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Abstract—Despite the availability of video-on-demand (VoD)
services in a number of cities around the world, large-scale deploy-
ment of VoD services in a metropolitan area is still economically
impractical. This study presents a novel super-scalar architecture
for building very large-scale and efficient VoD systems. The pro-
posed architecture combines the use of static multicast, dynamic
multicast, and intelligent client-side caching to vastly reduce server
and network resource requirement. Moreover, in sharp contrast to
conventional VoD systems where the system cost increases at least
linearly with the system scale, the proposed architecture becomes
more efficient as the system scales up and can ultimately be scaled
up to serve any number of users while still keeping the startup
latency short. This paper presents this new architecture, proposes
methods to support interactive playback controls without the
need for additional server or client resources, and derives an
approximate performance model to relate the startup latency with
other system parameters. The performance model is validated
using simulation and the architecture is evaluated under various
system settings. Lastly, a system implementation is presented and
benchmarking results obtained to further verify the architecture,
the performance model, and the simulation results.

Index Terms—Multicast, performance analysis, super-scaler
video-in-demand (SS-VoD), super-scalar, video-on-demand.

I. INTRODUCTION

V IDEO-ON-DEMAND (VoD) systems have been commer-
cially available for many years. However, except for a few

cities, large-scale deployment of VoD service is still uncommon.
One of the reasons is the high cost in provisioning large-scale in-
teractive VoD service. The traditional true-VoD (TVoD) model
calls for a dedicated channel, both at the server and at the net-
work for each active user during the entire duration of the ses-
sion (e.g., 1–2 h for movies). In a city with potentially millions
to tens of millions of subscribers, the required infrastructure in-
vestment is immense.

To tackle this challenge, a number of researchers have investi-
gated various innovative architectures to improve the scalability
and efficiency of large-scale VoD systems [1]–[37]. Notable
examples include batching [1]–[5], chaining [6], [7], periodic
broadcasting [8]–[21], patching [22]–[26], and piggybacking
[27]–[30]. Moreover, these techniques are often complemen-
tary and hence can be combined into even more sophisticated
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architectures to further improve efficiency [31]–[37]. A more
detailed review of these works will be presented in Section II.

The central theme in these pioneering studies is the use of
network-level multicast to enable sharing of transmitted data
among a large number of users, thereby drastically reducing re-
source requirements when scaling up the system. The challenges
to applying multicast to VoD applications are threefold. First,
one needs to design a multicast transmission schedule to maxi-
mize resource sharing while at the same time minimize startup
latency. Second, as users arrive at random time instants, one
would need ways to group them together so that they can share
just a few multicast transmissions. Third, to provide service
comparable to traditional TVoD service, one would also need to
find ways to support interactive controls such as pause-resume,
slow motion, seeking, etc., during video playback.

This study investigates a super-scalar architecture—Super-
Scalar VoD (SS-VoD) that addresses the previous three chal-
lenges. Specifically, SS-VoD integrates ideas from batching,
static multicasting, dynamic multicasting, and client-side
caching to form a simple yet efficient architecture. Static
multicast channels in SS-VoD are scheduled using a simple
staggered schedule similar to a near VoD (NVoD) system.
While more sophisticated multicast schedules [10], [11],
[13]–[15], [17]–[21] can achieve better resource savings, they
often require more client-side bandwidth and client-side buffer.
More importantly, these multicast schedules require the client
to switch between multiple multicast channels during a video
session to achieve the resource savings. For large-scale systems
comprising millions of users, the channel switching overhead
can present a significant burden to the network.

Let us consider IP multicast as an example. A client wishing
to switch from one multicast channel to another will need to
send an Internet Group Management Protocol (IGMP) [38] mes-
sage to the edge router to stop it from forwarding data in the
current multicast group. Another IGMP message will then be
sent to request the edge router to start forwarding data from
the new multicast group. Unlike processing data packets, these
control messages and group management processing are per-
formed in software running on the router CPU. Hence the more
channel switching it requires, the more chance that a router
could become overloaded. This could lead to missed schedule
and/or data loss, resulting in client playback hiccup and/or vi-
sual quality degradation.

Another advantage of using the simple staggered multicast
schedule in SS-VoD is for the support of interactive playback
control. In particular, we show in Section IV that interactive
controls such as pause–resume, slow motion, and seeking can be
supported in SS-VoD without incurring any additional resource
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or processing at the video server nor any additional buffer at the
client.

The dynamic multicast channels in SS-VoD, on the other
hand, are scheduled online by an admission controller. These
dynamic multicast channels are used to allow a user to start
and sustain playback while caching data from another static
multicast channel. Users sharing a dynamic multicast channel
will eventually catch up with their cached data and the dynamic
channel can then be released. Observing that in practice most
users are willing to wait for a small startup delay of, say, a
few seconds, we design an admission controller for SS-VoD
to enable more users requesting the same movie to share the
same dynamic multicast channel. This dramatically reduces the
system resource required to achieve the same startup latency.

Another contribution of this study is in performance mod-
eling. Systems of this complexity are inherently difficult to an-
alyze and many studies have therefore resorted to using sim-
ulations to obtain performance results. A number of previous
works [32], [34], [36] have successfully analyzed system per-
formance by deriving the average number of channels needed
given other system parameters, assuming that server and net-
work bandwidth can be allocated whenever needed. These per-
formance models have provided important insights into the re-
lations between different system parameters. This study takes a
different approach and begins with a fixed total number of chan-
nels and then proceeds to derive the startup latency given other
system parameters. We believe that this model can better ad-
dress the need of VoD service providers as server and network
bandwidth are often fixed during system installation.

