the system configuration before and after the 

addition of two new nodes. Now, consider the first three 

old redundant data in redundant node r1, denoted by c0,1, 

c1,1 and c2,1, which are computed from 
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according to (1). 

After two new nodes are added, the system 

configuration will be changed to that in Fig. 2. Now the 

two new redundant data, denoted by c’0,1 and c’1,1, are 

computed from 
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Comparing (5) with (2) we can observe that they share four 

common terms in vj: v0, v1, v2, v3. Thus we can rewrite (5) 

as follows 

 0,1 0,1 2,5 4 2,6 5'c c f v f v= + +  (7) 

That is, by reusing the old redundant data c0,1, the overhead 

decreases to two data blocks instead of six data blocks. 

For c’1,1, comparing (6) with (4) we can again observe 

that they share four common terms in vj: v8, v9, v10, v11. 

However, rewriting (6) cannot be expressed directly using 

(4) due to the different coefficients fi,j (e.g. f2,1v8 in c2,1 

versus f2,3v8 in c’1,1). To tackle this problem, we can 

reshuffle the order of computations for c’1,1 as 
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8
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∑
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thus enabling us to reuse c2,1 in the computation and 

reducing the number of data block transmissions from six 

to two. 

As observed in (6) and (3), there are also two common 

terms in vj, i.e., v6, v7, in computing c1,1 and c’1,1. Again if 

we reshuffle the parity group order, we can reuse c1,1 to 

construct c’1,1, but then the overhead induced will be 

greater than that of reusing c2,1. In this case we simply 

choose to reuse c2,1 instead of c1,1. Interested readers are 

referred to the study by Ho and Lee [4] for more details. 

Although the SRDU algorithm can substantially reduce 

the overhead, the redundancy update overhead is still not 

insignificant. Intuitively, if we defer the update until more 

nodes have joined the system, then further savings in 

update overhead should be achievable. 

Let say we defer the update further until four nodes 

have joined the system as shown in Fig. 3. Now the new 

redundant data block c’0,1 is computed from 
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c’0,1 share four common terms: v0, v1, v2, v3, with c0,1 and 

thus we can rewrite it as 
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On the other hand, it also share four common terms: v4, v5, 

v6, v7, with c1,1 and so we can also rewrite it as 
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Nevertheless, c’0,1 can only be written in terms of one of 

c0,1 or c1,1, but not both. Thus although there are eight 

terms in common, only up to four can be reused. This 

limitation arises from the original number of data node e.g. 

four nodes in this case. In particular, as both c0,1 and  c1,1 

are computed using the same coefficients f2,1 to f2,4, this 

prevents us from reusing both c0,1 and  c1,1 in  constructing 

c’0,1. Motivated by this observation, we develop in the next 

section a new Transpositional Redundant Data Update 

(TRDU) algorithm that is free from this redundant data 

reuse limitation. 

 

4. Transpositional Redundant Data Update 

 

In the SRDU algorithm, all the data blocks are inputted 

to the data vector D in (1) starting from di,0 to di,N-h-1 

sequentially. This leads to the limitation in common terms 

for reusing as explained in Section 3.2. To tackle this 

shortcoming, we need to increase the number of reusable 

common terms. The idea is to compute the redundant 

block using transposed coefficients in the Vandermonde 

matrix.  

Let Nmax be the maximum size that the system can scale 

up to, i.e., N≤Nmax. Instead of using (1) for encoding, we 

replace it with 
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where di,j, ci,k and fi,j have the same definition as (1). The 

key difference between (1) and (12) is that the encoding 

matrix in (1) has (N−h) columns, but the same in (12) has 

(Nmax−h) columns, which is fixed irrespective of the 

current system size N.  

For each stripe i of data blocks, the starting position of 

it in the data vector D is shifted by (i(N−h)) mod (Nmax−h)) 

and all other di,j are zeroed. For example, with (Nmax−h) 

being 10 and the data placement in Fig. 1, c0,1, c1,1 and c2,1 

will be written as 
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Note that the sequence of data blocks in computing c2,1 

spans beyond the boundary of D and in this case, they will 

be looped back to the beginning. As nearby redundant 

blocks are computed using different coefficients fi,j in the 

Vandermonde matrix, we can reuse the old redundant data 

in updating the new redundant data and thus, eliminating 

the limitation of the SRDU algorithm.  

Although the coefficient f2,1 of v0 in (13) and v10 in (15) 

is the same, this would not affect the update as long as the 

maximum number of data nodes is fixed at 10, which  

prevent v0 and v10 from residing in the same data stripe in 

computing the same redundant data block. 