The rest of the paper is organized as follows. Section II re-
views some previous works and discusses the differences of our
approach. Section III presents the SS-VoD architecture, with
details of the transmission schedule, admission control algo-
rithm, and channel merging algorithm. Section IV presents al-
gorithms to support three interactive controls, namely pause–re-
sume, slow motion, and seeking under the SS-VoD architecture.
Section V presents a performance model of SS-VoD where the
startup latency is related to other system parameters. Section VI
evaluates performance of the SS-VoD architecture using results
obtained from analysis and simulation. Section VII presents the
implementation of a system prototype and the experimental re-
sults obtained from benchmarking. Finally, we conclude the
study in Section VIII.

II. RELATED WORK

In this section, we briefly review the related works and com-
pare them with this study. As mentioned in Section I, there are
five common approaches for improving VoD system efficiency,
namely batching, chaining, periodic broadcasting, patching, and
piggybacking. These approaches can be used individually or
combined to form even more sophisticated architectures.

The first approach,batching, groups users waiting for the
same video data and then serves them using a single multicast
channel [1]–[5]. This batching process can occur passively
while the users are waiting or actively by delaying the service
of earlier users to wait for later users to join the batch. Various

batching policies have been proposed in recent years, including
first-come-first-serve (FCFS) and maximum queue length
(MQL) proposed by Danet al. [1], maximum factored queue
(MFQ) proposed by Aggarwalet al. [4], and Max_Batch and
Min_Idle proposed by Shachnaiet al. [5].

The second approach, calledchaining or virtual batching,
as proposed by Sheuet al. [6], [7], builds upon batching and
exploits client-side disk and network bandwidth to reduce the
batching delay. Specifically, clients from the same batch form a
logical chain where the first client of the batch starts playback
immediately, caches the video data, and then forwards them to
the next client in the chain. This chaining process repeats for
subsequent clients in the batch. The primary advantage of this
approach is that earlier clients are not penalized with a longer
wait due to the batching process. The tradeoff is that the clients
and the access network must have bandwidth to stream video
data to other clients.

The third approach, calledperiodic broadcasting, schedules
the transmissions of a video over multiple multicast channels
in a fixed pattern [8]–[21]. For the simplest example, NVoD
repeatedly transmits a video over multiple channels at fixed
time intervals so that an arriving user can simply join the next
upcoming multicast cycle without incurring additional server
resource. More sophisticated broadcasting schedules such as
pyramid broadcasting [10], [11], skyscraper broadcasting [13],
and Greedy Disk-Conserving Broadcasting (GDB) [17] have
been proposed to further reduce the resource requirement by
trading off client-side access bandwidth, buffer requirement, and
multicast channel switching overhead as discussed in Section I.

The fourth approach, calledpatching, exploits client-side
bandwidth and buffer space to merge users on separate trans-
mission channels onto an existing multicast channel [22]–[26].
The idea is to let the client caches data from a nearby (in
playback time) multicast transmission channel while sustaining
playback with data from another transmission channel—called
a patching channel in [23].1 This patching channel can be
released once video playback reaches the point where the
cached data began, and playback continues via the cache and
the shared multicast channel for the rest of the session.

The fifth approach, calledpiggybacking, merges users on sep-
arate transmission channels by slightly increasing the playback
rate of the latecomer (and/or slightly decreasing the playback
rate of the early starter) so that it eventually catches up with an-
other user and hence both can then be served using the same
multicast channel [27]–[30]. This technique exploits users’ tol-
erance on playback rate variations and does not require addi-
tional buffer on the client side as in the case of patching.

The previous five approaches are complementary and hence
can be combined to form even more sophisticated architectures.
For example, Liaoet al.[22], Huaet al.[23], and Caoet al.[24]
have investigated integrating batching with patching to avoid the
long startup delay due to batching. Ohet al. [31] have proposed
an adaptive hybrid technique which integrated batching with
Skyscraper Broadcasting. They proposed a new batching policy
called Largest Aggregated Waiting Time First (LAW), which

1In [23], the termpatchingreferred to the whole architecture that combined
patching and batching. In this paper we treat these two techniques separately.
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is a refinement of the MFQ policy [4]. Unlike most studies
which assume stationary video popularity, their approach esti-
mates video popularity using an online algorithm and revises the
Skyscraper Broadcasting schedule from time to time to adapt to
video popularity changes.

More recently, Gaoet al. [32] proposed acontrolled multi-
casttechnique that integrated patching with dynamically sched-
uled multicasting. This is further refined by Gaoet al. [34]
in their catchingscheme, which employed the GDB schedule
for the periodic broadcasting channels. Their study found out
that catching outperforms controlled multicast at high loads but
is otherwise not as good as controlled multicast. This moti-
vated them to further combine catching with controlled multi-
cast to form aselective catchingscheme that dynamically switch
between catching and controlled multicast depending on the
system load.

In another study, Rameshet al. [36] proposed and analyzed
the multicast with cache (Mcache) approach that integrated
batching, patching, and prefix caching. They proposed placing
regional cache servers close to the users to serve the initial
portion (prefix) of the videos. In this way, a client can start
video playback immediately by receiving prefix data streamed
from a regional cache server. The server will then dynamically
schedule a patching channel for the client to continue the
patching process beyond the prefix and also identify an existing
multicast channel for the client to cache and eventually merge
into. This architecture has been shown to outperform prefix-as-
sisted versions of dynamic skyscraper, GDB, and selective
catching.

The SS-VoD architecture proposed in this study differs from
the previous studies in four major ways. First, we combine
both static and dynamic multicast with ideas from patching
and batching. In particular, we employ the simple staggered
periodic multicast schedule for the static multicast channels.
Compared to dynamically scheduled multicast schedules [12],
[19], [32], [36], this simple multicast schedule enables us to
implement interactive playback control such as pause–resume,
slow motion, and seeking in a simple yet efficient way. Com-
pared to more sophisticated periodic broadcasting schedules
[10], [11], [13]–[15], [17]–[21], the staggered schedule enjoys
lower client buffer requirement and, more importantly, elim-
inates the need to switch multicast channels during a video
session as discussed in Section I.

Second, we take advantage of users’ tolerance to a small
startup latency to enable multiple users to share a dynamic
multicast channel for patching [35]. This technique achieves
the benefits of batching patching requests similar to Mcache
[36] but without the need for regional cache servers. As will
be shown in later sections, this technique greatly reduces the
startup latency at high arrival rates.

Third, instead of using simulation or deriving the average
channel requirement assuming server and network bandwidth
can be allocated whenever needed, we modeled the system per-
formance by beginning with a given total number of multicast
channels and then derive the startup latency accordingly. We be-
lieve this model will be useful for the VoD service providers to
dimension the system requirement and to estimate system per-
formance under different user arrival rates.

Last but not least, we successfully implemented the pro-
posed architecture, complete with pause–resume, slow motion,
and seeking controls. Using this system implementation, we
obtained benchmark results that further validated the analytical
and simulation results.

In a previous work by the author [33], [37], we proposed
a UVoD architecture that also integrated patching with static
periodic multicast. SS-VoD improves upon UVoD in two ways.
First, SS-VoD employs multicast patching channels instead
of unicast patching channels in UVoD, which dramatically
improves the system performance at high loads. Second,
SS-VoD employs intermediate admission controllers to admit
and consolidate client requests for transmission to the servers.
This three-tier architecture ensures that the server will not be
overloaded with client requests when one scales up the system
to millions of users. These two architectures will be compared
in more detail in Section VI.

III. SUPER-SCALAR ARCHITECTURE

In this section we present the design of the SS-VoD archi-
tecture. As depicted in Fig. 1, the system comprises a number
of service nodes connected via a multicast-ready network to the
clients. The clients form clusters according to their geographical
proximity. An admission controller in each cluster performs au-
thentication and schedules requests for forwarding to the service
nodes.

Each service node operates independently from each other,
having its own disk storage, memory, CPU, and network inter-
face. Hence a service node is effectively a mini video server, al-
beit serving a small number of video titles to theentireuser pop-
ulation. This modular architecture can simplify the deployment
and management of the system. For example, since the config-
uration of each service node is decoupled from the scale of the
system and each service node carries just a few movies, a service
provider simply deploys the right number of service nodes ac-
cording to the desired video selections. Additional service nodes
can be added when more movie selections are needed, with the
existing nodes remain unchanged.

SS-VoD achieves scalability and bandwidth efficiency with
two techniques. The first technique is through the use of
multicast to serve multiple clients using a single multicast
channel. However, simple multicast such as those used in an
NVoD system limits the time for which a client may start a
new video session. Depending on the number of multicast
channels allocated for a video title, this startup delay can range
from a few minutes to tens of minutes. To tackle this initial
delay problem, we employ patching to enable a client to start
video playback at any time using a dynamic multicast channel
until it can be merged back onto an existing multicast channel.
Sections III-A through III-C present these techniques in detail.

A. Transmission Scheduling

Each service node in the system streams video data into mul-
tiple multicast channels. Let be the number of video titles
served by each service node and letbe the total number of
multicast channels available to a service node. For simplicity,
we assume is divisible by and hence each video title
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Fig. 1. SS-VoD architecture.

Fig. 2. Transmission schedules for static and dynamic multicast channels.

is served by the same number of multicast channels, denoted
by . These multicast channels are then divided
into two groups of static multicast channels and

dynamic multicast channels.
The video title is multicast repeatedly over all static mul-

ticast channels in a time-staggered manner as shown in Fig. 2.
Specifically, adjacent channels are offset by

(1)

seconds, where is the length of the video title in seconds.
Transmissions are continuously repeated, i.e., restart from the
beginning of a video title after transmission completes, regard-
less of the load of the server or how many users are active. These
static multicast channels are used as the main channel for de-
livering video data to the clients. A client may start out with a
dynamic multicast channel but it will shortly be merged back
to one of these static multicast channels. Section III-B presents
the admission procedure for starting a new video session, and
we explain in Section III-C how the client is merged back to
one of the static multicast channels.

B. Admission Control

To reduce the response time while still leveraging the band-
width efficiency of multicast, SS-VoD allocates a portion of the
multicast channels and schedules them dynamically according
to the request arrival pattern.

Specifically, a new request always goes to the admission
controller. Knowing the complete transmission schedule for
the static multicast channels, the admission controller then
determines if the new user should wait for the next upcoming
multicast transmission from a static multicast channel or should
start playback with a dynamic multicast channel. In the former
case, the client just waits for the next multicast cycle to begin,
without incurring any additional load to the backend service
nodes. In the latter case, the admission controller performs
additional processing to determine if a new request needs to
be sent to the appropriate service node to start a new dynamic
multicast stream.

Fig. 3 depicts the state-transition diagram for the admission
procedure. Beginning from theIDLE state, suppose that a new
request arrives at time , which is between the start time of the
previous multicast cycle, denoted by , and the start time of
the next multicast cycle, denoted by . Now a predefined
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Fig. 3. State-transition diagram for the admission controller.

admission threshold, denoted by, determines the first admis-
sion decision made by the admission controller: the new request
will be assigned to wait for the next multicast cycle to start play-
back if the waiting time, denoted by , is equal to or smaller
than , i.e.,

(2)

We call these requestsstatically admittedand the admission
controller returns to theIDLE state afterwards. This admission
threshold is introduced to reduce the amount of load going to
the dynamic multicast channels. Optimization procedure for this
admission threshold will be presented in Section V-C.