Assume that two data nodes are added to the system as 

shown in Fig. 2. The first two new redundant data, denoted 

by c’0,1 and c’1,1, are computed from 
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c’0,1 can now be constructed by c0,1 with the overhead of 

two data blocks 

 

3

0,1 2, 1 2,5 4 2,6 5

0

0,1 2,5 4 2,6 5

'

     

j j

j

c f v f v f v

c f v f v

+
=

= + +

= + +

∑
 (18) 

and for c’1,1, it can be written as 
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However, v4 and v5 are already transmitted in 

constructing c’0,1 (c.f. Equation (18)) and thus by caching 

the data blocks, the overhead in constructing c’1,1 is in fact 

zero. An important point to notice is that rewriting c’1,1 as 

(19) is not allowed in the SRDU algorithm (c.f. Equation 

(8)) because both v6 and v10 share the same coefficient f2,3, 

and both v7 and v11 share the same coefficient f2,4. However, 

by shifting the coefficients as done in TRDU, their 

coefficients become different and thus allowing more 

efficient reuse of the old redundant data.  

In the extreme case, when the number of additional data 

node equals to integral multiples of the original system 

size, the overhead will become zero as the redundant node 

can compute the new redundant data blocks simply by 

combining old redundant data blocks locally. For example, 

assume four data nodes are entered, with data placement 

shown in Fig. 3. Now, the new redundant data block c’0,1 

will be equal to 
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which can be directly written as 

  

3 7
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c c
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It does not involve any data blocks at all, and so the 

overhead is zero. 

Compared to SRDU, there are also tradeoffs in using 

TRDU. First, we need to specify the maximum system size 

Nmax in advance. To avoid hitting the limit, we may need to 

use a large value for Nmax. This creates the second tradeoff, 

where the larger Vandermonde matrix will increase the 

computational complexity in decoding as we need to 

compute the inverse of the larger matrix. Finally, due to the 

larger matrix size, TRDU will also increase the memory 

consumed in performing the matrix operations during 

decoding. 
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5. Multiple Redundant Nodes 
 

So far only the overhead for updating one redundant 

node is considered. In this section, we extend all the 

presented algorithms to systems with multiple redundant 

nodes.  

First, we consider the redundant data regeneration 

algorithm (c.f. Section 3.1). Fig. 4 illustrates the redundant 

data regeneration process. Note that we need to transmit all 

data blocks to the redundant node r0 to compute the new 

redundant data blocks. For a video title of B data blocks, 

this step will incur an overhead of B blocks. Additionally, 

after r0 regenerates all the updated redundant data blocks, 

it will need to transmit the updated redundant blocks to the 

other redundant nodes as well and this incurs another 

overhead of (B/(N−h)) blocks for each additional 

redundant node. Therefore, the total redundant data update 

overhead is equal to B+(h–1)(B/(N−h)).  

Second, if there is a central archive server storing a 

copy of all the video blocks, it can regenerate locally all 

the updated redundant data blocks and then transmit them 

to the redundant nodes (Fig. 5). The overhead in this case 

will be equal to h(B/(N−h)). 

Third, Fig. 6 illustrates the process in SRDU and TRDU. 

The data blocks needed for computing the updated 

redundant data are first transmitted to the redundant node 

r0. Then, partial results are computed in r0 and transmitted 

to other redundant nodes for computing their updated 

redundant data blocks. For example, assume two new 

nodes are added and consider the first redundant block c’0,j 

in the redundant node rj. The equation for computing c’0,j 

(c.f. Equation (7) and (18)) is 

 0, 0, 1,5 4 1,6 5' j j j jc c f v f v+ += + +  (22) 

As v4 and v5 are already transmitted to r0 according to 

the SRDU/TRDU algorithm, r0 can then compute the 

partial result (fj+1,5v4+ fj+1,6v5) for all 0j ≠ . In the 

redundant node rj, this partial result can be combined with 

the original redundant block c0,j to generate the new 

redundant block c’0,j. The transmission of partial result will 

introduce an overhead of (B/(N−h)) blocks for each 

additional redundant node. As a result, the total overhead 

is equal to the block movement overhead under 

SRDU/TRDU plus the overhead in transmitting the partial 

results (h-1)(B/(N−h)). 

Table 1 summarizes the total overhead of the redundant 

data update algorithms studied. We can observe that the 

overhead is dominated by the overhead in updating the 

first redundant node because of the large number of data 

blocks needed to generate the new redundant data blocks. 

Once these are cached in the redundant node r0, new 

redundant blocks of other redundant nodes can be 

computed with much lower overhead.  

Table 1. Total overhead in studied algorithms. 