If (2) does not hold, then the admission controller will pro-
ceed to determine if a request needs to be sent to the appropriate
service node to start a new dynamic multicast stream—dynam-
ically admitted. The service nodes and admission controllers
each keeps a counter-length tuple: , where

is the counter, and , , is the length
of service for each video title being served. Therefore, each ser-
vice node will have such admission tuples and each admis-
sion controller will have such admission tuples, where
is the total number of service nodes in the system. Both the
counter and the length fields are initially set to zero.

Now with the admission tuples, the admission procedure pro-
ceeds as follows. For requests that cannot be statically admitted,
the admission controller will first check the counter in the ad-
mission tuple for the requested video title. If the counter is
zero, then the counter is incremented by one, and the length field
is set according to

(3)

which is the length of time passed since the beginning of the last
multicast. In other words, this particular client will occupy the
dynamic channel for a duration of seconds for patching pur-
pose. At the same time, aSTART request carrying the requested

video title and the length field will be sent to a service node
and the admission controller enters theSTARTEDstate.

If another request for the same video title arrives during the
STARTED state, say at time , the admission controller will
not send another request to the service node, but just update the
local length field according to

(4)

This process repeats for all subsequent requests arrived during
the STARTED state. As a result, only oneSTART request will be
sent to the service node regardless of how many requests are re-
ceived during theSTARTEDstate, thereby significantly reducing
the processing overhead at the service node.

At the service node side, upon receiving aSTARTrequest from
the admission controller, the service node will wait for a free
channel from the dynamic multicast channels to start trans-
mitting the video title for a duration of seconds as shown
in Fig. 4. Once a channel becomes available, aSTART reply will
be sent back to all admission controllers to announce the com-
mencement of the new transmission.

The admission controllers, upon receiving theSTART reply,
will do one of two things. If the local counter value is one, then
both the counter and the length fields are zeroed and the ad-
mission process is completed. If the counter is larger than one,
then the admission controller will send anEXTEND request to
the service node to extend the transmission duration according
to the value of the local length field . Note that, in this case,
the length field at the admission controller will be larger than
the length field at the service node because only the length
field at the admission controller is updated for subsequent re-
quests for the same video title. The length field at the service
node is always the one for the first request. After receivingEX-

TEND requests from the admission controllers, the service node
will update the transmission duration to the largest one among
all EXTEND requests. Transmission will stop after the specified
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Fig. 4. State-transition diagram for a service node.

Fig. 5. Timing diagram for a statically admitted client.

transmission duration expires. Note that the service node does
not need to wait for anyEXTEND request to begin streaming.
Streaming will begin as soon as a free dynamic channel becomes
available. The purpose of theEXTEND request is to increase the
transmission time of the dynamic channel to cater for subse-
quent requests in the same batch that require a longer patching
duration.

It may appear that the previous admission procedure is unnec-
essarily complex and the clients are better off sending requests
directly to the service nodes. However, this direct approach suf-
fers from poor scalability. In particular, recall that each ser-
vice node serves a few video titles to the entire user population.
Therefore, as the user population grows, the volume of requests
directed at a service node will increase linearly and eventually
exceed the service node’s processing capability.

By contrast, an admission controller generates at most two
requests, oneSTART request and oneEXTEND request, for each
dynamically started multicast transmission, irrespective of the
actual number of client requests arrived in an admission cycle
(i.e., from receiving the first request in a batch to sending
the EXTEND request). Given that the number of admission
controllers is orders of magnitude smaller than the user pop-

ulation, the processing requirement at the service nodes is
substantially reduced. For extremely large user populations
where even requests from admission controllers can become
overwhelming, one can extend this request-consolidation
strategy into a hierarchical structure by introducing additional
layers of admission controllers to further consolidate requests
until the volume becomes manageable by the service nodes.

C. Channel Merging

According to the previous admission control policy, a stati-
cally admitted client starts receiving streaming video data from
a static multicast channel for playback as depicted in Fig. 5. For
dynamically admitted clients, video playback starts with video
data received from a dynamically allocated multicast channel.
To merge the client back to an existing static multicast channel,
the client concurrently receives and caches video data from a
nearby (in time) static multicast channel as illustrated in the
timing diagram in Fig. 6. Eventually, playback will reach the
point where the cached data began and the client can then re-
lease the dynamic multicast channel. Playback then continues
using data received from the static multicast channel.



LEE AND LEE: DESIGN, PERFORMANCE ANALYSIS, AND IMPLEMENTATION OF A SS-VoD SYSTEM 989

Fig. 6. Timing diagram for a dynamically admitted client.

Fig. 7. Timing diagram for admitting a group of dynamically admitted users.

As an illustration, consider a dynamic multicast channel
serving dynamically admitted clients as shown in Fig. 7. Let

be the time client arrives at the system and the nearest
multicast cycle starts at and , respectively, where

. Each client
upon arrival will begin caching data from a static multicast
channel while waiting for an available dynamic channel to
begin playback. Note that the later a client arrives in the batch,
the longer it must receive data from the dynamic multicast
channel to make up for the missed data transmitted by the static
multicast channel. Eventually all clients in the batch will reach
their cached data position and the dynamic multicast channel is
released. Therefore, the channel holding time of the dynamic
multicast channel is equal to , i.e., dominated by the
last client joining the batch.

Compared to TVoD systems, a SS-VoD client must have the
capability to receive two multicast channels concurrently and
have a local buffer large enough to hold up to seconds of
video data. Given a video bit rate of 3 Mb/s (e.g., high-quality
MPEG4 video), a total of 6 Mb/s downstream bandwidth will

be needed for the initial portion of the video session. For a 2-h
movie served using 25 static multicast channels, the buffer re-
quirement will become 108 MB. This can easily be accommo-
dated today using a small hard disk on the client side, and in the
near future simply using memory as technology improves.

IV. I NTERACTIVE CONTROLS

To provide a complete VoD service, interactive playback
controls such as pause–resume, slow motion, seeking, etc.
will also need to be supported. Among these, pause–resume
is likely the control most frequently performed in typical
movie-on-demand applications. Intuitively, performing an
interactive control in SS-VoD essentially breaks the client
away from the current static multicast channel and then restarts
it at another point within the video stream. Hence, a simple
method to support interactive control is to treat them just like
a new request. Clearly, this approach will increase loads at the
dynamic multicast channels and result in increased waiting
time for both new session and interactive control requests. As
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there is no generally accepted user-activity model, we do not
attempt to quantify the performance impact of this approach in
this study.

In Sections IV-A through IV–C, we present algorithms that
take advantage of the staggered static multicast schedule to sup-
port pause–resume, slow motion, and seeking in SS-VoD in a
resource-free way. In other words, no additional server resource
or client buffer is needed to support these interactive controls in
SS-VoD.

A. Pause-Resume

We use a simple channel-hopping algorithm to implement
pause–resume in SS-VoD. Specifically, since a client has a
buffer large enough to cache seconds of video, it can just
continue buffering incoming video data after the user paused
playback. If the user resumes playback before the buffer is full,
then no further action is required. By contrast, if the buffer
becomes full, then the client simply stops receiving data and
enters an idle state.

When the user resumes playback, the client can resume play-
back immediately and at the same time determine the nearest
multicast channel that is currently multicasting the video. Since
a movie is repeated every seconds and the client buffer al-
ready contains seconds worth of video data, we can guar-
anteed that the client can locate and merge back to an existing
static multicast channel.

B. Slow Motion

Slow motion is playback at a rate lower than the normal play-
back rate. As video data are always being transmitted and re-
ceived at the normal video bit rate, it is easy to see that once
slow motion is started data will begin to accumulate in the client
buffer. Now, if the user resume normal speed playback before
the buffer is full, then no additional action needs to be done.

However, if playback continues in the slow motion state for
a sufficiently long duration, the client buffer will eventually be
fully filled up with video data. Note that at the instant when the
buffer becomes full, the buffer will contain seconds worth
of video data. This is equivalent to the buffer full state in per-
forming a pause operation. The only difference is that, in per-
forming pause, the client will stop receiving data until the user
resumes playback, at which time a nearby (in time) multicast
channel will be located to merge back into. For slow motion,
however, playback continues at that instant and hence it is nec-
essary to immediately locate a nearby multicast channel other
than the current one to merge back into. As any play point is
at most seconds away due to the staggered static multicast
schedule, the seconds worth of data in the buffer guarantees
that the client can locate and merge back into a static multicast
channel. If slow motion continues after merging, then data will
begin to accumulate in the buffer again and the cycle repeats
until normal playback speed is resumed.

Using this algorithm, slow motion at any rate slower than the
normal playback rate can be supported without the need for any
additional resource from the server. Client buffer requirement
also remains the same.

C. Seeking

Seeking is the change from one playback point to another.
Typically, the user initiates seeking either by giving a new des-
tination time offset or by means of using a graphical user inter-
face such as a slider or a scroll bar. SS-VoD can support different
types of seeking depending on the seek direction, seek distance,
and the state of the client buffer and static multicast channels.
Specifically, due to patching, the client buffer typically has some
advance data cached. Moreover, some past video data will also
remain in the client buffer until being overwritten with new data.
Hence, if the new seek position is within the range of video
data in the client buffer, seeking can be implemented simply by
changing the playback point internally.

Now, if the seek position, denoted by, lies outside the client
buffer, then the client may need to switch multicast channels to
accomplish the seek. Let, be the current
playback points of the static multicast channels and assume
the client is currently on channel. Then the client will choose
the nearest channel to restart playback by finding the channel
such than the seek error is minimized. Note
that the current channel may happen to be the nearest channel
and, in this case, the client simply seeks to the oldest data in the
buffer if is earlier than the current playback point or seeks to
the newest data in the buffer otherwise.

Clearly, in the previous case, the seek operation may not end
up in the precise location specified by the user and the seek error
can be up to seconds. In return, this seeking algorithm can
be supported without incurring server overhead or additional
client buffer. If more precise seeking is needed, then one will
need to make use of a dynamic multicast channel to merge the
client back to an existing static multicast channel. Further re-
search will be needed to develop efficient yet precise seeking
algorithms.

V. PERFORMANCEMODELING

In this section, we present an approximate performance
model for the SS-VoD architecture. While an exact analytical
solution does not appear to be tractable, we were able to derive
an approximate model that can be solved numerically. The
purpose of this performance model is to assist system designers
to quickly evaluate various design options and to perform
preliminary system dimensioning. Once the approximate
system parameters are known, one can resort to a more detailed
simulation to obtain more accurate performance results.

The primary performance metric we use in this study is
startup latency, defined as the time a client submitted a request
to the admission controller to the time the beginning of the
requested video starts streaming. For simplicity, we assume
there is a single video title stored in a service node and ignore
network delay, transmission loss, and processing time at the
admission controller.

In Sections V-A through F, we will first derive the average
waiting time for statically admitted clients and dynamically ad-
mitted clients and then investigate the configuration of the ad-
mission threshold and the channel partitioning policy. We will
compare results computed using this approximate performance
model with simulation results in Section VI-A.
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Fig. 8. Classification of dynamically admitted users.

A. Waiting Time for Statically Admitted Clients

As described in Section III-B, there are two ways to admit a
client into the system. The first way is admission through a static
multicast channel as shown in Fig. 5. Given that any clients ar-
riving within the time window of seconds will be admitted
this way, it is easy to see that the average waiting time for stati-
cally admitted clients, denoted by , is equal to half of the
admission threshold

(5)

assuming it is equally probable for a request to arrive at any time
within the time window.