Algorithms Total Overhead 

Redundant Data Regeneration B+(h–1)(B/(N−h))

Regeneration by archive server B/(N−h)+ 

(h−1)(B/(N−h)) 

Sequential Redundant Data 

Update (SRDU) 

Block movement 

under SRDU+ 

(h−1)(B/(N−h)) 

Transpositional Redundant Data 

Update (TRDU) 

Block movement 

under TRDU+ 

(h−1)(B/(N−h)) 

�

��

�

6. Performance Evaluation  

 

In this section, we evaluate the studied algorithms using 

numerical results. As the overhead is dominated by 

updating the first redundant node, for simplicity we will 

ignore the overhead in updating additional redundant 

nodes. The overhead in updating additional redundant 

nodes can be easily obtained according to the analysis in 

Section 5. 

Beginning with a small system, we add new nodes to 

the system and then apply the studied algorithms to update 

the redundant data blocks. Performance is measured by the 

number of data blocks that need to be sent to the redundant 

nodes – or simply called redundancy update overhead. The 

total number of data blocks is 40,000 and is fixed 

throughout the system lifetime.  

 

6.1 Continuous System Growth 

 

In the first experiment, we begin with a system of five 

data nodes and one redundant node. Then we add a new 

node to the system one by one, each time the redundant 

data blocks are completely updated using different 

algorithms. This continues until the system grows to 400 

data nodes. 

Fig. 7 plots the redundancy update overhead versus 

system size from 6 to 400. As expected, Redundant Data 

Regeneration performs the worst, essentially requiring all 

data blocks to be sent to the redundant node for 

regenerating the redundant data. On the other hand, 

regenerating redundant data using a central archive server 

incurs the least overhead, albeit at the expense of extra 

central facility. SRDU and TRDU perform similarly, with 

TRDU achieving slightly less overhead.  
 

6.2 Batched Update 

 

In the previous experiment, we always completely 

update all redundant data blocks before adding another 
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new node. Clearly this is inefficient if new nodes are added 

frequently or added to the system in a batch. To address 

this issue, we conduct a second experiment where 

redundant data blocks are not updated until a fixed number 

of nodes, say W, are added – batched redundancy update. 

During this time, storage and streaming capacity in the 

new nodes are not utilized and thus this approach 

represents tradeoffs between redundancy update overhead 

and resource utilization. Fig. 8 plots the redundancy update 

overhead versus the batch size W for initial system size of 

80 data nodes. The key observation is that the normalized 

per-node redundancy update overhead of both the SRDU 

and TRDU algorithms decreases significantly with the 

batch size.  

Moreover, TRDU performs significantly better than 

SRDU when the batch size is large. This is because the 

reusing of old redundant data in SRDU is limited by the 

original number of data nodes, while that in TRDU will 

increase with the batch size. 

Furthermore, as discussed in section 4, the overhead of 

TRDU is equal to zero when the batch size is integer 

multiples of the initial data node size. For example, in  

Fig. 8 the two zero overhead points occur when the batch 

size is 80 and 160. 

 
7. Conclusion and Future Works 

 

This study shows that we can reduce the redundancy 

update overhead significantly by combining the use of 

batched update and the Transpositional Redundant Data 

Update algorithm. It also reveals that the additional 

redundancy overhead for multiple redundant nodes is 

insignificant, thereby paving the way for employing 

multiple redundant nodes to increase the reliability of 

server-less video streaming systems. 

Nevertheless, there are still many open problems in 

growing a server-less video streaming system. For 

example, when the system grows larger with more nodes, 

the system reliability will decrease unless additional 

redundant nodes are added to compensate. However, due 

to the orthogonal nature of the redundant data, the new 

redundant data cannot be computed from the existing 

redundant data and so must be generated directly from the 

data blocks. On the other hand, nodes in the system are 

only peers, which may readily leave the system anytime. 

The shrinking of the system may introduce several 

problems, including redundant data update, data 

reorganization and fault tolerance etc. Therefore further 

investigation is warranted to address these challenges to 

build a truly scalable server-less video streaming system. 
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Fig. 1. Original data placement before addition of 

nodes. 

 

Fig. 2. Data placement after adding two data 

nodes. 

 

Fig. 3. Data placement after adding four data 

nodes. 

 

Fig. 4. Redundant data regeneration when video 

blocks are fully distributed.  

 

 

 Fig. 5. Redundant data regeneration using  

an archive server. 

 

 

Fig. 6. Redundant data update in SRDU/TRDU. 

 

 

Fig. 7. Redundancy update overhead versus  

system size. 

 

Fig. 8. Per-node redundancy update overhead  

versus batch size. 
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