B. Waiting Time for Dynamically-Admitted Clients

The second way to admit a new client is through a dynamic
multicast channel as shown in Fig. 6. Unlike static multicast
channels, dynamic multicast channels are allocated in an on-de-
mand basis according to the admission procedure described in
Section III-B. Specifically, if there are one or more free chan-
nels available at the time a request arrives, a free channel will
be allocated to start transmitting video data to the client imme-
diately and the resultant waiting time will be zero.

On the other hand, if there is no channel available at the time
a request arrives, then the resultant waiting time will depend
on when a request arrive and when a free dynamic multicast
channel becomes available. Specifically, requests arriving at the
admission controller will be consolidated using the procedure
described in Section III-B where the admission controller will
send a consolidatedSTART request to a service node to initiate
video transmission.

Fig. 8 illustrates this admission process. This example as-
sumes that there is no request waiting and all dynamic multi-
cast channels are occupied before client request 1 arrives. After
receiving request 1, the admission controller sends aSTART re-
quest to a service node to initiate a new multicast transmission
for this request. However, as all channels are occupied, the trans-
mission will not start until a later time when a free channel

becomes available. During this waiting time, additional client
requests such as request 2, 3, and so on arrive but the admission
controller will not send additionalSTART requests to the service
node. This process repeats when a new request arrives at time

.
Based on this model, we first derive the average waiting time

experienced by aSTART request at the service node. For the
arrival process, we assume that user requests form a Poisson
arrival process with rate . The proportion of client requests
falling within the admission threshold is given by

(6)

and these clients will be statically admitted.
Correspondingly, the proportion of dynamically admitted

clients is equal to . We assume that the resultant arrival
process at the admission controller is also Poisson, with a rate
equal to

(7)

Referring to Fig. 8, we observe that the time between two ad-
jacentSTART requests is composed of two parts. The first part
is the waiting time for a free dynamic multicast channel; and
the second part is the time until a new dynamically admitted
client request arrives. For the first part, we let be the av-
erage waiting time for a free dynamic multicast channel given
. To derive the second part, we first note that the mean interar-

rival time between the two requests (requestand in Fig. 8)
immediately before and after a free dynamic channel becomes
available, called event , is equal to , or twicethe normal
mean interarrival time. This counterintuitive result is due to the
fact that longer interval is more likely to be encountered by
the event . With an interarrival time that is exponentially dis-
tributed with mean , the length-biased mean interarrival
time as observed by the eventwill become [41]. Next
we observe that the eventis equally likely to occur within the
interval between the two requests, thus the mean time until the
next arrival is simply half the length of the interval or .
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Therefore, the interarrival time forSTARTrequests is given by

(8)

where is the arrival rate forSTART requests. For simplicity,
we assume that the arrival process formed fromSTART requests
is also a Poisson process.

For the service time of start request, it depends on the last user
joining the batch (Fig. 7). In particular, the service time of the
last user equals to the arrival time minus the time for
the previous multicast of the requested video title. The service
time, denoted by, can range from 0 to . We assume
the service time is uniformly distributed between

(9)

Therefore, the dynamic multicast channels form a multi-
server queueing system with Poisson arrival and uniformly
distributed service time. As no closed-form solution exists
for such a queueing model, we resort to the approximation
by Allen and Cunneen [39] for G/G/m queues to obtain the
average waiting time for a dynamic multicast channel

(10)

where is the coefficient of variation for Poisson process
and

(11)

is the coefficient of variation for uniformly distributed service
time and is the average service time, given by

(12)

Additionally, is the traffic intensity, is
the server utilization, and is the Erlang- function

(13)

Since the traffic intensity depends on the average waiting
time, and the traffic intensity is needed to compute the average
waiting time, (10) is in fact recursively defined. Due to (13),
(10) does not appear to be analytically solvable. Therefore, we
apply numerical methods to solve for in computing the
numerical results presented in Section VI.

Now that we have obtained the waiting time for aSTART re-
quest, we can proceed to compute the average waiting time for
dynamically admitted client requests. Specifically, we assume
the waiting time for aSTARTrequest is exponentially distributed
with mean . We classify client requests into two types. A
Type-1 request is the first request that arrives at the beginning of
the admission cycle. Type-2 requests are the other requests that
arrive after a Type-1 request. For example, request 1 in Fig. 8 is
a Type-1 request, and requests 2 and 3 are Type-2 requests.

We first derive the average waiting time for Type-2 requests.
Let be the average waiting time for Type-2 requests
which can be shown to be (please refer to the Appendix)

(14)

Next, for Type-1 requests, the average waiting time, denoted
by , is simply equal to . Therefore, the overall av-
erage waiting time, denoted by , can be computed from
a weighted average of Type-1 and Type-2 requests

(15)

where is the expected number of Type-2 requests in an
admission cycle and can be computed from

(16)

C. Admission Threshold

In the previous derivations, we have assumed that the ad-
mission threshold value is givena priori. Consequently, the
resultant average waiting time for statically admitted and dy-
namically admitted users may differ. To maintain a uniform av-
erage waiting time for both cases, we can adjust the admission
threshold such that the average waiting time difference is within
a small error

(17)

As adjusting the admission threshold does not affect existing
users, the adjustment can be done dynamically while the
system is online. In particular, the system can maintain a
moving average of previous users’ waiting time as the reference
for threshold adjustment. This enables the system to maintain
a uniform average waiting time for both statically admitted
and dynamically admitted users. The termlatencyin this paper
refers to this uniform average waiting time.

D. Channel Partitioning

An important configuration parameter in SS-VoD is the par-
titioning of available channels for use as dynamic and static
multicast channels. Intuitively, having too many dynamic mul-
ticast channels will increase the traffic intensity at the dynamic
multicast channels due to increases in the service time [see (1)
and (12)]. On the other hand, having too few dynamic multicast
channels may also result in higher load at the dynamic multicast
channels. We can find the optimal channel partitioning policy
by enumerating all possibilities, which in this case is of .
Unlike the case in UVoD [33], [37] where the optimal channel
partition policy is arrival-rate-dependent, we found that the op-
timal channel partitioning policy is relatively independent of the
user arrival rate in SS-VoD. This will be studied in more detail
in Section VI-B.
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VI. PERFORMANCEEVALUATION

In this section, we present simulation and numerical results
to evaluate performance of the SS-VoD architecture. We first
validate the analytical performance model using simulation re-
sults and then proceed to investigate the effect of the channel
partitioning policy to compare latency and channel requirement
between TVoD, NVoD, UVoD, with SS-VoD, and finally inves-
tigate the performance of SS-VoD under extremely light loads.
The focus of the comparisons is on the server and backbone
network resource requirements, represented by the number of
channels required to satisfy a given performance metric such
as latency. Note that for simplicity we do not distinguish be-
tween unicast and multicast channels and assume that they have
the same cost. In practice, a multicast channel will incur higher
costs in the access network where the network routers will need
to duplicate and forward the multicast video data to multiple re-
cipients. Nevertheless, this additional cost is not present at the
server (e.g., using IP multicast) and at the backbone network be-
fore fanning out to the access subnetworks and therefore will be
ignored in this study.

A. Model Validation

To verify accuracy of the performance model derived in Sec-
tion V, we developed a simulation program using the Commu-
nications Network Class Library (CNCL) [40] to obtain sim-
ulation results for comparison. A set of simulations is run to
obtain the latency over a range of arrival rates. Each run simu-
lated a duration of 1440 h (60 days), with the first 24 h of data
skipped to reduce initial condition effects. There is one movie in
the system, with a length of 120 min. We divide available mul-
ticast channels equally into static-multicast and dynamic-multi-
cast channels. We do not simulate user interactions and assume
that all users playback the entire movie from start to finish.

Fig. 9 shows the latency versus arrival rate ranging from
1 10 to 5.0 requests per second. We observe that the
analytical results are reasonable approximations for the simu-
lation results. At high arrival rates (e.g., over 1 request/s), the
analytical results overestimate the latency by up to 5%. As
discussed in the beginning of Section V, the analytical model is
primarily used for preliminary system dimensioning. Detailed
simulation, while lengthy (e.g., hours), is still required to obtain
accurate performance results.

B. Channel Partitioning

To investigate the performance impact of different channel al-
locations, we conducted simulations with the proportion of dy-
namic multicast channels, denoted by, ranging from 0.3 to 0.7.
The results are plotted in Fig. 10. Note that we use a normalized
latency instead of actual latency for theaxis to facilitate com-
parison. Normalized latency is defined as

(18)

where is the latency with dynamic multicast chan-
nels.

We simulated three sets of parameters with , 30,
and 50 for two arrival rates, namely heavy load at 5 requests/s

Fig. 9. Comparison of latency obtained from analysis and simulation.

Fig. 10. Effect of channel partitioning on latency.

and light load at 0.5 requests/s. Note that normalized latency
obtained from two different values of cannot be compared
directly as the denominator in (18) is different.

Surprisingly, the results show that in all cases the latency is
minimized by assigning half of the channels to dynamic multi-
cast and the other half to static multicast. For comparison, UVoD
exhibits a different behavior and requires more channels allo-
cated for static multicast to minimize latency at high loads as
shown in Fig. 11 for a 50-channel configuration.

UVoD’s behavior is explained by the observation that, at
higher arrival rates, the waiting time for a free unicast channel
increases rapidly near full utilization. Therefore, it is desirable
to allocate more multicast channels to reduce the traffic inten-
sity (arrival rate ) routed to the unicast channel to prevent
operating the unicast channels near full utilization. By contrast,
the same situation does not occur in SS-VoD because a dy-
namic multicast channel can batch and serve multiple waiting
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Fig. 11. Comparison of optimal channel allocation in SS-VoD and UVoD.

Fig. 12. Comparison of latency for different arrival rates.

requests. Moreover, the batching efficiency increases for longer
waiting time, thus compensating for the increases in the arrival
rate. This remarkable property of SS-VoD greatly simplifies
system deployment as one will not need to reconfigure the
system with a different channel partition policy in case the user
demand changes.

C. Latency Comparisons

Fig. 12 plots the latency for SS-VoD, UVoD, TVoD, and
NVoD for arrival rates up to 5 requests/s. The service node (or
video server for TVoD/NVoD) has 50 channels and serves a
single movie of length 120 min. The first observation is that,
except for NVoD, which has a constant latency of 72 s, the la-
tency generally increases with higher arrival rates as expected.
For TVoD, the server overloads for arrival rates larger than
1.16 10 requests/s. UVoD performs significantly better with
the latency asymptotically approaches that of NVoD. SS-VoD
performs even better than UVoD, and the latency levels off and
approaches 5.6 s or a 92% reduction compared to UVoD.

It is also worth noting that the performance gain of SS-VoD
over UVoD does not incur any tradeoff at the client side. Specif-
ically, the buffer requirement and bandwidth requirement are

Fig. 13. Comparison of channel requirement for different arrival rates.

Fig. 14. Channel reduction over TVoD at very low arrival rates.

the same for both SS-VoD and UVoD. The only differences are
the replacement of the dynamic unicast channels in UVoD with
dynamic multicast channels in SS-VoD and the addition of the
more complex admission procedure in the admission controller.

D. Channel Requirement

Channel requirement is defined as the minimum number of
channels needed to satisfy a given latency constraint at a certain
arrival rate. Fig. 13 plots the channel requirements of SS-VoD,
UVoD, TVoD, and NVoD versus arrival rates from 0.01 to 5
requests/s. The latency constraint is set to 10 s.

The number of channels required for NVoD is a constant
value and equal to 360. The channel requirement of TVoD in-
creases with the arrival rate and quickly exceeds that of NVoD.
The channel requirements of SS-VoD and UVoD are signif-
icantly lower than both TVoD and NVoD. For higher arrival
rates, SS-VoD outperforms UVoD by a wide margin. For ex-
ample, the channel requirements at 1 request/s are 114 and 36
for UVoD and SS-VoD, respectively, and the channel require-
ments at five requests per second are 225 and 38 for UVoD
and SS-VoD, respectively. This result demonstrates the perfor-
mance gain achieved by replacing the dynamic unicast channels
in UVoD with dynamic multicast channels in SS-VoD.
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Fig. 15. Performance tradeoff for using worst case service time for dynamic channels.

E. Performance at Light Loads

The previous results are computed using relatively high
arrival rates. Intuitively, the performance gains will decrease
at lower arrival rates as fewer requests will be served by
a dynamic multicast channel. To investigate this issue, we
define a percentage of channel reduction over TVoD, denoted
by , as shown in (19), shown at the bottom of the page,
where and are the latency given there are
channels, for TVoD and SS-VoD/UVoD, respectively.

Fig. 14 plots the channel reduction for arrival rates from
1 10 to 0.01 for SS-VoD and UVoD. The results show that
SS-VoD requires fewer channels than TVoD as long as arrival
rates are over 1.8 10 requests per second. Note that at
this low arrival rate both TVoD and SS-VoD require only six
channels. This suggests that SS-VoD will likely outperform
TVoD in practice.

F. Simplicity Versus Performance Tradeoff

The admission controller is among the more complex
components in the SS-VoD architecture. One way to simplify
the admission controller is to use a constant service time of

seconds for the dynamic channels. As this is the
worst case service time, the admission controller no longer
needs to maintain the counter-length tuple and also
does not need to send anEXTEND update request to the service
node. The tradeoff for this simplification is increased channel
requirement as the dynamic channel will be occupied for longer
than necessary. Fig. 15 compares the two cases, showing that
using the worst-case service time of seconds results
in resource increases of over 30%. This shows that the more
complex admission procedure is still desirable unless system
complexity must be minimized.

VII. I MPLEMENTATION AND BENCHMARKING

We implemented a SS-VoD prototype using off-the-shelf
software and hardware. There are three components in the
prototype: service node, admission controller, and video
clients. Both the service node and the admission controller are
implemented using the C++ programming language running
on Red Hat Linux 6.2. Two client applications have been
developed: one is implemented using the Java programming
language and the Java Media Framework (JMF) 2.1 while the
other is implemented using C++ on the Microsoft Windows
platform. Both the service node and the admission controller
are video-format-independent. The Java-version client supports
MPEG1 streams, while the Windows-version client supports
MPEG1, MPEG2, as well as basic MPEG4 streams. We also
implemented the interactive playback controls presented in
Section IV, namely pause–resume, slow motion, and seeking.

With the SS-VoD prototype, we conducted extensive exper-
iments to obtain measured benchmark results to verify against
the analytical and simulation results. We developed a traffic gen-
erator in order to simulate a large number of client requests. The
service node runs on a Compaq Proliant DL360 serving one
movie of length 120 min with 30 channels, each at 1.5 Mb/s.
The clients are ordinary PCs and all machines are connected
using a layer-3 IP switch with hardware IP multicast support.
We measured the startup latency for arrival rates ranging from 1
to 5 requests/s. Each benchmark test runs for a total of six hours.
Benchmark data collected during the first hour is discarded to
reduce initial condition effect.

Fig. 16 compares the startup latencies obtained from analysis,
simulation, and benchmarking, respectively. We observe that the
benchmarking results agree very well with the analytical results
and simulation results. Note that the latencies obtained from
benchmarking are consistently larger than those obtained from

(19)
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Fig. 16. Comparison of latencies obtained from analysis, simulation, and
benchmarking.

simulation. We believe that this is due to the nonzero processing
delay and network delay in the system, both of which have been
ignored in the simulation model.

VIII. C ONCLUSION

In this study, we investigated a SS-VoD architecture that can
achieve super-linear scalability by integrating static multicast,
dynamic multicast, and client-side caching. This SS-VoD
architecture is particularly suitable for metropolitan-scale
deployment as resource savings increase dramatically at
higher arrival rates. In fact, there is no inherent scalability
limit to this SS-VoD architecture provided that the network
is multicast-ready and has sufficient bandwidth to connect
all customers. With more and more existing residential
broad-band networks being upgraded to support native mul-
ticast, the SS-VoD architecture could provide a cost-effective
yet simple-to-implement and easy-to-deploy solution for
interactive VoD services.

APPENDIX

In this appendix, we derive the mean waiting time for Type-2
users, denoted by . The complication is due to length bi-
asing as a Type-2 user is more likely to observe a longer Type-1
wait than a shorter Type-1 wait. First, we compute the waiting
time distribution for Type-1 users, denoted by , as ob-
served by a Type-2 userusing the results from Kleinrock [41]

(A1)

where and is the actual waiting time
distribution and mean waiting time of Type-1 users, respec-
tively. Let be the mean of as

(A2)

Substituting (A1) into (A2), we then have

(A3)

We note that the waiting time can only range from zero to
, so we can rewrite (A3) as

(A4)

Motivated by simulation results, we assume that is trun-
cated exponentially distributed

(A5)
Substituting (A5) into (A4), we have

(A6)

Solving the integral and after a series of simplifications (A6)
becomes

(A7)

Finally, as a Type-2 user is equally likely to arrive anytime
during a Type-1 wait, the mean waiting time is simply equal
to half of the Type-1 mean wait as

(A8)
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